Current Path : /compat/linux/proc/68247/cwd/sys/dev/esp/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/cwd/sys/dev/esp/esp_sbus.c |
/*- * Copyright (c) 2004 Scott Long * Copyright (c) 2005 Marius Strobl <marius@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* $NetBSD: esp_sbus.c,v 1.51 2009/09/17 16:28:12 tsutsui Exp $ */ /*- * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum; Jason R. Thorpe of the Numerical Aerospace * Simulation Facility, NASA Ames Research Center; Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/esp/esp_sbus.c 229093 2011-12-31 14:12:12Z hselasky $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/rman.h> #include <dev/ofw/ofw_bus.h> #include <dev/ofw/openfirm.h> #include <machine/bus.h> #include <machine/ofw_machdep.h> #include <machine/resource.h> #include <cam/cam.h> #include <cam/cam_ccb.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_message.h> #include <sparc64/sbus/lsi64854reg.h> #include <sparc64/sbus/lsi64854var.h> #include <sparc64/sbus/sbusvar.h> #include <dev/esp/ncr53c9xreg.h> #include <dev/esp/ncr53c9xvar.h> /* #define ESP_SBUS_DEBUG */ struct esp_softc { struct ncr53c9x_softc sc_ncr53c9x; /* glue to MI code */ device_t sc_dev; struct resource *sc_res; struct resource *sc_irqres; void *sc_irq; struct lsi64854_softc *sc_dma; /* pointer to my DMA */ }; static int esp_probe(device_t); static int esp_dma_attach(device_t); static int esp_dma_detach(device_t); static int esp_sbus_attach(device_t); static int esp_sbus_detach(device_t); static int esp_suspend(device_t); static int esp_resume(device_t); static device_method_t esp_dma_methods[] = { DEVMETHOD(device_probe, esp_probe), DEVMETHOD(device_attach, esp_dma_attach), DEVMETHOD(device_detach, esp_dma_detach), DEVMETHOD(device_suspend, esp_suspend), DEVMETHOD(device_resume, esp_resume), DEVMETHOD_END }; static driver_t esp_dma_driver = { "esp", esp_dma_methods, sizeof(struct esp_softc) }; DRIVER_MODULE(esp, dma, esp_dma_driver, esp_devclass, 0, 0); MODULE_DEPEND(esp, dma, 1, 1, 1); static device_method_t esp_sbus_methods[] = { DEVMETHOD(device_probe, esp_probe), DEVMETHOD(device_attach, esp_sbus_attach), DEVMETHOD(device_detach, esp_sbus_detach), DEVMETHOD(device_suspend, esp_suspend), DEVMETHOD(device_resume, esp_resume), DEVMETHOD_END }; static driver_t esp_sbus_driver = { "esp", esp_sbus_methods, sizeof(struct esp_softc) }; DRIVER_MODULE(esp, sbus, esp_sbus_driver, esp_devclass, 0, 0); MODULE_DEPEND(esp, sbus, 1, 1, 1); /* * Functions and the switch for the MI code */ static uint8_t esp_read_reg(struct ncr53c9x_softc *sc, int reg); static void esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t v); static int esp_dma_isintr(struct ncr53c9x_softc *sc); static void esp_dma_reset(struct ncr53c9x_softc *sc); static int esp_dma_intr(struct ncr53c9x_softc *sc); static int esp_dma_setup(struct ncr53c9x_softc *sc, void **addr, size_t *len, int datain, size_t *dmasize); static void esp_dma_go(struct ncr53c9x_softc *sc); static void esp_dma_stop(struct ncr53c9x_softc *sc); static int esp_dma_isactive(struct ncr53c9x_softc *sc); static int espattach(struct esp_softc *esc, const struct ncr53c9x_glue *gluep); static int espdetach(struct esp_softc *esc); static const struct ncr53c9x_glue const esp_sbus_glue = { esp_read_reg, esp_write_reg, esp_dma_isintr, esp_dma_reset, esp_dma_intr, esp_dma_setup, esp_dma_go, esp_dma_stop, esp_dma_isactive, }; static int esp_probe(device_t dev) { const char *name; name = ofw_bus_get_name(dev); if (strcmp("SUNW,fas", name) == 0) { device_set_desc(dev, "Sun FAS366 Fast-Wide SCSI"); return (BUS_PROBE_DEFAULT); } else if (strcmp("esp", name) == 0) { device_set_desc(dev, "Sun ESP SCSI/Sun FAS Fast-SCSI"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int esp_sbus_attach(device_t dev) { struct esp_softc *esc; struct ncr53c9x_softc *sc; struct lsi64854_softc *lsc; device_t *children; int error, i, nchildren; esc = device_get_softc(dev); sc = &esc->sc_ncr53c9x; lsc = NULL; esc->sc_dev = dev; sc->sc_freq = sbus_get_clockfreq(dev); if (strcmp(ofw_bus_get_name(dev), "SUNW,fas") == 0) { /* * Allocate space for DMA, in SUNW,fas there are no * separate DMA devices. */ lsc = malloc(sizeof (struct lsi64854_softc), M_DEVBUF, M_NOWAIT | M_ZERO); if (lsc == NULL) { device_printf(dev, "out of memory (lsi64854_softc)\n"); return (ENOMEM); } esc->sc_dma = lsc; /* * SUNW,fas have 2 register spaces: DMA (lsi64854) and * SCSI core (ncr53c9x). */ /* Allocate DMA registers. */ i = 0; if ((lsc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE)) == NULL) { device_printf(dev, "cannot allocate DMA registers\n"); error = ENXIO; goto fail_sbus_lsc; } /* Create a parent DMA tag based on this bus. */ error = bus_dma_tag_create( bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* no locking */ &lsc->sc_parent_dmat); if (error != 0) { device_printf(dev, "cannot allocate parent DMA tag\n"); goto fail_sbus_lres; } i = sbus_get_burstsz(dev); #ifdef ESP_SBUS_DEBUG printf("%s: burst 0x%x\n", __func__, i); #endif lsc->sc_burst = (i & SBUS_BURST_32) ? 32 : (i & SBUS_BURST_16) ? 16 : 0; lsc->sc_channel = L64854_CHANNEL_SCSI; lsc->sc_client = sc; lsc->sc_dev = dev; /* * Allocate SCSI core registers. */ i = 1; if ((esc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE)) == NULL) { device_printf(dev, "cannot allocate SCSI core registers\n"); error = ENXIO; goto fail_sbus_lpdma; } } else { /* * Search accompanying DMA engine. It should have been * already attached otherwise there isn't much we can do. */ if (device_get_children(device_get_parent(dev), &children, &nchildren) != 0) { device_printf(dev, "cannot determine siblings\n"); return (ENXIO); } for (i = 0; i < nchildren; i++) { if (device_is_attached(children[i]) && sbus_get_slot(children[i]) == sbus_get_slot(dev) && strcmp(ofw_bus_get_name(children[i]), "dma") == 0) { /* XXX hackery */ esc->sc_dma = (struct lsi64854_softc *) device_get_softc(children[i]); break; } } free(children, M_TEMP); if (esc->sc_dma == NULL) { device_printf(dev, "cannot find DMA engine\n"); return (ENXIO); } esc->sc_dma->sc_client = sc; /* * Allocate SCSI core registers. */ i = 0; if ((esc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE)) == NULL) { device_printf(dev, "cannot allocate SCSI core registers\n"); return (ENXIO); } } error = espattach(esc, &esp_sbus_glue); if (error != 0) { device_printf(dev, "espattach failed\n"); goto fail_sbus_eres; } return (0); fail_sbus_eres: bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(esc->sc_res), esc->sc_res); if (strcmp(ofw_bus_get_name(dev), "SUNW,fas") != 0) return (error); fail_sbus_lpdma: bus_dma_tag_destroy(lsc->sc_parent_dmat); fail_sbus_lres: bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(lsc->sc_res), lsc->sc_res); fail_sbus_lsc: free(lsc, M_DEVBUF); return (error); } static int esp_sbus_detach(device_t dev) { struct esp_softc *esc; struct lsi64854_softc *lsc; int error; esc = device_get_softc(dev); lsc = esc->sc_dma; error = espdetach(esc); if (error != 0) return (error); bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(esc->sc_res), esc->sc_res); if (strcmp(ofw_bus_get_name(dev), "SUNW,fas") != 0) return (0); bus_dma_tag_destroy(lsc->sc_parent_dmat); bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(lsc->sc_res), lsc->sc_res); free(lsc, M_DEVBUF); return (0); } static int esp_dma_attach(device_t dev) { struct esp_softc *esc; struct ncr53c9x_softc *sc; int error, i; esc = device_get_softc(dev); sc = &esc->sc_ncr53c9x; esc->sc_dev = dev; if (OF_getprop(ofw_bus_get_node(dev), "clock-frequency", &sc->sc_freq, sizeof(sc->sc_freq)) == -1) { printf("failed to query OFW for clock-frequency\n"); return (ENXIO); } /* XXX hackery */ esc->sc_dma = (struct lsi64854_softc *) device_get_softc(device_get_parent(dev)); esc->sc_dma->sc_client = sc; /* * Allocate SCSI core registers. */ i = 0; if ((esc->sc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE)) == NULL) { device_printf(dev, "cannot allocate SCSI core registers\n"); return (ENXIO); } error = espattach(esc, &esp_sbus_glue); if (error != 0) { device_printf(dev, "espattach failed\n"); goto fail_dma_eres; } return (0); fail_dma_eres: bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(esc->sc_res), esc->sc_res); return (error); } static int esp_dma_detach(device_t dev) { struct esp_softc *esc; int error; esc = device_get_softc(dev); error = espdetach(esc); if (error != 0) return (error); bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(esc->sc_res), esc->sc_res); return (0); } static int esp_suspend(device_t dev) { return (ENXIO); } static int esp_resume(device_t dev) { return (ENXIO); } static int espattach(struct esp_softc *esc, const struct ncr53c9x_glue *gluep) { struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x; unsigned int uid = 0; int error, i; NCR_LOCK_INIT(sc); sc->sc_id = OF_getscsinitid(esc->sc_dev); #ifdef ESP_SBUS_DEBUG device_printf(esc->sc_dev, "%s: sc_id %d, freq %d\n", __func__, sc->sc_id, sc->sc_freq); #endif /* * The `ESC' DMA chip must be reset before we can access * the ESP registers. */ if (esc->sc_dma->sc_rev == DMAREV_ESC) DMA_RESET(esc->sc_dma); /* * Set up glue for MI code early; we use some of it here. */ sc->sc_glue = gluep; /* gimme MHz */ sc->sc_freq /= 1000000; /* * XXX More of this should be in ncr53c9x_attach(), but * XXX should we really poke around the chip that much in * XXX the MI code? Think about this more... */ /* * Read the part-unique ID code of the SCSI chip. The contained * value is only valid if all of the following conditions are met: * - After power-up or chip reset. * - Before any value is written to this register. * - The NCRCFG2_FE bit is set. * - A (NCRCMD_NOP | NCRCMD_DMA) command has been issued. */ NCRCMD(sc, NCRCMD_RSTCHIP); NCRCMD(sc, NCRCMD_NOP); sc->sc_cfg2 = NCRCFG2_FE; NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2); NCRCMD(sc, NCRCMD_NOP | NCRCMD_DMA); uid = NCR_READ_REG(sc, NCR_UID); /* * It is necessary to try to load the 2nd config register here, * to find out what rev the esp chip is, else the ncr53c9x_reset * will not set up the defaults correctly. */ sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB; NCR_WRITE_REG(sc, NCR_CFG1, sc->sc_cfg1); sc->sc_cfg2 = 0; NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2); sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_RPE; NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2); if ((NCR_READ_REG(sc, NCR_CFG2) & ~NCRCFG2_RSVD) != (NCRCFG2_SCSI2 | NCRCFG2_RPE)) sc->sc_rev = NCR_VARIANT_ESP100; else { sc->sc_cfg2 = NCRCFG2_SCSI2; NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2); sc->sc_cfg3 = 0; NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3); sc->sc_cfg3 = (NCRCFG3_CDB | NCRCFG3_FCLK); NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3); if (NCR_READ_REG(sc, NCR_CFG3) != (NCRCFG3_CDB | NCRCFG3_FCLK)) sc->sc_rev = NCR_VARIANT_ESP100A; else { /* NCRCFG2_FE enables > 64K transfers. */ sc->sc_cfg2 |= NCRCFG2_FE; sc->sc_cfg3 = 0; NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3); if (sc->sc_freq <= 25) sc->sc_rev = NCR_VARIANT_ESP200; else { switch ((uid & 0xf8) >> 3) { case 0x00: sc->sc_rev = NCR_VARIANT_FAS100A; break; case 0x02: if ((uid & 0x07) == 0x02) sc->sc_rev = NCR_VARIANT_FAS216; else sc->sc_rev = NCR_VARIANT_FAS236; break; case 0x0a: sc->sc_rev = NCR_VARIANT_FAS366; break; default: /* * We could just treat unknown chips * as ESP200 but then we would most * likely drive them out of specs. */ device_printf(esc->sc_dev, "Unknown chip\n"); error = ENXIO; goto fail_lock; } } } } #ifdef ESP_SBUS_DEBUG printf("%s: revision %d, uid 0x%x\n", __func__, sc->sc_rev, uid); #endif /* * This is the value used to start sync negotiations * Note that the NCR register "SYNCTP" is programmed * in "clocks per byte", and has a minimum value of 4. * The SCSI period used in negotiation is one-fourth * of the time (in nanoseconds) needed to transfer one byte. * Since the chip's clock is given in MHz, we have the following * formula: 4 * period = (1000 / freq) * 4 */ sc->sc_minsync = 1000 / sc->sc_freq; /* * Except for some variants the maximum transfer size is 64k. */ sc->sc_maxxfer = 64 * 1024; sc->sc_maxoffset = 15; sc->sc_extended_geom = 1; /* * Alas, we must now modify the value a bit, because it's * only valid when we can switch on FASTCLK and FASTSCSI bits * in the config register 3... */ switch (sc->sc_rev) { case NCR_VARIANT_ESP100: sc->sc_maxwidth = MSG_EXT_WDTR_BUS_8_BIT; sc->sc_minsync = 0; /* No synch on old chip? */ break; case NCR_VARIANT_ESP100A: case NCR_VARIANT_ESP200: sc->sc_maxwidth = MSG_EXT_WDTR_BUS_8_BIT; /* Min clocks/byte is 5 */ sc->sc_minsync = ncr53c9x_cpb2stp(sc, 5); break; case NCR_VARIANT_FAS100A: case NCR_VARIANT_FAS216: case NCR_VARIANT_FAS236: /* * The onboard SCSI chips in Sun Ultra 1 are actually * documented to be NCR53C9X which use NCRCFG3_FCLK and * NCRCFG3_FSCSI. BSD/OS however probes these chips as * FAS100A and uses NCRF9XCFG3_FCLK and NCRF9XCFG3_FSCSI * instead which seems to be correct as otherwise sync * negotiation just doesn't work. Using NCRF9XCFG3_FCLK * and NCRF9XCFG3_FSCSI with these chips in fact also * yields Fast-SCSI speed. */ sc->sc_features = NCR_F_FASTSCSI; sc->sc_cfg3 = NCRF9XCFG3_FCLK; sc->sc_cfg3_fscsi = NCRF9XCFG3_FSCSI; sc->sc_maxwidth = MSG_EXT_WDTR_BUS_8_BIT; sc->sc_maxxfer = 16 * 1024 * 1024; break; case NCR_VARIANT_FAS366: sc->sc_maxwidth = MSG_EXT_WDTR_BUS_16_BIT; sc->sc_maxxfer = 16 * 1024 * 1024; break; } /* * Given that we allocate resources based on sc->sc_maxxfer it doesn't * make sense to supply a value higher than the maximum actually used. */ sc->sc_maxxfer = min(sc->sc_maxxfer, MAXPHYS); /* Attach the DMA engine. */ error = lsi64854_attach(esc->sc_dma); if (error != 0) { device_printf(esc->sc_dev, "lsi64854_attach failed\n"); goto fail_lock; } /* Establish interrupt channel. */ i = 0; if ((esc->sc_irqres = bus_alloc_resource_any(esc->sc_dev, SYS_RES_IRQ, &i, RF_SHAREABLE|RF_ACTIVE)) == NULL) { device_printf(esc->sc_dev, "cannot allocate interrupt\n"); goto fail_lsi; } if (bus_setup_intr(esc->sc_dev, esc->sc_irqres, INTR_MPSAFE | INTR_TYPE_CAM, NULL, ncr53c9x_intr, sc, &esc->sc_irq)) { device_printf(esc->sc_dev, "cannot set up interrupt\n"); error = ENXIO; goto fail_ires; } /* Turn on target selection using the `DMA' method. */ if (sc->sc_rev != NCR_VARIANT_FAS366) sc->sc_features |= NCR_F_DMASELECT; /* Do the common parts of attachment. */ sc->sc_dev = esc->sc_dev; error = ncr53c9x_attach(sc); if (error != 0) { device_printf(esc->sc_dev, "ncr53c9x_attach failed\n"); goto fail_intr; } return (0); fail_intr: bus_teardown_intr(esc->sc_dev, esc->sc_irqres, esc->sc_irq); fail_ires: bus_release_resource(esc->sc_dev, SYS_RES_IRQ, rman_get_rid(esc->sc_irqres), esc->sc_irqres); fail_lsi: lsi64854_detach(esc->sc_dma); fail_lock: NCR_LOCK_DESTROY(sc); return (error); } static int espdetach(struct esp_softc *esc) { struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x; int error; bus_teardown_intr(esc->sc_dev, esc->sc_irqres, esc->sc_irq); error = ncr53c9x_detach(sc); if (error != 0) return (error); error = lsi64854_detach(esc->sc_dma); if (error != 0) return (error); NCR_LOCK_DESTROY(sc); bus_release_resource(esc->sc_dev, SYS_RES_IRQ, rman_get_rid(esc->sc_irqres), esc->sc_irqres); return (0); } /* * Glue functions */ #ifdef ESP_SBUS_DEBUG static int esp_sbus_debug = 0; static const struct { const char *r_name; int r_flag; } const esp__read_regnames [] = { { "TCL", 0}, /* 0/00 */ { "TCM", 0}, /* 1/04 */ { "FIFO", 0}, /* 2/08 */ { "CMD", 0}, /* 3/0c */ { "STAT", 0}, /* 4/10 */ { "INTR", 0}, /* 5/14 */ { "STEP", 0}, /* 6/18 */ { "FFLAGS", 1}, /* 7/1c */ { "CFG1", 1}, /* 8/20 */ { "STAT2", 0}, /* 9/24 */ { "CFG4", 1}, /* a/28 */ { "CFG2", 1}, /* b/2c */ { "CFG3", 1}, /* c/30 */ { "-none", 1}, /* d/34 */ { "TCH", 1}, /* e/38 */ { "TCX", 1}, /* f/3c */ }; static const const struct { const char *r_name; int r_flag; } const esp__write_regnames[] = { { "TCL", 1}, /* 0/00 */ { "TCM", 1}, /* 1/04 */ { "FIFO", 0}, /* 2/08 */ { "CMD", 0}, /* 3/0c */ { "SELID", 1}, /* 4/10 */ { "TIMEOUT", 1}, /* 5/14 */ { "SYNCTP", 1}, /* 6/18 */ { "SYNCOFF", 1}, /* 7/1c */ { "CFG1", 1}, /* 8/20 */ { "CCF", 1}, /* 9/24 */ { "TEST", 1}, /* a/28 */ { "CFG2", 1}, /* b/2c */ { "CFG3", 1}, /* c/30 */ { "-none", 1}, /* d/34 */ { "TCH", 1}, /* e/38 */ { "TCX", 1}, /* f/3c */ }; #endif static uint8_t esp_read_reg(struct ncr53c9x_softc *sc, int reg) { struct esp_softc *esc = (struct esp_softc *)sc; uint8_t v; v = bus_read_1(esc->sc_res, reg * 4); #ifdef ESP_SBUS_DEBUG if (esp_sbus_debug && (reg < 0x10) && esp__read_regnames[reg].r_flag) printf("RD:%x <%s> %x\n", reg * 4, ((unsigned)reg < 0x10) ? esp__read_regnames[reg].r_name : "<***>", v); #endif return (v); } static void esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t v) { struct esp_softc *esc = (struct esp_softc *)sc; #ifdef ESP_SBUS_DEBUG if (esp_sbus_debug && (reg < 0x10) && esp__write_regnames[reg].r_flag) printf("WR:%x <%s> %x\n", reg * 4, ((unsigned)reg < 0x10) ? esp__write_regnames[reg].r_name : "<***>", v); #endif bus_write_1(esc->sc_res, reg * 4, v); } static int esp_dma_isintr(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; return (DMA_ISINTR(esc->sc_dma)); } static void esp_dma_reset(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; DMA_RESET(esc->sc_dma); } static int esp_dma_intr(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; return (DMA_INTR(esc->sc_dma)); } static int esp_dma_setup(struct ncr53c9x_softc *sc, void **addr, size_t *len, int datain, size_t *dmasize) { struct esp_softc *esc = (struct esp_softc *)sc; return (DMA_SETUP(esc->sc_dma, addr, len, datain, dmasize)); } static void esp_dma_go(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; DMA_GO(esc->sc_dma); } static void esp_dma_stop(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; L64854_SCSR(esc->sc_dma, L64854_GCSR(esc->sc_dma) & ~D_EN_DMA); } static int esp_dma_isactive(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; return (DMA_ISACTIVE(esc->sc_dma)); }