config root man

Current Path : /compat/linux/proc/68247/cwd/usr/local/bin/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //compat/linux/proc/68247/cwd/usr/local/bin/gp

ELF	>pn@@8N@8@@@@@@@@@@|| aaUPY @)@)b@)b@@PtdAAQtd/libexec/ld-elf.so.1FreeBSD
|pE[QKb1<Yr,L z^``B\
d{6IWw(N8_'7}FXi*nq:%PcmEC@6=&Op_HS
]s[swxg4>A-J93?2G^MBI/eSkyU!;gD/
VKa:R0htl?dzku,ZGxoam]7jvf
'<$(0.&5QM@DbO"HWUjcA{ey)|!V3FN~n-1#;CqhvT%8ft>\RiolP	*+Yr	u#L2+)X95T$=4" JZ.=
@PN$	>`@w
0@b!LX)#2
 @36F^:HT:
AF
@j	cXQ/ZO
`7A	ela@
nl@s2pn@X
fA{c
A]Xr1NM&m
1A^#w
0@|
@uQS?
0ZA7} O&V2:x	1;4bE0Y
$iA
`@3
GAF
 dAi
/A#
pYA>YA:	

An[}<z-
+<#	s-	
@Jb/eW
A	1
)A
4b*@7A
#J6:JVOVZia

@@o	&P7A
/p4@uxeR``A(q_Aq@
dE%"
<d.
l`N`A@|f@E8
([ ,Ar
hP1AF
LWdqp@T
tnUspA@n!,?lg@!F@c
Is%@*P-k
v
Y MbPR_
e0YA6
|.Ap9phAw4\@+h@'G
rR
V`5bZy@A&N3P@=
?DZQpLbU8
_9ity`A	0A`cAj@д@AaLf)
HJb-"pABzMb|j@!'F	+@g`=p@ 020`A'=?@)K Bb
7A"i_@$h0@63qhLb0/AJ=HM]k#py2MbMbP
P#A<k@R)At+$[p@m@Rp7A/l@c>@y
"@.r@@_1QgAo@/@!A@	V[2xom/p@v
	HJb
	9@GPr@%	0	@	?E}U	`	Q`@[`7b
h	k@tp@`Lbq	F~	5)	-	 @y	
8`@	<$	U@0AYA:libreadline.so.8emacs_meta_keymaprl_completion_query_itemsemacs_standard_keymaphistory_lengthremove_historyrl_message_Jv_RegisterClassesrl_bind_key_in_maprl_basic_word_break_charactersrl_completion_append_character_finihistory_getrl_restore_promptrl_generic_bindrl_add_defunrl_completerl_completion_matchesrl_end_undo_grouprl_outstreamrl_save_promptrl_begin_undo_grouprl_library_versionrl_attempted_completion_functionvi_movement_keymaprl_dingrl_refresh_linerl_last_funcrl_filename_completion_functionrl_special_prefixesrl_pointrl_endrl_clear_messagerl_insertrl_readline_namerl_read_keyrl_stuff_charadd_historyrl_username_completion_functionrl_line_bufferlibncurses.so.8libpari.so.2term_get_colorpari_strdupfile_inputallocatemorememdo_aliasexpand_tildesd_echogrow_initgsubstget_analyseuris_entrypariputscompatibledefault0gmulrecoverwhatnow_funtry_pipesd_logfilegrow_appendgcopyswitchinvarentriesreadbindbltorGP_DATApariputcvoirgcmp0lim_lines_outputgpmallocgp_historypari_fcloseget_uinthit_returnGENtostr0gpreadseqprint_prefixed_textdefault_gp_datapari_last_was_newlinemembers_hashinput_loopgaddpopinfilegmul2nprint_all_user_funglobal_err_dataoldfonctionsfile_is_binarypari_closesd_simplifypol_xinit80colgerepilewrite0sd_seriesprecisiontopfunctions_tblszgsubsd_logbotprint_user_funTIMERpari_erroutbruteavmagopsg2pop_valstackmallocprecrealpush_stackinitoutset_hist_entrypolint_iprintp1matbrutenew_bufferrtodblprint_all_user_memberdid_breakDEBUGMEMfix_bufferpari_init_defaultsprintppari_warnsd_debuggen_0gtofperrcontextgdivgsetatpileis_entry_interngen_outputgp_default_listprint1pari_get_oldmodulesvecminvecmaxgtolonggaddsgwhatnow_new_syntaxdefault_exception_handlerpari_set_last_newlinepari_strndupos_getenvordvarsd_realprecisiongp_colorsgpreallocfprintferrgcmpsd_timerpari_init_optskill0setdefaultpari_outfileterm_heightsd_debugfilesgaffectprinttexterm_widthterm_colorgp_expand_pathgen_1delete_bufferpari_get_modulescurrent_psfilepariflushcurrent_logfileis_keyword_chardisable_colorgdivgunclonelogstyleinit_filtrefunct_old_hashprintgrow_killprecdlexpand_promptpari_versionset_analyseurpop_stackgnilpariprintfTIMERstartreadstringsd_outputvar_make_safeaddrr_signpari_add_moduleprint_functions_hashsimplify_iget_intpush_valpari_sig_initis_identifiersd_debugmemget_sepouterrreadline_statelibX11.so.6XDrawStringXClearWindowXSetFontXAllocNamedColorXCreateSimpleWindowXOpenDisplayXDrawPointXUnloadFontXDrawLineXCloseDisplayXGetErrorTextXSetForegroundXFreeGCXDrawLinesXDrawRectangleXNextEventXSetWMProtocolsXSetIOErrorHandlerXMapWindowXCreateGCXSelectInputXLoadQueryFontXInternAtomXSetStandardPropertiesXSetErrorHandlerXDrawPointsXChangeWindowAttributeslibm.so.5floorceilexplog10libc.so.7__mb_sb_limitfwritesystemmemcpy_DefaultRuneLocaleputchar__prognamestrcat__stderrpatolstrncmp__tls_get_addrdlsymstrlenatexitdlerrorsetjmp_CurrentRuneLocalefopen__isthreadedfilenoisattylongjmpfputcgetpwuid_ThreadRuneLocalefgetsstrncpyfflush_init_tlsenvironqsort__stdoutpfprintfsprintfforkstrcmpfreeatoistrpbrkstrchr__stdinpdlopenstrcpygeteuid_edata__bss_start/usr/local/lib:/usr/librectcolorget_line_from_readlinesystem0rectstring3rectbox0rectdrawrectpointspostdraw0rectscaleaiderectpointtypetexmacs_completionrectplothrectlinesrectrpointpostplothrectclippari_plot_enginerectstringplothsizeskeyword_listrectdraw_flaggp_exception_handlerpostdraw_flagrectlinetypecolor_promptrectplothrawinitrect_genrectmoveprint_fun_listwhatnowrectpoint0pari_plotpostploth2rectrlinerectboxextern0functions_gpPARI_get_plotplot_countrectline_ityperectcopy_genrectrmoverectpointsizeread0rectcopyinput0postplothrawrectpoints0functions_highlevelinitrectinstall0rectpoint_ityperectlinepari_psplotplothsizes_flagrectcursorinit_graphfree_graphpostdrawbreak_looprectlines0gp_quitrectrboxupdate_logfilegp_sigint_funpostdraw00pari_completiongpinstallgen_rectdraw0gp_outputrectline0functions_oldgpkillrectinit_readlinerectgraphmainrectpointplothmultFBSD_1.0FBSD_1.3< (z[(z(z0+b8+b@+bH+b	P+bX+b`+bh+b%p+b.x+b1+bC+bH+bJ+bU+ba+bd+be+bi+bk+bq+bv+bz+b{+b~+b+b,b,b,b,b ,b(,b0,b8,b@,bH,bP,bX,b`,bh,bp,bx,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b-b -b$-b%-b' -b((-b*0-b.8-b0@-b7H-b8P-bEX-bN`-bQh-bep-bgx-bj-bl-br-bx-b-b-b-b-b
-b-b
-b-b-b.b.b.b.b .b(.b0.b8.b@.b H.b!P.b"X.b&`.b'h.b)p.b*x.b+.b,.b-.b/.b0.b3.b4.b5.b7.b9.b:.b;.b<.b?.b@.bA.bB/bD/bE/bF/bG /bK(/bL0/bO8/bQ@/bRH/bTP/bWX/bX`/b[h/b\p/b]x/b^/b`/ba/bb/bc/bf/bg/bh/bj/bk/bl/bm/bn/bp/br/bt/bw0by0b|0b}0b 0b(0b00b80b@0bH0bP0bX0b`0bh0bp0bx0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b1b1b1b1b 1b(1b01b81b@1bH1bP1bX1b`1bh1bp1bx1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b2b2b2b2b 2b(2b02b82b@2bH2bP2bX2b`2bh2bp2bx2b2b2b2b2b2b2b2b2b2b2b2b
2b2b
2b2b2b3b3b3b3b 3b(3b!03b"83b#@3b&H3b+P3b-X3b/`3b2h3b3p3b4x3b53b:3b<3b=3b>3b@3bA3bB3bC3bF3bG3bI3bL3bM3bP3bR3bS4bT4bU4bW4bY 4bZ(4b]04b^84b_@4b`H4baP4bbX4bc`4bfh4bhp4bmx4bn4bo4bp4bq4bs4bv4bw4byHH5N!%P!@%N!h%F!h%>!h%6!h%.!h%&!h%!h%!hp%!h`%!h	P%!h
@%!h0%!h %!h
%!h%!h%!h%!h%!h%!h%!h%!h%!h%!hp%!h`%!hP%~!h@%v!h0%n!h %f!h%^!h%V!h%N!h %F!h!%>!h"%6!h#%.!h$%&!h%%!h&%!h'p%!h(`%!h)P%!h*@%!h+0%!h, %!h-%!h.%!h/%!h0%!h1%!h2%!h3%!h4%!h5%!h6%!h7p%!h8`%!h9P%~!h:@%v!h;0%n!h< %f!h=%^!h>%V!h?%N!h@%F!hA%>!hB%6!hC%.!hD%&!hE%!hF%!hGp%!hH`%!hIP%!hJ@%!hK0%!hL %!hM%!hN%!hO%!hP%!hQ%!hR%!hS%!hT%!hU%!hV%!hWp%!hX`%!hYP%~!hZ@%v!h[0%n!h\ %f!h]%^!h^%V!h_%N!h`%F!ha%>!hb%6!hc%.!hd%&!he%!hf%!hgp%!hh`%!hiP%!hj@%!hk0%!hl %!hm%!hn%!ho%!hp%!hq%!hr%!hs%!ht%!hu%!hv%!hwp%!hx`%!hyP%~!hz@%v!h{0%n!h| %f!h}%^!h~%V!h%N!h%F!h%>!h%6!h%.!h%&!h%!h%!hp%!h`%!hP%!h@%!h0%!h %!h%!h%!h%!h%!h%!h%!h%!h%!h%!h%!hp%!h`%!hP%~!h@%v!h0%n!h %f!h%^!h%V!h%N!h%F!h%>!h%6!h%.!h%&!h%!h%!hp%!h`%!hP%!h@%!h0%!h %!h%!h%!h%!h%!h%!h%!h%!h%!h%!h%!hp%!h`%!hP%~!h@%v!h0%n!h %f!h%^!h%V!h%N!h%F!h%>!h%6!h%.!h%&!h%!h%!hp%!h`%!hP%!h@%!h0%!h %!h%!h%!h%!h%!h%!h%!h%!h%!h%!h%!hp%!h`%!hP%~!h@%v!h0%n!h %f!h%^!h%V!h%N!hUHAULoATSHHcÅLdL%!~:HWHt1H!t#H</H!HDH!Hu@)bHt+H$iAGLL"Fr֐=I!UHt$HH!H!HHu!DfDUH=G!HtHtaIAÐH!u"H=1+H!H8\!HÐHl$Ld$HH\$HH;!IHHt^HtIHtH$Hl$Ld$HHH5:HH!H$Hl$Ld$H81HHH5HοHȼ!H5HH1H;]H;H5HL1<H;H5aHH$Hl$1Ld$HSHS|;[f.H\$Hl$HH!HubH!HcH<t^H-_!HE@tH*HHHE@tHH@@H\$Hl$HÐtf.Hl$H\$HH!HHtHH\$Hl$HH=c!1U!H
I!HH΋H! t€DHAHDHH)HH-!H9HHH<ZfDH\$Ld$HHl$Ll$ILt$L|$HHH}upHxHvhH^1HMH!HHHRHL
BHFhH$HhHb!HHHH$HBH$HBH$HBH$HB H!DŽ$HDŽ$H$H=Hþ18HH=H1HqH!H8B]H$H$ L$(L$0L$8L$@HH1HLo
HHL1H=H1{GH!HvhHL~HHH$HBH$HBH$HBH$HB Hw!H$HipL*H}HH}+H!MHHD$H$H$%Hj!HH!H@pHHDŽ$HH!HHHHHt$u$%Lt$H5ILH1LmHҵ!HMHR!HHHHH5vLL1L$H5KH1LHK!H,LEH! t€DHEHDHL)6H!HH-!H@pHHDŽ$HHn!HL$LLH=?LJH=nHuH=L\'Mt.H!L(H!H8tULc
	H!Hz!ML*HT$HpHaL$LL%LLt$H5L1LNH5ILHL1H5LL1HHEHUH5]
UH}HEHshcH?H6DHHH=C1fDfDH5LH\$Hl$HH/HHtH̲!HtHHl$H\$HfDH=H1fDUSHH{!HHHto[HHلt'H< tHHt
<\uHH58LHuHHHtH-H[]H1[]fDfDATIUSHHH)xjHHH|+HHH~1H HH9uH+A$tLGHHuH
BS[H]A\H}^HHf.AVL5DZ!H=AUATUSM.BH=6%HH5[HH1H;HHx+SH4H59IHH1UL##HH]!LLLLEMLHHH|HHY!H
H5ILHH@HHD1HHx@IH
GHH5HLHD1yLM.[]A\A]A^H5GMLH1N5+HH5QIH1$HH=H1H=-KH=?H=3H='H=4H=H=H=H=H=H=1,Hl$Ld$HH\$HIH<=t-uIH9tDHCHEIH$Hl$HLd$HfFHNwHcH!DAufI<$DHl$Ld$IH\$HHHH]wHcH!DAuu'H9t"HCHEI4H$Hl$HLd$HI<$pH!HxH5H1DUSHHH?+HHwH
!HDAuZH="E1HH5\1HFHwH
ȭ!HDAuHH[]DHDAtHHvHH[]H8.t1DHH4@AWAVAUATUHSHHxL%ͬ!I$tHѬ!H;HѬ!HT$HE1HD$ H]!Ht$ HHD$8D$0HD$(u1EHx[]A\A]A^A_HC0L8A?t/Ht*I$uwHԭ!H8tLHcI$tE!tA?tO1@pHAHT$HHL
fL<IHCHD${tH51VIwH=aA	(Io	uHCHD${)tH51]LmHe!(9dH%H!MHH!H0HcDAt)IA$x9}HHuH6!HHELL)LIHD$HD$PHH$L9d$HD$LHxiA,$I@݅xnH!D(D9}_dH%H!HH!H0 HcDA@t6IA,$@݅x%D9} HHuHp!HHcHEDA@u@"A$H@!HLDAuHDAtHvHL)HLLI?A.H<$LHD$L;d$Ll$IHt$H="	Hl$PH|$H5V1H}H}HUItLIJ|HHuH!AhLL$I2L11H}'H}HUHT$H51a7H5t1IM1AWAVIAUATUSHH|$H=HHHTHHD$ AHD$pH\$0%HHHD$(HD$xH\$HD$H˧!H:HSHD$pHT$ 1Ht$HHD$pHL$(HHD$x8#HL$xtL-H͸HHH->H\$xLHu CH{< <	<"<=„uOtOH=>1LcEHD$(H5HڿH1{"u$LL#Du<{"LctH|$xL8Hl$xUHH\"tt	;@ttUuH9r}\DtH|$xHxHHD$x8"tHHeH|$HH[HHHEHt$pH=1
HpH=Ht$xLD$xH=BHILD$xLE18uI@AHD$xHT$x:! Ll$xH=LIEHD$xH,!HEtHD$x8 sH|$(gHܤ!HuH=1H|$ HĈ[]A\A]A^A_H=!L\IEHD$xH~!H@UH=<1HD$(H5LH1"$EDHBHD$xH=;1gHD$(HT$xH5lH1KHT$ Ht$1HT$(HHD$xH=HHHkHCHxI,(HHIM@/t@\t	A$/IA$.AD$gprcLAD$UHHD$ L.H=L8IEHD$xAE<<<>IEE1HD$xHD$x18=H|$H|$IIH|$HHH)H)HL)sEGHH?^L{HHD$ &H=aHHD$ H=GHHD$ LII9s8/%HI9r8/LHD$p4H=HIH=HHHXLHMH|H5BHHLH1H!lHxIpHHHI
H@HD$xm1H@IEAHD$x;-HcH-[HTHX0GL)HhH}HHLHH<+L)HHHD$ dL\H|$ HD$pfDH5!tTHA!H8_!Hf.H\$Hl$HLd$HI=5!u
&HډLH$Hl$Ld$HfHSHt.H[fDAWL=AVL5AUL-ATAUSHH8H!H$Hl$0H|$Ht$HD$0HHà!HD$HD$ HHD$0H;D$}AH$H:-u4HLBHD$0B-<GH$H8HD$0H;D$|H!HHM\HD$0H9D$~4DH$H<H|$HHD$0HH9D$HD$0H!H|$H3H5!H|$ HHt
H!H8!HH!HH8[]A\A]A^A_HcHH=#LH=LH=LH!HHsE1kH$HT$LHUHD$MH=LƹH!HHH$HT$LHH5
1^H=GLƹH6!E1HHH$HT$LHHD$ LL	LLLLHœ!HHIH$H8aH4$H>
H$H|$H24H;HH=@1TI:H=8LKH=%
LH$HT$Ip
HHD$fDH=11H#!H!HHHH!!HIH;=1H=	L9H$HT$Ip	HmHD$ H\$Ld$HHl$Ll$H(H!H0IH8C(HL-!H-&!IEH}HH!H;8t+HUH=HHl$H\$Ld$Ll$ H(uЀu H!DE~tIE@teMHHL*H!DEuwHl$H\$Ld$Ll$ H(þMt8L@HUHL_ǐTLnHH\HIH=!HHH @H!SHHu!(Ht#fH|!Ht	H@H9u[@H!SHH0HH[AUIATUSHHH-B!HH=T!HhHHH:!HHH=HuH6HH_HH5HH1&H.H`HHIH!tHH.@
@H!H[]A\A]@He}XJH5eHHHH?III)1LHHIiĀ6H)H_1HwrEH5HHHH?III)1LFHNHIi`H)HHS㥛 H5HHHH?III)1LHHIiH)HcHH5H	HHOHHkH
!HHIHH!t1IHHHrHH1{H\$Hl$Ld$H
v(H5
H$Hl$Ld$1H.fHHcHH-/!HEH@pHHtL%`!I$H9tiH$Hl$Ld$HH!Hu;H$Hl$Ld$HH5N^H53RH5FH51wHEHH@pHHR!HI$H$Hl$Ld$H@SHgH[SJa1PH!Htu 1=H=HtSِATUSH@HHHH=Ƴ!HbHו!HH=>,Hu ftH=:1;H}DHH@H[]A\H\$Ld$HIH`LLd$HH\$Hf.AWAAVAUATUHSHHL5!HHD$IHHfIĉ@1E111H`"uHH9t)'uHH9uHcH4HcHIcHHcH|HHPIH~LAD$1L`<`<"HHL9t +<'uH5HL9HuIH$ HLHuH|@EHƄ$ H
x:LH$ DA|@H
4*tH5DH1H
*IH5qMA'HLt$H1H,$D$'11HiHIL H\$ LL-4LHHLHHHًH! t€DHAHDHH)A<
uHH9l${1oAH5d$HEH5EH1LlHH[]A\A]A^A_111H51IDfDAWAVAUATIUSHHt$1I<$Lct1HI<HuH
LMA1I<$H9L17H{H9HLHHuL}LLH?IIIL9M
LDI<$HE1HD$C
E1H|$t HD$H9D$HHD$I|$IHtCIM9~I<$LtH)t1ې H~H9uI|$IHuMtH@
[]A\A]A^A_PH[]A\A]A^A_E1HD$oIfDAWAVAUATUH SHAIH!HH$1H<$AE1E1Hd!HJHuYfDH[8HtJH@HCH9uHKDIM9rILJ4H[8IHuIL;<$uJIDILHcoHL[]A\A]A^A_HCH{qH\$L|$HHl$Ld$ILl$Lt$HH@u	??D8HH߃HD$IwHcHQ!DAZ\H|$A.\L7ID$MD$+IuH=EfInA܅H!9؉D$dH%HÍ!HHَ!H0-HcDA@HDeA܅;\$HHuH@!HHEAtAx5H!;(}*dH%H9!HHHcDALZAt*H\$Hl$ Ld$(Ll$0Lt$8L|$@HHH\$Hl$ 
Ld$(Ll$0Lt$8L|$@HHLA^MfxbH)!D(A9~SdH%Hq!HH!H0HcDAt*IA$xA9~HHuH!HHEA$LHcHH|$tOL8HI;?IHtV*~HHH=H=frH=%aH=,*HH=7H=LHҊ!H0HHufHuHHLuH5!LH!H;H|$HLq:H5QLyH!HHHD>!DMuLI9HtH=/L1HCHdHva|$H{(Hu?H581EH5LL1'H11HHcHH{(HuH5LfH{(HuH5LyH5	Lb|$H{(wHaH{(H>|$H=- mH{(H!L+HH5fIH111L	H=L+H=11A(V]LeHP!9؉$pdH%H!LHH!H0'HcDA@H];$HHuH!HHEIH;h	H5LDHcLH5L%]Ixf9$f~_dH%HƇ!HH܈!H0HcDAt6IA$x)9$~$HHuHT!HHEIHLIH5aA$HRH!H;H*IVLNLH\$Hl$HLd$Ll$HoLt$L|$HX?~F\}1H$(H$0L$8L$@L$HL$PHXҸt#uG<#u}uH薻GHI|Hy!H8HCPIH=uLȹ
H=@H)HL@I
INH9H=8tI

H=INHH9H=8tRALILHINLH9L8t"ILLINHH9Lu&LߺLK=1HSnDeH]IAD$<7v&HUH1MLD3HHcHH<!H=HHH8Hu#H!H=KHHo(HD轼lAD$<1HHL=!HMHIHxh贺HD$AD$<6H'HcHH=11HfH8H!H=H8ļH<f<m}H1H8Hfu#Hς!H=HH?'HD<W+;mfH=VLHHHԸHy!H8H$HD$IEI,$HH5
H!1HUH{L=܁!II4HHxh觼H9uQ{F;sHf觿&H%I7H\$H+HT$xH|$HHH$HBH$HBH$H$HH$HBH$HBH$HBH$HB HDŽ$DŽ$H$HDŽ$H$H$HD$xH$H${
],IH|$HH0誷LHH|$H,L8Hu
Hǁ!H(L-!H!I]HH+LcHHHCI"MeLL[H|$H{H]|IH|$HH0ںIH|$HH0HH)(H{H{H{@@H芵H!H8H=#H西H<-tAQH|!HDAu<HDA/IAEvCLk뵿1褸SH`H<!H|$D$\Hu?H9t/H!Ht	H@HuHr~!1H8HHx1ݿ船H=]!HHӝ!ݳHD$Hŝ!H6!HHH|$H@HtHT$zH%!H5~!H|$ HH!1
荴H=RH1\HD$ټH|$H}!HH~!HHD$ HD$H=!HH|$H5|uS誵tH=Ӝ!HtH|$vHÜ!HL~!H!HQD$\H`[H!H8t<H|$aHb!H8ND$\w
rIH2!H8HFHGHZ~!H;H!H8茻HQ|!HHHSi
H9!HPHH9D$H3}!H5!H|$ HH!1
蛲Ht$H=[Hg
}蓼yH=d{H|!H5!H|$ HH!蔻1蝺
#Ht$H=1H|$uHl$H\$HHS{!HHHtg;t!t&!HtYHH\$Hl$H+H=|1X!HH9!H\$Hl$1H1]Hz!HH{!HDfDATUSHpHiz!Hz!|$H\$ HH@hHD$H|!HHD$hHz!HH+HD$`[HHHD$;Ht$H=!躴H$D$u,H<$10FBD$GHT$Hy!1HBH՘!HHHc@H!迯H;H#tHy!H8Ht	?[Hy!HL$HD$`L%w!HHy!HHAHqHL)H~MH1HHHHL$HH<HtHT$HHHu	HL$HYHuHD$L`Hx!HHH!BH|$$HT$H:BD$"Hx!HH费Hx!HT$`HH)Hx!HHHL$H9 HD$hK,H(x!HHHy!HT$hH;Hw!HHt$hH|$诲HT$HD$hH:H|$hH3|[D$HD$hHp[]A\Hw!HT$`HH)Hw!HHGw!HHD$H8 HD$h"1gHϹ
轭H|$h
HD$hSHH߾HHw!1H[5DSHHHw!H8PtHt$H#H[1H[ATUSHP|$Ht$H;v!HHGw!HDHHuHxv!HHZv!HzHu!H8HtH\$ H?誱Hct$HT$HHu!1HHv!H8Hv!H1H+81)L%nv!HHLīH-v!HH貫1苲H@w!HH虫H&u!H8HH=脷5Hu!Ht!Hu!HHv!Hv!HHu!H_u!HHHxxHH=H|$0
H5t!HLv!HHHH\$HD$HHHHHD$@HD$@H9D$0H4$fDH$H8Hܪt6HD$ HT$@H=cH41|HD$@HHD$@HD$@H9D$0tDHT$@HD$ H<SHD$ HT$@H<蜵HD$@HHD$@HD$@H9D$0rHs!HT$HHHHUu!HT$HH|$ ߳THP1[]A\u{/H=OH=wH=11H='Hs!HH=ZH0Hs!HH+01XLHH=1=hH=m輨Ht!HHHLH:f.Hr!HHHHH~$H*HxHs!YH,HHHSHH9诨HH#H	H[1"fH\$Hl$Ld$Ll$H(H/H9Hu+Hr!L LH\$Hl$Ld$Ll$ H(D~SL-Gr!H(r!I]HH+LcHHHHH@MeHsHKHkL-q!Hq!I]HH+LcHHHvCHMeHHCHHSHHC21n1ߪ묐H
r!HЃ{!HHHHuHHDHf.J!tHr!HDS?Ht/HXp!8tQHtH0HѲt	H[d[fDH\$Ll$HHl$Ld$ILt$HXHo!H|$Ht$ HHHD$D$D#IE0L0A>+AD$9|fHrq!H8tlH|$LKLHH\$0Hl$8Ld$@Ll$HLt$PHXÐRH8H'HA9|L@H=)1fH\$Hl$HLd$Ll$Lt$L|$HHH|$HI0HL$L'HLyHzHE1xHH設HHtKHM9HI)ZHxL`HM)觥HHHIFM9CD%
CD%r9LH\$Hl$ Ld$(Ll$0Lt$8L|$@HHHz `HT$HBHI9HICHHL$HD$L1L0USHH让H|@H"HPu DD<t/<t+HHt&<t~<"t<\u\HHH"B1HH[]>fAWIAVIAUIATUSHH4$HIHx#I\HHHt{2HuHEITA)IH$AD"H[]A\A]A^A_fATSH;!Hn!HE!HHl!H2HHn!H4HHom!Hn!HHl!Ht
HKl!H5H=H5
H=H5&H=	H5NH=ɤH56H=豤H5^H=虤H56H=聤H5H=iHvk!H5?hHH5[	HڿHL%l!H5hLߢH5,	LHˢHH5jH1SHH5UH1;HH5:L1#HH5%L1HH5H1HH5L1ۢH(H5H1âHH5L1諢L%pj!H5(LH5L[ܡH5HڿȡHHH5[A\魡H[A\SHH=El!Ht`t`HHH!HHt<nH2H=!H1f衪ڡUn[ðHHDHHuH	HH@ATAUS1(t0H
1H9tD
juD[]A\4Hqk!tHMi!Hu`DHHcD4Hcj!D) 菣[]A\[]A\H=*D
&!uHj!!HfDfDAWAVAUAATUSH<$@D$1T$$L%i!H-j!ADA$Ic$HE<DHu1A$HEH=Hc4ĪHuAuH~i!;|Ic$HEHE4$L}H=gIcB,8@݉gHDD$EuAtHD$CD5A$,$T$$AttHh!
AFA$!H[]A\A]A^A_L%h!A$t$AA$E$E~/E,$Ic$HE<Ht.AuHeh!A$;|1DL$E^,$UH=^fHt0|$u
AAl$CD5A$@"!CT5HcA$A<"t3Hg!DHcA$A<"tAu9|t$B*A$uyfH\$Hl$H!~V'Hg!HH9t_߉Ë!tH
$g!9)‰fGHl$H\$HÉH=H\$Hl$HYHe!HfDAWAVAUATUSHHHcf!HD$H9)Hf!D0EIcHvf!L%f!H`f!H!g!D8He!E4$L+A$H*HHHH5~H=L1CHct$Hz豜Hf!E4$L+D:11rH1[]A\A]A^A_Hf!IcH|(u#<dHuAtXIc
HAtIH_f!H|6HuAu*H@f!H8\H!D$AEfAIcHe!L(B*H$d!(9}{dH%Hnd!H8He!LAFHcJ..HcDA@tDAA4Hx/H9Hv}#HHuHc!MHcIEDA@uIcH\e!IcL8A<(El$AIcAxwHic!(9}jdH%Hc!H0Hd!H8AD$HI(HcDA@t5AAx H9}HHuH*c!HHEEAlIcH=I4/PEJA|/`H6.fDfDfDUHSHHŝHHuH=l1`H}H}t1H}HtHfD藣H{HHuH肣ȘH軘H=
Hf_HC1HHH[]ÿ@dfDH\$Ll$ILt$Ld$H(L'ILLHHtL{LIEHH\$Ld$Ll$Lt$ H(DLl$IH\$Ld$Hl$AH(HLӚHHtHxtXH`!HuHHl$H\$Ld$Ll$ H(HLH\$Hl$Ld$Ll$ H(FfDEHxb!IcH<(H=!耕HPHcvOHdtHjumH5HHoa!!Hla!;4H
`!"Hh(HuH}ΟHu}=uAH5H7fH\$Ld$HLl$HII+H|聖HLH#H<ILğLH$Ld$Ll$HfAWIAVAUATUSHH<$H_!Lc-!L%f!L0 H+LLHt:HC8HI!HB!HuԋG!>!HL9}sIH!H!HC8HHc
!H4$H~!H[]A\A]A^A_~!HH
~!H~!H5~!H~!1H1[]A\A]A^A_Ha^!HH_!HLt$L|$IH\$Hl$ILd$Ll$H8EDD"urIcLcHH,H]AHt\LLHH輚uE&H]Hx贔HHl$H\$Ld$Ll$ HLt$(L|$0H8t(E&H\$1Hl$Ld$Ll$ Lt$(L|$0H8IcLcHH,H]AHtLLHH@u\SHu}!襘{}!Hދ
r}!H=]![Hg}!E1H\$L|$Hl$Ld$ILl$Lt$H8-7}!D$}!E}!L5\!HcI,HttLc-}!L%|!HcÉ|!I,HtOLLH3uHc|!CLH|!H\$Hl$Ld$Ll$ Lt$(L|$0H8V|!1ۉLH\$Hl$Ld$Ll$ Lt$(L|$0H8H=G|!HtOHcH|!LH|H
"|!H/|!H5,|!|!|!|!{!fDSHthH={!t:
{!H=a[!H{!AHHHz{!t[x{!Hދ
k{!H=\![H`{!AHC{!H0{!_-{!zAWAVAUAATUHcSHHZ!H|$T$Hz! ~Hu\!HcAH|~tDnIcEIcu)AHEH?\!HH<(HuH$\!L0A.~T$/zE&EA܅H/Z!D8A9{dH%HsZ!1LH[!L/DHcDA@tCHωF$7EtHA܅x,D9HO}#MqLuHY!MHcIEDA@uA?A\;Et@|$/(|$/,t.AEHIHŀ(H,H@tAuދl$A9=HcHA9,HZ!H<ƘHuHZ!H<.UHt$|$HqHHH[]A\A]A^A_1jAM;L$.HcA</AEHIH</tm9L$}H>Z!Ht$/HA|>?tJHt$HHkD9tEH8Y!Ht$HHHY!Ht$HH!HY!AE D#wHW!AD#艎H|HEHEH11Al.#HW!D D9dH%HW!DH0HX!H8AEHJ0(HcDA@ix!HD9}HHuHCW!HHEA܉IcHAHX!IH|腖HuHX!H=ߗL8O47Lt$LuHt$HAGHHt$H=ӻu#Ht$HHrE1Ht$H=Ht$H=OEuD9t$RIcA,HV!9ʼnD$$dH%HGV!H0H]W!H8AEHI*HcDA@taAD9t$)xKH;l$$}AHHuHU!HHEE1AsE1E1DDSD9t$HcD$A,|H?U!9ʼnD$(}kdH%HU!t$H8HV!LD$HI#HcDA@t5D9~-)x&H;l$(}HHuHT!MIEŋt$HV!dD9[IcA<)tGD)=7Ld$0Ht$HcHLՒLD0ȉH	HX(HuDH;Hu;(CHk<)<(HHuw<)HH)H{蜊HHH>I聊AHL H@HcS!HH=HH@<)t<(r@!HlAUIATUSHHL%U!I<$Ht觔L߇H,HI$E`I4$11@<\uHHH9~#H<"uHHHDHH9HHoL#HS!A+4$HHS!ډH=Iž1蘊MI$II)I|$+HHLHʐ B#HH諓1I}IlH}t7HI\ 貑LH}H}HjHHHuLVH=1H`Q!H8H[]A\A]
I;,$H}SHuHH\$Hl$HLl$Lt$HLd$H(9HIIHD؀:HDHtHAHþHHILL認HIt7HtHuLHLH$Hl$Ld$Ll$Lt$ H(黑HtH5HL1]H5
L1G谒HtH=H1虎HtH5QHڿ1H5c11f.H\$Hl$HLd$Ll$H(HO!IIHHyHH=1HHLLH\$Hl$Ld$Ll$ H(JLd$Lt$IH\$Hl$ALl$L|$H87u=LёuEEt[1H\$Hl$Ld$Ll$ Lt$(L|$0H8f跊HtL艑tHP!1LH0HuH51跈HO!1fH;HLH@!uEH
!H!HH@HL|L,HE4H7H=HuAH=L1CH=MHLL1)E1kHHHH=؃1!H=MH1LL׎H}(11{
q׌_HO!E1H;AHtLH@uAl-E!H513H5۲12H51SH1AH=H1P&,H\$Ld$IHl$HHM!H{0tH$Hl$Ld$H1~HHtlHcHHHP(HcH@HC(HC 	HCHC<HC0HHCH$Hl$Ld$HZMuH51wH=Ld$Ll$ILt$L|$IH\$Hl$HIIvt8H$XH$`L$hL$pL$xL$HĈe1TH5kHHҊHHD$XWH=qhH=%謈k!HcHK!1HLJLHHHPXHpHT$H@`1$HD$UH5K!HHE1E11HHDŽ$DŽ$HDŽ$$HFH$$H$HD$FH51H腊H51HH$HlH$HHHHD$`H޺H_H$0H޺HDŽ$XHDŽ$`Ќ1H1HHD$PHD$XHHt$PHPHHHH@HJ!H5~J!HD$PH$8H\$pH$0HHvD$@H$@HD$HHT$0HHt$8H5H$H$HsHlH$H5H$HH$ H$H5I!H$0H$(H$HD$(H$HT$ HH^D$pwH5+HcH$$HcH;T$0Hcj*H5RI!HT$0HL$8D$@H*L$@^*D$HH*FL$@L$H^L$HHt$(H|$ ML$HMD$@LL~<HD$`H;$)H$HH9$HD$XHHp{Ht$PHރH1\h!HH@PHHh!~H?h!~~H;h!He!HD$hHt$hHIH
h!Lh!HHHVH5g!KHD$hHuH;L$8HT$0HL$84H=HIHHwHWID$H?AD{H@AUIATIH<UHSH}HH~%L1HfHBHfDHH9uI<$IT$AIt$HE1賂HH[]A\A]DAUIATIH<UHSH,}HH~%L1HfHBHfDHH9uI<$IT$AIt$HE1SHH[]A\A]遇DHIHHwHWAD$H?ADH@HIHHwHWAD$H?ADEH@HHHWHwH?AHf!HHHwH?鱀DSH5T1HHHHH1[fDSHv H#HH1[Ð'f(fD(fD(f.2DDv
f.fA.vfA.@f(E1fA(\
RA\fTfTf.v;fA(AfD(f(f(fA(fD(fA(fD(f(fA(fD(f(f.fEWAf(f(Af.vAf(EAAfA.vAfA(A	f.1f(f(\\fD.AYAYAXAXf.fD.AfD(tEfD(ufD(At
Ef(uf(fD.?AfA.A1fD.v)fA(EA\A^X4fD(A@f.v*f(EA\A^Xf(AAfA(AtfD(D\EYEXEteDDD1E1DDfE(f.f(E\\D^vf(E1f(Rf(Af(<DD2DfA(A\AYAX\Cnf(f(f(]fD(A	f(AfDfDHFHf(HHFGf.v
Of.OvOfHFHf(HHFG f.v
O f.O(vO(fIHRPHDHHuHHPHuH~}LB!E1JIHLMu#UtICISHHITMMt4ISHwHntICHHLHMMuII9uf.HB!Hx0u7H@0H$H@H@(H@ H@H@fATUH-a!S1vL%A!I$XvH@HH@H@I$H+HHHu[]A\AWIAVAUATUSHMHt$PHT$HD$(HL$@LD$8L$ LL$0HHPHT$`HH(HPH@ HD$hHHHD$XHL$HL$`H$HHT$HHL$HT$@HD$XHL$8HHT$XHD$pHHL$XHT$xHT$HHH
@!HHH(HH}HEHHcHHE8Lu LmHHHI A;fWHtMH|$`HE|$HHHL$H$H*H*D$pXE(HHuH|$PH?HHXH*\YD$(XL,H*D$xXE0\YD$ XH,AWMLLH|$PHAW8HmHHD$XHL$0H9L$XHĈ[]A\A]A^A_LeLu Lm(LHltMH~i11H*T$pH*L$xfDf(AXYD$(XPH,f(HKAXDHYD$ X*H,HDKHL9uHuH|$PAWHLH|$PAW0H~HmHLeLu Lm(LHsMH~j11H*T$pH*L$xf(AXYD$(XH,f(HKAXDHYD$ XjH,HDKHL9uHuH|$PAWHLH|$PAW(H}HmHNYHuH|$PAWUH|$PE(M \]0\YD$(Y\$ XXH,H*D$xXH*D$pXL,YL$ YT$(X
XH,H,AW HmHHuH|$PAWH*L$xH*T$pf(H|$Pf(X]0XE(XM XUY\$ YD$(YL$ YT$(XXX
XL,H,H,H,AWHmH
HuH|$PAWH*D$xXE H|$PYD$ XH,H*D$pXEYD$(XH,AWHmHH1HHHD$H)HT$h1IHIHHH?HHH*f.HtH;!H1H:!HfDHSHvH5H1wsH;!HH[DfDH\$Hl$HHHHCHvH51&sHCZ!HH\$Hl$HSjH8HtH[H51rH[@Hl$H\$HHHtI HoHH@HHhH;t'HCHHSH\$Hl$HÐH9!H0HCHDfDHl$H\$HHHtI4 HSoHH@HHhH;t'HCHHSH\$Hl$HÐH9!H0HCHDfDAWIAVAUATIUSHHT$L$H|$8HnH<$IID$IDL,LnLHn1M~;C0AYXC@DHL$C8YXCHHL9uLH<$t-C0AYXC@DHL$C8YXCHIIFMfIn IF(H;t.HCL0LsHT$HW!HIFH[]A\A]A^A_LsL3fAWIAVIAUATIUSJHH|$w0HmHImHHD$~m1M~tfW1DM0]8AYAEHXM@f.r:YXf.r,H*Ef.r H*Ef.rH\$HHL9uIEIEIMHT$IE(IU H}t.HEL(LmH\$HV!HIEH[]A\A]A^A_LmLmUSHHbHV!1HH(H?H@HH@H@HHH(HH HP8HP0HHHHH@u9fDH]HvHHtHUHBHvHuH} vH[]H} fvH}(vHUfDfDHl$Ld$HLl$H\$H(HIIH5~1nnHH8HtHkkH?HH@
HCH1LcLkHC HC(HS0HC@HS8HCHHCPH\$Hl$Ld$Ll$ H(HpXfDATL%5!USI<$t;1I$HH;tH&HHfuHuI<$WuI$[]A\ATIUSHHD$$B8HajDM Hu(HDE0fA(m8f(AYY}@eHXL$X$t	AXXAYYXXf.fWf.f(tf(]_f.H*M]vuf.tf(]_H*EHHBjb J(]B0H}tJHEHHUHhS!JHBH[]A\f.fWf.GHUHUfDATIUSHHD$$8HhM HE(Hf(f(Ym0Ye8Xm@XeH%XL$M X$E(] U(Y]0YU8X]@XUHf.fEWfA.fE(t
fD(D]f(H*uf.fD(_D]fA.fE(t
fD(D]f(H*MfD(f(_Y\D]f(fA.Y\\f(YfA.zDt6fD.CYf(fW\^^D_A]fD(HDZfD.DB(4DR DJ0DYfE.w?DYȸfE.w.HBH}t0HEHHUH,Q!JHBH[]A\1HBH}uHUHU@f(YfD.Yf(^X^D_A]fD(DfA.wfEWfA.%D$E $E(@YDZHDB(\fW=]^^D_A]fD(DJ DR0DYf(^X^A]fD(D_,ATIUSHHD$$(HeHHD$XE E $XE(E(HE YE0XE@BXM(H,YM8XMHHJ xXH,HxH;E~Q1HBH}tYHEHHUH2O!JHBH[]A\ÐD$E $E(\fDH;MHBH}uHUHU먐USHHD$L$(HdHHtqD$XE E D$XE(E(HHBE YE0XE@BE(YE8XEHB H}t+HEHHUH[]ÐD$E D$E(HUHUH[]fH8L$(T$ D$$H*@d$\$(H0\P8YH YP(^XH@XPHfW@0Y@@H*@,$d$ \H@\fW^^H0@8Y\@HH ^P8P(H8ÐH(HIHt$HL$IHH57LD$L$1IhfH(HH51KfAUIATIUSHH~'HZ1DHsHLHHL9uH[]A\A]fAUIH51ATIUSHHHRHeI~+HKHSH5h1LHHeL9uHLH=1[]A\A]@d@SIHH5H1TeHH=[
dH\$Ll$LLt$L|$IHl$Ld$HH|$II5H<AD$D$H-+!H5H}kHHwL$H5D$LH߸dH%HH|$ 
	MHT$0HHD$(Hf(HT$@HVMHD$8HLHT$PH+!HHD$HHHT$ HT$HD$XH=HٺbHcH\$hHl$pLd$xL$L$L$HĘD1iH*!rH*!H*H)!H*^V^YL,H*BD$H*@L$L$^YT$fHUH51bmfDfDE1AUIATIH5UHHSHHhHtHH(_u%FH\_;HH_t#B<vր\uސH5lHH1vbHHL[]A\LH5
1A]UbfHndHH"cfDHtHVgfH=YI!1>]fHl$L|$HH\$Ld$ILl$Lt$HH(!Ht$`HL$XLD$PLL$HH$
HH$G(D$hO L$pOGY\H$H$O_HH_H|$`HLI!HxHþlcH{I[cfWI$f.zt%L$h\L$p$f.H$LL$HLLD$PHL$XHHt$`Ld$HLl$L4$H\$LaHHLaHu0HH$H$MHt$`MLHH\$HD$H$HT$LH$9H$Hj&!HH$H$L$L$L$L$HH|$P`H$D$0`LD$x`L$0YXL$xXfT
T^$f.
H|$Hy`H$D$ f`L$U`T$ 
CX$Y6XfT^$f.5fH\$Hl$HLt$L|$ILd$Ll$HH%!H$IHL$0LD$(LL$ HH
HD$@O(G \LHL$H\HH\LHLISH`D$HIf.%LD$(HL$0MLLHHH\$L$$L_HHL_Hu0HJH$LL$ LMLLHH\$H$HD$@H$!HH\$XHl$`Ld$hLl$pLt$xL$HĈH|$(^H$D$w^LD$8i^L$YWXL$8XfT
^L$Hf.
?mAWAVAUATUSHhH$H$$H$H$$$$$IIH$$-uH$Ae0AU@YY$XXXXH,$H$H,A]8AMHYY$XX-XH$ H+$XH,H$H,H$(HHH?H+$HH1H$H)HHRH?HH1H$HH)H?HH$H$H$HRHH$HH?H$H$IHHHH*QH,H*H$XYGL,M($IF$f(fTfUfV$$@$fTfUfV$H\$@$H*$^$Y$0$8\$$0[UY$+^$f(Nf.$8-H-71IVUUUUUUU3HIHH?H)HHRH)YTf.$8Hf.$0r$@T$p^TT$pf($H^\$`T\$`f(T$pf.nf(H?I*H$\X$f.<HHVUUUUUUUAHHH?f(H,YH)HRH)HH,HH?IHH$mHEf($H*Y\$$\$\f(^$\$Y^f(Y^H$(1H9$@L$Ht6LLH?H$H$HH$ H*1H9$@H$Ht6$PHH$H?H$HHH*$Xf(D$L$L=>!1\$AAf(f(YY^^X$X$H$u&H$Ht$\$HHH?IHt	$f(Hf(EAYU0AXU@Q(QAYM8AXMHI0I t,$PYXQ$XY\I Mt.$PA(Y\A(Y$XXY0Y0HAI}IEHIMH$HH9IHAt{XX8d$PLD$l$@t$0|$ 	SHH$H?d$PLD$l$@Hxt$0|$ H@uHh[]A\A]A^A_H9$HM$@H*X^$HX\$@$HdIMIMAr$$$\$\$fW\$f(fDAWAVAUATUSHXH*@H(D$0H*HL$8HHD$ HT$PHD$HHT$HD$HEHD$(H}HEHHcHLEEq1E11@HU |fWXH,H*f.rZT$0f.rNHE(GfWXH,H*f.r)T$8f.rA9tIcHU(HHAHD9mEIcHEHl$ Hl$(H
HX[]A\A]A^A_ËED$@HE T$@HHD$PHE(HHD$HsE1E1E11D$D#T$DEDEHD$D9T$@HU HM(fWHt$H|$\$8Dd$DHHHHL$0f(L:L1ADD$D$2HU HD$PHHU(HD$HHL|$PLt$HDD$D$SEtD	XE9t>EuHU HHHU(HHHU IcHHHHU(HHHAT$DAAEHAHHED$D9T$@EUfW1f.EffWf.E(f.E ufWf.M0VEf.D$0vT$0UE(f.D$0vD$0E(E f.D$8vL$8M E0f.D$8T$8U0Ef.E(E f.E0{t<fDnfWHM0HU(Hu H}\$8L$0f(R=HT$(HD$ HHX(fWXEH,H*f.wf.D$0wXE H,H*f.wf.D$8뒅@M0E {E(aEFAEHHEAD$9D$@a0 MHH@HEHCD)d$@HcD$@L,HCLLLHC LHC(IcH{ L$LLHu ULe(H{(LLnUHC L8HC(L0HD$(HH]H\$(8LHUH@HPHU HHPHU(HHP HU HTHP(HU(HTHP0HT$(HHEHE L|HE(LtDd$Df.AWAVIAUIATIUSHLHH$L#HhML=I|$	ID$IcL@KHI$HID$HCID$HCID$HCID$ HC ID$(HC(I|$HaKIT$HC HIt$ HTI*XC(C(I*XC0C0H]HM$$MKHEH$HhH[]A\A]A^A_ÿ JI$HIT$HPIT$HPIT$HPHEHM$$M럿0JHI$HID$HCID$HCI|$H{ID$ HHC ID$(HC(jJH{HC HYJHSH{ It$ HC(HRHSH{(It$(HRH{I*1I*ιHHC XHHC(HXHHH9C8II$I*I*HIT$HPIT$HPIT$HPIT$ @HP IT$(XHP(IT$0@XP(@ HP0XXH0P(@ H0HEM$$HMq!(,II$I*HIT$HPIT$HPIT$HPIT$ X@HP @I*X@ @ HEM$$HMU	SHH$$H5ڼH߸LH&MH	vuHH[]fH\$Hl$Ld$Ll$ILt$L|$H8H$I@I.HLHLHxIHLHHiQHEHELeH] AG0AYG AXG@E(AG8AYG(AXGHE0H$HE8I?t=IGH(IoH1!JHEH\$Hl$Ld$Ll$ Lt$(L|$0H8IoI/1fHH*H*H\$Ld$Ll$IHIL1PHLLH$Ld$Ll$HAWAVAUATUSHHx!H|$8HHt$0HT$(HL$ HLD$LL$L$ 	HD$HNvXH|$0LE1LH|$8HIQH$H$/H
!H)HHKH4$JlII@ H5!H!HHH+HkHHw1H랅AwYHVUUUUUUU_ILH?H)LHRH)tH"xEH[H$IcHH)HH-.!HIIHAL}D
L$09EH|$hsLH=H1VOHD$|-HEHu
ADH=jCH\$LD{HHDHAu
IDIuH|$`1LH=	H1NHT$|HiDHu
VDH|$(H|$0D$@H5ŸL$@H=7YNH|$8GHt$HH

!H1H[]A\A]A^A_Ht$0H|$(H$F?HILHIHD$xH
!HHl$HD$`HT$Ƅ|D|HHuHֹHIF/.FD'HH)HD$@H@ HHuHHH@uH
!H5!E1Hl$xH	HHH$HHL$PH)HHHD$XHD$`HD$hH$Ht$8H|$ J\L=HHJHt$`HaJHL$`Ht$hHHHHL$`DJHN\$hH$HT$xLH\$hHIvH>H>MH-0!ILmL9l$XLH,!H8vH51wGHUH!HI#IH+H,I)HH9H!HHsL"I#HI$~I.I,HBHHAHHuH|$PLL?DIII@H|$HL$HDL$`H|$Ht$HDt$hHD$PH-4!HL$`Ht$hH|$hHHE%DHHjAH=!HھADH|$`HHD$p\@HGH
!Ƅ$,H)HL:HVUUUUUUUHHH?H)HHRH)}HHVUUUUUUULd$HHȻH?1E1II)MIw
$AL$H4$J|Ht$`KCHt$pH?HGLHHVUUUUUUUILH?AA)HkA@9ApMAEA(1IƒN-9|)IcHl$HRHH)H(@Hc9:}9IcHL$HRHH)HDHcƃ9:|EA9uAHEAF1BY1XH`-EЈ$fHt$hEHD$hH	!HH|$(HT$0H|$0HT$(Ll$Lt$H\$Hl$Ld$L|$H8L5!Hh!H<$IHH+LkHHHH"M.1HCٺL=!M'IHn!H(ImMgIHR!H(ImH<$@MgIH+!H(ImMgImH!H(Im Mg IH!H(Im(Mg(IH!H(Im0LH\$Hl$Ld$Ll$ Lt$(L|$0H8\IHB!HH+HkHH*HI.LcHCH@HCYIH!HH+HkHHII@I.L[LSLcImH<$I*I*G^<IEI*OI*G^<IE I*I*G ^<IE(I*G(I*O^<IE0IH1!HH+HkHHHH@I.H{HsLc!IH!HH+HkHHII@I.LKLCLc%IH!HH+HkHHWHI.LcHCH@HC\IHA!HH+HkHHHI.LcHCH@HCM1i>IH!HH+HkHHHI.IHCHLcHCIH!HH+HkHHIIII.LKLCLc_1=,1=j1=1=1y=&1h=IH!HH+HkHH>HI.IHCHLcHCIH!HH+HkHHHHII.HKHSLcIHK!HH+HkHHHHII.H{HsLcIH!HH+HkHHvMIIII.L[LSLc'1'<1<1<륿1;1;:1;@1fH\$Ld$Ll$Lt$L|$Hl$H8L52!H!H(@ IL,L,HH+LcHHI"IM&L[uUH!H(IIl$H!H(Il$LH\$Hl$Ld$Ll$ Lt$(L|$0H8IHh!HH+HkHH8II@II.LSLKLkIl$jIH!HH+HkHHHH@I.HsHKL{$fD10:IH!HH+HkHHIHII.LCH{LkfIH^!HH+HkHHvhHHII.HSHCL{u191o91[9M1J9fDfDLl$H\$IHl$Ld$ILt$L|$HXHH|$HH9HH5!L=H=!::D$IEH9HH5!L=H=p!:f(1$˱H| fWD$$L HXIHf.ztI*YD$D$XL,f.ztH*YX
oH,fH|$HLH\$(Hl$0Ld$8Ll$@Lt$HL|$PHXNH^E1AH>Ht9HH#FLfHMLHHLNMAIm1AH>Hu:1ðEtHo L IEGHX HXH3HI#EI]HjHxeHHHHNHAtEfHt8D$IEH9H:LT8f(H1616fUHHSHHHH9HtH5]!;H=Q!7$HH9Ht:H53!Hw;H=$!7$H[H]GH7fDUHHSHHHH9HtH5!;H=!X7$HH9Ht0H5!H:H=!+7$H[H1]H7UHHSHHHH9HtH5M!:H=A!6$HH9Ht:H5#!Hg:H=!6$H[H]WH6fDUHHSHHHH9HtH5!:H=!H6$HH9Ht0H5!H9H=!6$H[H1]H5UHHSHHHH9HtH5=!9H=1!5$HH9Ht:H5!HW9H=!5$H[H]gHt5fDUHHSHHHH9HtH5!8H=!85$HH9Ht0H5!H8H=t!5$H[H1]H4H\$Hl$HLd$Ll$H8IIIHLH9HtH5!\8H=	!4$HH9HH5!H+8H=!o4D$HEH9HH5!H7H=!<4D$I$H9HH5!L7H=r!	4$LT$H\$L$Hl$ Ld$(Ll$0H8H3D$HEH9HaH3D$I$H9HtL3fAWAVAUATUHSHHHt$HT$HHH9HtH5}11HUIL!HHHVUUUUUUUHHH?H)HRHT$H9`H\$HH.HHD$0.HHD$8.H|$HD$@H|$IHD$(<fHH9HDH5!H<6H=!2D$ IEH- H9H]HH5!L5H=!B2f(HCH*HEHYD$ D$ XD$ L,H*YX
٢H,HT$8HD$(1LdHT$@H\I_H>Ht5HI#GIoH<1H0HHHHNHI蓼HD$(HT$0HlHT$H9JM~I^HD$(MnIH9HtH51/H|$HH9HuIEH9HtH5E1/HkE1H>Ht5HH#CLcH1n/LHHLNIm1H>HHI#EI]H~`1*/HHHHNHLb0f(fHO0D$ Mm\HyH|$fDuEHL$HT$@Ht$8H|$0赨H|$8g6H|$@]6H|$0HH[]A\A]A^A_E6LD$HL$HT$@Ht$8H|$01肧fH514.HH[]A\A]A^A_@H1fDH111Ҿ@AWLAAVAUATUSHHH[ H$0H|$HHt$@HL$8HLD$0HD$XLL$`H$"MHDŽ$0A  Ht$@HE11H$0Ht$@HHHT$(,Ht$(H/Ht$0H|$@HD$h/H|$HHIR5H Ht$HLH|$8HH$HHHH9HAHHT$@HH9HH|$@H5U!1H=I!-$HH9H]H5#!Hg1H=!-$HEH9HH5!H11H=!u-$H|$X
`A)$IHD$PHD$X$HDŽ$Odd11I@LH(JD3J3H0L9|$AF$AN $AF$AN(H|$`6H L- HHI+EHSHT$pHHH HT$pHHHsHHI+EL{HHHw HL8HKHHI+EHSHT$xHHAHT$xH9 HHHSHHCH$HI+EHH
H$H HHHCH|$XW	HHl$0II+EHI)HH9D$0HH#D$0H L"H$1HH\$0Hv I$HHI+EH)HHH9D$0H$HC H(H3 H]LH|$@HH$.Ht$HH|$8LHt$pHxH`.H{Ht$xR.H|$(`IV0E1H$fDH Ht$hLHU'HH
.H Ht$HH|$8HH"HHH#HtH5]1(H{LI-H$H{-H|$p)LLH|$x)H$LH$HT$HLLL$xLD$pLHt$8HD$HD$L|$H,$H$H HL;l$(tDMLH
-Ht$pL,Ht$xH$,IF0H$L")LL+H$
)H$LNH$IVH|$H'H$H HHL[]A\A]A^A_H|$`t,L$0I
HHH%HH$0L$0HtH5Ș1'HUHH!II]	H|$XL$IH|$`tH$~H5(1&H|$X]H}HH9HtH5H!+H=<!'$H}HH9HtH5!]+H=
!'$I$$$$H$I9H|HH9HtH5
!*H=
!#'$H|HH9HtH5e
!*H=Y
!&$f.$$$$f.P_$HI9$GK|mHF"MIHD$PTH|$PIH|$XH$0KIEHDŽ$H$Ht$HH|$8LIHI#$H;$tH551$ML1I|HH9HtH5'	!n)H=	!%HLH跨I<HH9HtH5!6)H=!z%Hs0LH`辨I9Ht$hLH"LH(H H$H$HH$0H9$H$0Mn0E1H5Y!L(H=J!$BDHH9HH5&!Hj(H=!$LLIHt$hL!LH7(L;$0H$H HmHt$HH|$8L9HII.H9HBL6$PLH?LHH$1"1"1"1x"d$_$$H#HT$@HH9HIH|$@H5!('H=!l#$HH9HTH5!H&H=!7#$H6%HHH9HH5o!H&H=`!"$H$HHH9HH5/!Hs&H= !"$HH\$@Ht$@H5̒
1D#Hw"$Ha"$HK"$fHz Ht$pMf0H|$@L*%HT$pHt$HH|$8Ht$xH%H|$(Mf0H' Ht$hHH|$pHLHr%H Ht$HH|$8HL芾H$HF%H|$p!LL蕤H|$xw!LLH$LD$xMHL$pHT$HLHt$8HD$H$,Hu Ht$pLL*$Ht$xH$$H;$0L LLH$ LL*1e1T1Cd12H$0IF0HDŽ$HD$ Ht$HH|$8L;IHI#$L9tH5v1IIH9HH5w!L#H=h!H$I~QH\$ fDI<HH9HtH5(!o#H=!HHLH0L9uHt$hL~LH3#H H$H$HH$0H9$SLEAH8$H"$H$H$H$H E1HfATIHHHLSMHH\$ HD$(IH$aHHL[A\E1H1
f.AWAVAUATUSHH HT$PH|$PH|$`Ht$XHHL$HLD$@H$H$H$HL$PH\$PH	H$HCk[f({(s H$\\$x$f.sVzTf(
fT%l^%̎f(f(sf(fTfUfVX\$\$xf($\$f.XH|$@yHT$@HL$@H\$@H|$`HHT$8H$HIHl$8HL$0H$HHCHH$ HKH$(HS LaH$0HC(HL<H$8HC0H$8H$@HC8HH$HHC@H$PHCHH\$0H$HDŽ$HDŽ$H$XH$ HL$L$HHH$&HT$`H9T$Xt&L)L)H+$H+$H|$XHHH$$H5[L$HL$pL$`$H5&LD$xH5L$H5LH|$`H"HL$`H!H|$`A1LHHH\$0H+$A2H|$`LLHpH|$`ALHLWH$H)T$8A
Ht$8H|$`LHH+H|$XH@PD$H[
D$H HD$HHl$@%HӃH)H|$XH/HL$XH#!1$D$xHH"H|$X$$1THD$H:HD$H	D$HuD$xf.H
D$H\L$HȈL$oH$H$"HT$HH\$HHD$HHDŽ$%H>H$HD$ HT$D$HL$XH HH|$oHt-H$HL$PHRHHHH$H$H$H[HHHD$PH$H(LxH$H|$ H H I_H
 L4HH	HD$pH$HD$pIH$M)HH HH+HH9H
 HH!H$L)"H I"I	MeHHR HH+L)IHH9H$H
A L1H M&IHHH HHH$]M~5H$DIDDIHI9}1|$oaH H
 HHH+HH H$HHHDŽ$H$Hq HDŽ$H+u3H H$HHBH$H$H$tH
  H HHH+LcHHH
 HI@L!HCL[H$HCH$H$LdH$^H H HHH+LcHHH
x I"L!LCL%p LHH$9IE1L|$(H E1H9 LHHHH{H
 HE1H LHHHHMHL;$MHMHUHD$H$E1H|$XAHD$IH$~H L:L;d$(tkII|$oHi L8&H E1LLLHHL;$H> XMHMXHUSHcD$pH$H
 H HHH$H$H9$"H$Hx7H$HL$PE1HRHHH{IH0L;$uH|$PH|$@tQHD$HH$H$H$躌H|$X H\$XH9\$`t
H|$`
H$H H
 HHHH+H(HHRH$H H"HHzD$xH$HA$H$HB$H$HA$H$HBHH[]A\A]A^A_HM H$H|$XH3H$H3H|$X+H$H|$XLHàH$@H|$ H H$H|$XH0\H$H|$XE1LHA1H5āL11@C111JHA H
" HHH+LcHHjH IIL LSLKH$HHC15G1$D$f.B$f.%pH|$XHHD$XH 1fWD$xHHfWH|$X$1蝣f(fT
^
f(f(
fTfUf(fVX\$$LH$H$H$zk11H|$X$$$D$xاu$$Ht$X$Hcf(Hf(Hf(Ʊ$Ht$X$HT$xHf(f(f(蒱D$Hf$f.YH|$XH2HD$XH& 1fW$HH'fWH|$X$1Ρ?HHG H$HH+HHHH9 H$HH"HB$d$x$Ht$XLcf(f(Lf(Hl$xHt$X$L$Hf(f(f(KQW1 H- @H\$Hl$LLd$Ll$Lt$L|$HXH\$hLl$`MH|$ Ld$pHt$HT$HHL$識Ht$H|$MLHIIL$$Ht$H|$ MHHl$0H\$(Ld$8Ll$@HLt$HL|$PHXHLL$L$IIHHHD$Hf.HIHD$ LL$IL$HIоHHD$HfHIHL$IHHD$HD$HfDHIHL$IHHD$HD$[HfDHHD$ LL$IL$HIоHHD$HfAWAVAUATIUHSHHH|$HHH9H!HHSHHT$ vH5|1
H|$ HD$HL$ALd$8HAHH!H|$ HD$(HD$ HH<@HeHHD$H\$?IHD$0HL$HT$0HHTHT$@HHT$0H!H9L|HHIH5{1	LsJHHI$MID$01@HD$@I,$L,H|HH9HtH56 }H=* 
BD-I|Il$0HH9HtH5 GH= H
L9BD-{Mt$8Mt$I`HD$0HT$0H9T$H|$8XH\$H{HD$HT$HPHL$H8HA0HI8'Hf(~@f(1_HFH9HHf(}"Hf.vHf(H9H|f(H|$f(Ht$1H~1HV01
Hf(H9tf.w_HH9f(uHH0H;|$tPHN8HH9HHHH!H9H|$8H9\$(HD$X`H P(HD$HH[]A\A]A^A_HD$ HL$ H\$H?LIMLK~HHH0HrHuPH1A`HǐH\$LHM@`H`H|8u#HI9H|$HD$i1HL$E1HH Hf(f(H~VHHW01f(f.v+Hf(H9t/f.w_f(f.w_HH9f(uIH`M9Hw8H5Gx1c0yH|$8HD$HD$XHHD$H\$Hl$HLd$Ll$ILt$L|$HXILILHIžH"H\$Ld$H$HtAHMHHLLHHHl$0H\$(Ld$8Ll$@Lt$HL|$PHXL% H I,$HH+H]HHHtH"I$HE랿/HHHMA@IfH
HH҃@IHHH\$Ld$HHIHHHLH\$Ld$E1H1HpLl$Lt$IL|$H\$IHl$Ld$HHAH<$MHH9HH5 HC	H= D$IEH9HH5 L	H= TD$1}H 
vHHH*HBHYD$D$XL,H*YD$XH,LHH<$HLLH\$Hl$ Ld$(Ll$0Lt$8L|$@HHnHZE1H>Ht2HH#BLbHMLHHLNI]1H>HjHI#EImHHHHHLHNH8H<$豏LI規HHt-Ht5HH@I+EH)HH@I+EH)HHBI+EL)IHD$IEH9H,LD$:11&f.Hl$H\$HLd$HHtfώ IHHH@	HEH9HtGH5k HH=\ CI<$t;ID$HI\$H$Hl$Ld$HHCI<$uI\$I$DHl$Ld$IH\$Ll$HLt$L|$HHH$H|$H6HHH9HAHwyHH9HGHwhHII!HtHtH!L9tH5r1LHHD$uUH\$Hl$ Ld$(Ll$0Lt$8L|$@HHH|$HLH\$Hl$ Ld$(Ll$0Lt$8L|$@HHHHHZHIOH|$I~rI<HH9HtH5 H= SADH|HH9HtH5 H= "ADHL9uL$HL$LH|$L轍LaLH\$Hl$ Ld$(Ll$0Lt$8L|$@HH7DfDHl$Ld$IH\$Ll$HLt$L|$HHH|$H6HHH9HAHw|HH9HGHwkHII!HtHtH!L9tH5p1LHHD$uXH\$Hl$ Ld$(Ll$0Lt$8L|$@HHH|$HLH\$Hl$ Ld$(Ll$0Lt$8L|$@HHNHHH{HIpH|$I~s@I<HH9HtH5 /H= sADH|HH9HtH5 H= BADHL9uHL$H|$LLLLH\$Hl$ Ld$(Ll$0Lt$8L|$@HH[UHHSHHHH9HtH5 dH= $HH9Ht:H5 H7H= {$H[H]闏HTfDUHHSHHHH9HtH5 H= $HH9Ht0H5c HH=T $H[H1]
HUHSHH Ht1HxaHHuH[ÐHH%cverbatim:%s%s
%clatex:\magenta\%%%ld = $\blue %s$%cbroken prettyprinter: '%s'%s%%%ld = %s\PARIout{%ld}%s: %s
Reading GPRC: %s ...gcc-%sNov 26 2013compiled: %s, %s5.2 [was v%s in Configure]enableddisabledv%s %s%s notcompiled: %sOptions are:	[--help]	Print this messagenot an integerspecial:unrecognized TeXmacs commandGPRCHOMEHOMEDRIVEHOMEPATH/etc/gprcC:/_gprc...skipping line %ld.
ifunknown directiveEMACSREADLVERSIONunknown preprocessor variablereadmissing '='Done.

version-short%lu.%lu.%lu
versiontexmacsemacstestquietfastprimelimitstacksize? user interrupt after time = %ldh, %ldmn, %ld,00%ld msGP (Segmentation Fault)GP (Bus Error)GP (Floating Point Exception)signal handlingGoodbye!
no input ???no external help program_QUOTE_BACKQUOTE_DOUBQUOTE-k@%d%s -fromgp %s %c%s%s%cugly_kludge_done/usr/local/share/parino such section in help: ?t_defaultunknown identifierobsolete function%s is aliased to:

user defined variableinstalled functionaide (no help found)realprecisionseriesprecisionformatpromptsetting %ld history entriesbreak> ... skipping file '%s'
operatorlibparimemberrealreadlinerefcardtutorialbnfbnrellrnfbidmodulus\PARIpromptSTART|%s\PARIpromptEND|%s\PARIinputEND|%%
\LITERALnoLENGTH{%s}\%%%ld =\LITERALnoLENGTH{%s}                                                      
GP/PARI CALCULATOR Version 2.3.4 (released)amd64 running freebsd (portable C kernel) 64-bit version4.2.1 20070831 patched [FreeBSD](readline %s, extended help%s available)### Usage: %s [options] [GP files]
	[-f,--fast]	Faststart: do not read .gprc	[-q,--quiet]	Quiet mode: do not print banner and history numbers	[-p,--primelimit primelimit]
			Precalculate primes up to the limit	[-s,--stacksize stacksize]
			Start with the PARI stack of given size (in bytes)	[--emacs]	Run as if in Emacs shell	[--test]	Test mode. No history, wrap long lines (bench only)	[--texmacs]	Run as if using TeXmacs frontend	[--version]	Output version info and exit	[--version-short]	Output version number and exit
[secure mode]: system commands not allowed
Tried to run '%s'missing DATA_[BEGIN | END] in TeXmacs commandmissing enclosing parentheses for TeXmacs commandTexmacs_stdin command %s not implementedwas expecting 2 arguments for Texmacs_stdin commandbuffersize is no longer used. -b ignored### Errors on startup, exiting...

  ***   last result computed in Broken Pipe, resetting file stack...The standard distribution of GP/PARI includes a reference manual, a tutorial, a reference card and quite a few examples. They should have been installed in the directory '%s'. If not, ask the person who installed PARI on your system where they can be found. You can also download them from the PARI WWW site 'http://pari.math.u-bordeaux.fr/'
Three mailing lists are devoted to PARI:
  - pari-announce (moderated) to announce major version changes.
  - pari-dev for everything related to the development of PARI, including
    suggestions, technical questions, bug reports and patch submissions.
  - pari-users for everything else!
To subscribe, send an empty message to <listname>-subscribe@list.cr.yp.to. An archive is kept at the WWW site mentioned above. You can also reach the authors directly by email: pari@math.u-bordeaux.fr (answer not guaranteed).Help topics: for a list of relevant subtopics, type ?n for n in
  0: user-defined identifiers (variable, alias, function)
  1: Standard monadic or dyadic OPERATORS
  2: CONVERSIONS and similar elementary functions
  3: TRANSCENDENTAL functions
  4: NUMBER THEORETICAL functions
  5: Functions related to ELLIPTIC CURVES
  6: Functions related to general NUMBER FIELDS
  7: POLYNOMIALS and power series
  8: Vectors, matrices, LINEAR ALGEBRA and sets
  9: SUMS, products, integrals and similar functions
 10: GRAPHIC functions
 11: PROGRAMMING under GP
 12: The PARI community

Also:
  ? functionname (short on-line help)
  ?\             (keyboard shortcuts)
  ?.             (member functions)
Extended help looks available:
  ??             (opens the full user's manual in a dvi previewer)
  ??  tutorial / refcard / libpari (tutorial/reference card/libpari manual)
  ??  keyword    (long help text about "keyword" from the user's manual)
  ??? keyword    (a propos: list of related functions).#       : enable/disable timer
##      : print time for last result
\\      : comment up to end of line
\a {n}  : print result in raw format (readable by PARI)
\b {n}  : print result in beautified format
\c      : list all commands (same effect as ?*)
\d      : print all defaults
\e {n}  : enable/disable echo (set echo=n)
\g {n}  : set debugging level
\gf{n}  : set file debugging level
\gm{n}  : set memory debugging level
\h {m-n}: hashtable information
\l {f}  : enable/disable logfile (set logfile=f)
\m {n}  : print result in prettymatrix format
\o {n}  : change output method (0=raw, 1=prettymatrix, 2=prettyprint, 3=2-dim)
\p {n}  : change real precision
\ps{n}  : change series precision
\q      : quit completely this GP session
\r {f}  : read in a file
\s {n}  : print stack information
\t      : print the list of PARI types
\u      : print the list of user-defined functions
\um     : print the list of user-defined member functions
\v      : print current version of GP
\w {nf} : write to a file
\x {n}  : print complete inner structure of result
\y {n}  : disable/enable automatic simplification (set simplify=n)

{f}=optional filename. {n}=optional integer
Member functions, followed by relevant objects

a1-a6, b2-b8, c4-c6 : coeff. of the curve.            ell
area : area                                           ell
bid  : big ideal                                                    bnr
bnf  : big number field                                        bnf, bnr
clgp : class group                   bid,                      bnf, bnr
cyc  : cyclic decomposition (SNF)    bid,       clgp,          bnf, bnr
diff, codiff: different and codifferent                    nf, bnf, bnr
disc : discriminant                                   ell, nf, bnf, bnr
e, f : inertia/residue  degree            prid
fu   : fundamental units                                       bnf, bnr
gen  : generators                    bid, prid, clgp,          bnf, bnr
index: index                                               nf, bnf, bnr
j    : j-invariant                                    ell
mod  : modulus                       bid,                           bnr
nf   : number field                                            bnf, bnr
no   : number of elements            bid,       clgp,          bnf, bnr
omega, eta: [omega1,omega2] and [eta1, eta2]          ell
p    : rational prime below prid          prid
pol  : defining polynomial                                 nf, bnf, bnr
reg  : regulator                                               bnf, bnr
roots: roots                                          ell  nf, bnf, bnr
sign,r1,r2 : signature                                     nf, bnf, bnr
t2   : t2 matrix                                           nf, bnf, bnr
tate : Tate's [u^2, u, q]                             ell
tu   : torsion unit and its order                              bnf, bnr
w    : Mestre's w                                     ell
zk   : integral basis                                      nf, bnf, bnr
new identifier (no valence assigned)List of the PARI types:
  t_INT    : long integers     [ cod1 ] [ cod2 ] [ man_1 ] ... [ man_k ]
  t_REAL   : long real numbers [ cod1 ] [ cod2 ] [ man_1 ] ... [ man_k ]
  t_INTMOD : integermods       [ code ] [ mod  ] [ integer ]
  t_FRAC   : irred. rationals  [ code ] [ num. ] [ den. ]
  t_COMPLEX: complex numbers   [ code ] [ real ] [ imag ]
  t_PADIC  : p-adic numbers    [ cod1 ] [ cod2 ] [ p ] [ p^r ] [ int ]
  t_QUAD   : quadratic numbers [ cod1 ] [ mod  ] [ real ] [ imag ]
  t_POLMOD : poly mod          [ code ] [ mod  ] [ polynomial ]
  -------------------------------------------------------------
  t_POL    : polynomials       [ cod1 ] [ cod2 ] [ man_1 ] ... [ man_k ]
  t_SER    : power series      [ cod1 ] [ cod2 ] [ man_1 ] ... [ man_k ]
  t_RFRAC  : irred. rat. func. [ code ] [ num. ] [ den. ]
  t_QFR    : real qfb          [ code ] [ a ] [ b ] [ c ] [ del ]
  t_QFI    : imaginary qfb     [ code ] [ a ] [ b ] [ c ]
  t_VEC    : row vector        [ code ] [  x_1  ] ... [  x_k  ]
  t_COL    : column vector     [ code ] [  x_1  ] ... [  x_k  ]
  t_MAT    : matrix            [ code ] [ col_1 ] ... [ col_k ]
  t_LIST   : list              [ code ] [ cod2 ] [ x_1 ] ... [ x_k ]
  t_STR    : string            [ code ] [ man_1 ] ... [ man_k ]
  t_VECSMALL: vec. small ints  [ code ] [ x_1 ] ... [ x_k ]

Break loop (type 'break' or Control-d to go back to GP)[type <Return> in empty line to continue]
%ccommand:(cas-supports-completions-set! "pari")%c
Copyright (C) 2000-2006 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER
Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.

parisize = %lu, primelimit = %lu
3_$$$$$$$$$^ddElllX2%lll*|
externinputquitsystemvswhatnowvrallocatememvLpvLGGvLLD"",r,D"",s,D0,L,vGpinitrectvLLLvSkillrectvLvV=GGIDGDGpV=GGIpplothmultGGppostdrawvGpostplothpostploth2V=GGIpD0,L,postplothrawpprintvs*pprint1vLGGGGsetprecisionlLsetserieslengthsettypeGLvLstexprintextern(cmd): execute shell command cmd, and feeds the result to GP (as if loading from file)input(): read an expression from the input file or standard inputquit(): quits GP and return to the systemread({filename}): read from the input file filename. If filename is omitted, reread last input file, be it from read() or \rsystem(a): a being a string, execute the system command a (not valid on every machine)version(): returns the PARI version as [major,minor,patch] 'status'whatnow(fun): if fun was present in GP version 1.39.15 or lower, gives the new function nameallocatemem(s)=allocates a new stack of s bytes, or doubles the stack if size is 0box(w,x2,y2)=if the cursor is at position (x1,y1), draw a box with diagonal (x1,y1) and (x2,y2) in rectwindow w (cursor does not move)color(w,c)=set default color to c in rectwindow. Possible values for c are 1=sienna, 2=cornsilk, 3=red, 4=black, 5=grey, 6=blue, 7=gainsboroughcursor(w)=current position of cursor in rectwindow wdefault({opt},{v},{flag}): set the default opt to v. If v is omitted, print the current default for opt. If no argument is given, print a list of all defaults as well as their values. If flag is non-zero, return the result instead of printing it on screen. See manual for detailsdraw(list)=draw vector of rectwindows list at indicated x,y positions; list is a vector w1,x1,y1,w2,x2,y2,etc...initrect(w,x,y)=initialize rectwindow w to size x,ykill(x)=kills the present value of the variable or function x. Returns new value or 0killrect(w)=erase the rectwindow wline(w,x2,y2)=if cursor is at position (x1,y1), draw a line from (x1,y1) to (x2,y2) (and move the cursor) in the rectwindow wlines(w,listx,listy)=draws an open polygon in rectwindow w where listx and listy contain the x (resp. y) coordinates of the verticesmove(w,x,y)=move cursor to position x,y in rectwindow wplot(X=a,b,expr)=crude plot of expression expr, X goes from a to bploth(X=a,b,expr)=plot of expression expr, X goes from a to b in high resolutionploth2(X=a,b,[expr1,expr2])=plot of points [expr1,expr2], X goes from a to b in high resolutionplothmult(X=a,b,[expr1,...])=plot of expressions expr1,..., X goes from a to b in high resolutionplothraw(listx,listy)=plot in high resolution points whose x (resp. y) coordinates are in listx (resp. listy)point(w,x,y)=draw a point (and move cursor) at position x,y in rectwindow wpoints(w,listx,listy)=draws in rectwindow w the points whose x (resp y) coordinates are in listx (resp listy)postdraw(list)=same as plotdraw, except that the output is a PostScript program in file "pari.ps"postploth(X=a,b,expr)=same as ploth, except that the output is a PostScript program in the file "pari.ps"postploth2(X=a,b,[expr1,expr2])=same as ploth2, except that the output is a PostScript program in the file "pari.ps"postplothraw(listx,listy)=same as plothraw, except that the output is a PostScript program in the file "pari.ps"pprint(a)=outputs a in beautified format ending with newlinepprint1(a)=outputs a in beautified format without ending with newlineprint(a)=outputs a in raw format ending with newlineprint1(a)=outputs a in raw format without ending with newlinerbox(w,dx,dy)=if the cursor is at (x1,y1), draw a box with diagonal (x1,y1)-(x1+dx,y1+dy) in rectwindow w (cursor does not move)read()=read an expression from the input file or standard inputrline(w,dx,dy)=if the cursor is at (x1,y1), draw a line from (x1,y1) to (x1+dx,y1+dy) (and move the cursor) in the rectwindow wrlines(w,dx,dy)=draw in rectwindow w the points given by vector of first coordinates xsand vector of second coordinates, connect them by linesrmove(w,dx,dy)=move cursor to position (dx,dy) relative to the present position in the rectwindow wrpoint(w,dx,dy)=draw a point (and move cursor) at position dx,dy relative to present position of the cursor in rectwindow wrpoints(w,xs,ys)=draw in rectwindow w the points given by vector of first coordinates xs and vector of second coordinates ysscale(w,x1,x2,y1,y2)=scale the coordinates in rectwindow w so that x goes from x1 to x2 and y from y1 to y2 (y2<y1 is allowed)setprecision(n)=set the current precision to n decimal digits if n>0, or return the current precision if n<=0setserieslength(n)=set the default length of power series to n if n>0, or return the current default length if n<=0settype(x,t)=make a copy of x with type t (to use with extreme care)string(w,x)=draw in rectwindow w the string corresponding to x, where x is either a string, or a number in R, written in format 9.3texprint(a)=outputs a in TeX formattype(x)=internal type number of the GEN xqy	O?Pari-GP 	
"\'`@$><=;|&{(?,~short-helplong-helppari-completepari-matched-insertpari-matched-insert-suspendpari-matched-insert-restorepari-forward-sexppari-backward-sexpOP[11~[200~[201~[%s: %s] offelectric parens"([{}])complete args%s@@E_N_D()write%cscheme:(tuple)%c([{)]}libpari.so.2.3.4installvrrD"",r,D"",s,plotboxplotclipplotcolorplotcopyvLLGGD0,L,plotcursorplotdrawvGD0,L,plothsizesplotinitvLD0,G,D0,G,D0,L,plotkillplotlinesvLGGD0,L,plotlinetypeplotmoveplotpointsplotpointsizevLGplotpointtypeplotrboxplotrecthLV=GGIpD0,L,D0,L,plotrecthrawLGD0,L,plotrlineplotrmoveplotrpointplotscaleplotstringvLsD0,L,psdrawpsplothpsplothrawcouldn't open dynamic library '%s'couldn't open dynamic symbol table of processcan't find symbol '%s' in library '%s'can't find symbol '%s' in dynamic symbol table of process[secure mode]: about to install '%s'. OK ? (^C if not)
install(name,code,{gpname},{lib}): load from dynamic library 'lib' the function 'name'. Assign to it the name 'gpname' in this GP session, with argument code 'code'. If 'lib' is omitted use 'libpari.so'. If 'gpname' is omitted, use 'name'plot(X=a,b,expr,{ymin},{ymax}): crude plot of expression expr, X goes from a to b, with Y ranging from ymin to ymax. If ymin (resp. ymax) is not given, the minima (resp. the maxima) of the expression is used insteadplotbox(w,x2,y2): if the cursor is at position (x1,y1), draw a box with diagonal (x1,y1) and (x2,y2) in rectwindow w (cursor does not move)plotclip(w): clip the contents of the rectwindow to the bounding box (except strings)plotcolor(w,c): in rectwindow w, set default color to c. Possible values for c are 1=black, 2=blue, 3=sienna, 4=red, 5=cornsilk, 6=grey, 7=gainsboroughplotcopy(sourcew,destw,dx,dy,{flag=0}): copy the contents of rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of the size of the current output device, otherwise dx and dy are in pixels. dx and dy are relative positions of northwest corners if other bits of flag vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast cornersplotcursor(w): current position of cursor in rectwindow wplotdraw(list, {flag=0}): draw vector of rectwindows list at indicated x,y positions; list is a vector w1,x1,y1,w2,x2,y2,etc. . If flag!=0, x1, y1 etc. express fractions of the size of the current output deviceV=GGIpD0,M,D0,L,
Parametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048ploth(X=a,b,expr,{flags=0},{n=0}): plot of expression expr, X goes from a to b in high resolution. Both flags and n are optional. Binary digits of flags mean: 1=Parametric, 2=Recursive, 4=no_Rescale, 8=no_X_axis, 16=no_Y_axis, 32=no_Frame, 64=no_Lines (do not join points), 128=Points_too (plot both lines and points), 256=Splines (use cubic splines), 512=no_X_ticks, 1024= no_Y_ticks, 2048=Same_ticks (plot all ticks with the same length). n specifies number of reference points on the graph (0=use default value). Returns a vector for the bounding boxplothraw(listx,listy,{flag=0}): plot in high resolution points whose x (resp. y) coordinates are in listx (resp. listy). If flag is 1, join points, other non-0 flags should be combinations of bits 8,16,32,64,128,256 meaning the same as for ploth()plothsizes({flag=0}): returns array of 6 elements: terminal width and height, sizes for ticks in horizontal and vertical directions, width and height of characters. If flag=0, sizes of ticks and characters are in pixels, otherwise are fractions of the screen sizeplotinit(w,{x=0},{y=0},{flag=0}): initialize rectwindow w to size x,y. If flag!=0, x and y express fractions of the size of the current output device. x=0 or y=0 means use the full size of the deviceplotkill(w): erase the rectwindow wplotlines(w,listx,listy,{flag=0}): draws an open polygon in rectwindow w where listx and listy contain the x (resp. y) coordinates of the vertices. If listx and listy are both single values (i.e not vectors), draw the corresponding line (and move cursor). If (optional) flag is non-zero, close the polygonplotlinetype(w,type): change the type of following lines in rectwindow w. type -2 corresponds to frames, -1 to axes, larger values may correspond to something else. w=-1 changes highlevel plottingplotmove(w,x,y): move cursor to position x,y in rectwindow wplotpoints(w,listx,listy): draws in rectwindow w the points whose x (resp y) coordinates are in listx (resp listy). If listx and listy are both single values (i.e not vectors), draw the corresponding point (and move cursor)plotpointsize(w,size): change the "size" of following points in rectwindow w. w=-1 changes global valueplotpointtype(w,type): change the type of following points in rectwindow w. type -1 corresponds to a dot, larger values may correspond to something else. w=-1 changes highlevel plottingplotrbox(w,dx,dy): if the cursor is at (x1,y1), draw a box with diagonal (x1,y1)-(x1+dx,y1+dy) in rectwindow w (cursor does not move)plotrecth(w,X=xmin,xmax,expr,{flags=0},{n=0}): plot graph(s) for expr in rectwindow w, where expr is scalar for a single non-parametric plot, and a vector otherwise. If plotting is parametric, its length should be even and pairs of entries give points coordinates. If not, all entries but the first are y-coordinates. Both flags and n are optional. Binary digits of flags mean: 1 parametric plot, 2 recursive plot, 4 do not rescale w, 8 omit x-axis, 16 omit y-axis, 32 omit frame, 64 do not join points, 128 plot both lines and points. n specifies the number of reference points on the graph (0=use default value). Returns a vector for the bounding boxplotrecthraw(w,data,{flags=0}): plot graph(s) for data in rectwindow w, where data is a vector of vectors. If plot is parametric, length of data should be even, and pairs of entries give curves to plot. If not, first entry gives x-coordinate, and the other ones y-coordinates. Admits the same optional flags as plotrecth, save that recursive plot is meaninglessplotrline(w,dx,dy): if the cursor is at (x1,y1), draw a line from (x1,y1) to (x1+dx,y1+dy) (and move the cursor) in the rectwindow wplotrmove(w,dx,dy): move cursor to position (dx,dy) relative to the present position in the rectwindow wplotrpoint(w,dx,dy): draw a point (and move cursor) at position dx,dy relative to present position of the cursor in rectwindow wplotscale(w,x1,x2,y1,y2): scale the coordinates in rectwindow w so that x goes from x1 to x2 and y from y1 to y2 (y2<y1 is allowed)plotstring(w,x,{flags=0}): draw in rectwindow w the string corresponding to x. Bits 1 and 2 of flag regulate horizontal alignment: left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical alignment: bottom if 0, top if 8, v-center if 4. Can insert additional gap between point and string: horizontal if bit 16 is set, vertical if bit 32 is setpsdraw(list, {flag=0}): same as plotdraw, except that the output is a postscript program in psfile (pari.ps by default), and flag!=0 scales the plot from size of the current output device to the standard postscript plotting sizepsploth(X=a,b,expr,{flags=0},{n=0}): same as ploth, except that the output is a postscript program in psfile (pari.ps by default)psplothraw(listx,listy,{flag=0}): same as plothraw, except that the output is a postscript program in psfile (pari.ps by default)as far as I can recall, this function never existedthis function did not changethis function was suppressedx*y  %s is now called *.

    %s%s ===> %s%s

New syntax: elladd(e,z1,z2)matadjoint(x)ellak(e,n)algdep(x,n,dec)nfalgtobasis(nf,x)ellanellap(e,n,1)padicappr(x,a)matcompanion(x,2)nfbasistoalgellbilbinomial(x,y)contfrac(x,lmax)(x,,lmax)factor(x,lim)bnfcertify(bnf)bnfunitbnfclassunit(P)(P,2)(P,1)quadclassunit(D,c1,c2,g)(D,,[c1,c2,g])bnfinitbnfnarrowbnrclass(bnf,ideal)(bnf,ideal,1)(bnf,ideal,2)(D)sizebyte(b,x)(x,b)charpoly(x,y,1)(x,y,2)ellchangecurveellchangepointqfbclassno(x,1)polcoeff(x,s)componentpolcompositum(pol1,pol2)(pol1,pol2,1)qfbcomprawbnrconductor(a1)bnrconductorofchar(bnr,chi)serconvolcorecoredisctruncate(x,&e)polcyclo(n)factorback(fa)bnfdecodemodule(nf,fa)poldegreedenominatorlindep(x,-1)matdetmatdetintmatdiagonalpoldiscbnrdisc(bnr,subgroup)(bnr)(bnr,,,2)bnrdisclist(bnf,list)(bnf,arch,bound)(bnf,bound,arch)(bnf,bound)(bnf,bound,,1)(bnr,subgroup,,1)(bnr,subgroup,,3)sumdiv(n,X,expr)mateigenEulervecextractfactorialfactorcantor(x,p)factorff(x,p,a)factormod(x,,p)polred(x,2,p)factorpadic(x,p,r)(x,p,r,1)(x,l,hint)fibonacciffinit(p,n)polgaloisnfgaloisapply(nf,aut,x)nfgaloisconj(nf)(nf,2)(nf,1)gammahmatsolve(a,b)matsolvemod(M,D,Y)(M,D,Y,1)ellglobalredqfbhclassnoellheight(e,x)(e,x,1)mathnfmathnfmod(x,d)mathnfmodid(x,3)mathessmathilbert(x,y,p)vectorIidealaddtoone(nf,list)(nf,x,y)idealappr(nf,x,1)idealdiv(nf,x,y,1)idealhnfidealinvideallistarch(nf,list,arch)ideallist(nf,list,2)(nf,list,3)(nf,bound)(nf,bound,1)idealred(nf,x,vdir)idealmulidealpowidealtwoelt(nf,x,a)matidmatimagematimagecomplincgam(s,x,y)matindexrankvecsort(x,,1)(pol)ellinitzetakinitintformalmatintersectintnum(x=a,b,s)(x=a,b,s,1)(x=a,b,s,2)(x=a,b,s,3)matinverseimagematisdiagonalisfundamentalnfisidealnfisincl(nf1,nf2)(nf1,nf2,1)polisirreduciblenfisisomellisoncurvebnfisprincipal(bnf,x)(bnf,x,0)(bnf,x,2)(bnf,x,3)bnrisprincipalispseudoprimesqrtintsetissetissquarefreebnfisunitqfjacobibesseljh(n,x)elljbesselk(nu,x)(nu,x,1)matkermatkerintkroneckerzetak(nfz,s)(nfz,s,1)serlaplacepollegendre(x,,2)qflll(x,8)qflllgram(x,4)(x,5)elllocalred(e)elllseries(e,s,N,A)(e,s,A)bnfmake(sbnf)Mat(x,y,z)ellheightmatrixmatrixqz(x,-2)idealmin(nf,ix,vdir)qfminim(x,bound,maxnum)(x,bound)(x,bound,,1)Modgcdmoebiusnfeltdiv(nf,a,b)nfeltdiveucnfeltdivremnfhnfnfhnfmod(nf,x,detx)nfeltmodnfeltmulnfeltpow(nf,a,k)nfeltreduce(nf,a,id)nfsnfnfeltval(nf,a,pr)qfbnucomp(x,y,l)numeratorqfbnupow(x,n)Oellordinateznorderellorderpolredordmatpascalqfperfection(a)numtoperm(n,k)permtonum(vect)qfbprimeformeulerphiPicontfracpnqnellztopoint(e,z)polinterpolate(xa,ya,x)(xa,ya,p)polredabsPol(x,v)polylog(m,x)(m,x,1)(m,x,2)(m,x,3)Polrevpolzagier(n,m)ellpow(e,x,n)qfbpowrawidealprimedec(nf,p)znprimrootidealprincipalideleprincipalprod(x,X=a,b,expr)(X=a,b,expr,x)prodinf(X=a,expr)(X=a,expr,1)Qfb(a,b,c)(a,b,c,d)matrankbnrclassnobnrclassnolist(bnf,liste)polrecipqfbred(x,2,,d)poldiscreduced(f)quadregulatorpolresultantserreverse(x,3,,d)roundrnfdisc(nf,pol)rnfequation(nf,pol,1)rnfhnfbasis(bnf,order)polrootsmod(x,p,1)polrootspadicpolrootsnfrootsof1SerSetsigma(k,x)(x,k)qfsignbnfsignunitsizedigit(x,0)matsnfqfgaussredpolsturm(x,a,b)polsubcyclo(p,d)ellsub(e,a,b)sumsumaltsumposmatsupplementpolsylvestermatrixelltaniyamapoltchebiteichmullerelltorsmattransposepoltschirnhausquadunitVecvectorvellwpweberellpointtoz(e,P)ideallog(nf,x,bid)idealstar(nf,I)(nf,id)(nf,id,1)(nf,id,2)(w,c)(w)(list)(w,x,y)(w,x2,y2)(X=a,b,expr)(X=a,b,expr,1)(listx,listy)printpprintp1(w,dx,dy)plotrlines(w,dx,dy,1)plotrpoints(w,x1,x2,y1,y2)(realprecision,n)(seriesprecision,n)(x,t)(w,x)printtex
  *** X fatal error: %s
no X server9x15cannot open 9x15 fontrectplotWM_DELETE_WINDOWWM_PROTOCOLSlost display on %sblackbluevioletredgreengreygainsboroO{?SKGo'>A@?l=I>CEEE$D$D(CCCC@@@incorrect rectwindow number in graphic function (%ld not in [0, %ld])you must initialize the rectwindow firstincorrect dimensions in initrect%ld %ld m %ld %ld l %ld %ld l %ld %ld l closepath
%%!
50 50 translate
/p {moveto 0 2 rlineto 2 0 rlineto 0 -2 rlineto closepath fill} def
/l {lineto} def
/m {moveto} def
/Times-Roman findfont %ld scalefont setfont
%g %g scale
) %ld %ld m 90 rotate show -90 rotate
incorrect number of components in rectdrawmulti-curves cannot be plot recursivelyinconsistent data in rectplothinToo few points (%ld) for spline plotThis is not a valid color%ld %ld p
%ld %ld m
stroke
%ld %ld m %ld %ld l
postscriptstroke showpage
(\)(%s%9.*g%s           %10s%-9.7g%*.7g
not a vector in rectdrawflag PLOT_PARAMETRIC ignorednot a row vector in ploth%.5gsingle vector in gtodblListrectlinesrectpoints?8??0@MbP?@?$@&.>?;ЗИ 8P`h`p@H` Х@(`@x@й	 	08	PP	мx		0	P		@
 
X
0
@
 
P8Px00` p8Xp@Pp
8
PX
p


P
`
@HP`@@P0`Hpp@p@(Hhp@
0
X
p @` (`@ Xpp`0H`x( Hp!p$%&@'''('Pp(x(**+++(.P0x8>A  B@ Ch0CC`KQQ0T0VX@WxWPXX`YY@[8P_p`_p___pPp(`@@P8@`pxp0 HhzRx$pn@AC
BKzRx?D4ȑJL TAlN 8N $JașșcU  AAD ,BDA ,L BPB A(A0|N8{JL rJL +AAG 4$BBB B(A0D8G4\BBE B(A0A8G6DNJL D4BII I(G0A8KpPJQ0<KTȰ<Hl H$qBEA A(D0P!Dh,S xA_A$ȴBAA D`<06N 4TXBEB B(A0D8G4 BBB B(D0A8DP4	BBB B(A0I8D@$pJ^P$$(JbLyADplN $BAA D0+AHAAG $xBAA Dp$B< "AT8l0"X0@6hp:A[L` ePAAG 44wBEE E(A0A8D@l@BAD AhBFA $4 BBB H(A0A8D@h,`N 4D*BBB B(A0A8D@|
ADD hJQ0^ERG0^JL 4	XBEB B(A0A8D@L	 d	$|	J^@	=C$	 J]@	C4	BBB E(A0D8G$4
hBEA A(G0\
6[L0|
0vJQ0$
nJ^@
0A
JL $
JMT$,D$<{BEL D(D0$d{BEL D(D0`,Dx,D3AP,AL,D>\>tGmBFH 4@BEB B(A0A8G
3D,
5ED
PJG d
(,A|
@uN 
uN 4
.BEB B(D0A8DP4
	)BEE B(D0A8LP
AAG <
JQ0\pRBHA $|jBDA G0$BDA G0$BDA G0AAG0D@,@9D0Dh$\pGBED A(D0$|BND A(G02A$JMT$BEK G(G0,DD$\Ja$hJMT40BBB B(A0A8G4!BBB B(A0A8D4'BBBE E(D0A8D@T*NAFG $t*TQ@++P\G 4+BBB B(A0A8G3<b@,9D9tb@$d;rWQ`P>AGG >AGG  ?AGG ?AGG ?AGG ,`@AGG L@^JQ@4lBBBB B(A0D8DE
E
E	E4EnBLB B(A0A8J<UFBPG 4\ V<BBB B(A0A8G$(fJ[`f6D f>D g:D (g:D Pg7D 44xgBBB B(D0K8D$llJMQ`l'l(m@JG $(mJMQPoJL $,0pJ^P$TqJ^P|sAGG tAGG <ACACAMAXAXA\AbAbAhAoAoAyAAAAbAbAAbAbAAbAAAAAAXAXAAXAXAAXAAAAAACACAAAAAAAA
A
AAAA#AAA+A8A<A+A8ABA+A8A8AHAVAbAqA8A<AqA8ABAqA8A8AyAAAAAAAAAAAAHAAAAXAXAAXAXAAAAAAAAAAAAAAAAAAAAXAXAAXAAAAAAAA$AAA.A<A<A.A<AHAVAAAaAnAnAsAAAAAAAXAAAXAAAXAAAAAAAAAAAAXAXAAXAXAAXA
AAXAXAAXAAAXAXA"AXAXA.AXAXAAXAXAAXAA6A>A>A6AMASA]AiAiA]AtAA]AAA]AAA6A>AA6A>AAAAAAAAAXAXAAAAAAAAXAXAAAAA'A'A/AAAAA9AAA9A@AA9A@AAGAOA[AcAAmAXAAmAXAxAXAXAAAAAXAXAAAAAAAAAAAAAAXAXAAAAAAAAAAAAAAXAXAA)A)AA)A/A7AXAXA7AXAA>AHAHANAHAHA7AXAZA`AXAXAkAAAhAAAkAsAsA{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA(A5A>A>AJAAASAAA\AhAhAqAAAwAXAXAwAXAAAXAXAAAAAXAXAAXAArAAArAXAArAXAZAAXAXAAXAXAAAAAAAAAAAAAAAAAAA-AXAXA;AXAXAIAAASAAASA\AfArAXAXAAAAAAAA)A)AAAAAAAAAAAAAAAAAXAXAAXAXAAXAXAAXAXA	AAAAXAXAA%A%A+AXAXA0A8A8A0A8A?AHAXAXAHAXAAOAXAXAOAXAAYAAAcAiAqA{AXAXAAAAAXAAAXAAAXAXAAXAAAXAXAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAA4AXAXAAAA4AXAAAAAAAAAXAXAAAAA)A)AAA
AAAA#A,A,A9AAAAA9ARA\AiAAAiAsAAmAAAqAAAyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA#AXAXA-A6A6A<AXAXA>A)A)AJAXAXARA)A)A[AXAXAeAAAoA|A|AAAAAAAAAAAXAXAAAAAXAXAAAAAAA@AXAAAXAAAXAAAXAAAXAA'mAXAXAA
A
AAAAAA&AAA.A6A
A
A=AGAGAMATATA\A6A6A\mA6A6AfAtAtA{AAAAAAAAAAAAAAAAAAAAAAXAXAAAAAAA+AXAXA4AXAXA4AXAXA4AHA;ADASASAWAXAXAeAAAeAAArAXAXA4AXAA4AHA}AAXAAAAAAAAAAAAAAAAAA[A[AAXAXAAAAAXAAAXAAA
A
AAXAXA
AAAAXAXA#AAA/AAA/AXAXAAXAAqAXAZAAXAAAXA9AAXAA@AXAA@AXAZA?AXAXA?AXAA?AXAA?AXAAAXAXAFAXAXAmAAAQAXAXAQAZAZAbAnAnAtA{A{AAAAAAAAAAAXAXAAAAAAAAAAAXAXAAAAAXAXAAXAXAAXAXAAXAXAAXAXAAXAAAXAA	AAAAAAAXAXAAXAAA)A)A/A8A8ACAMAMACATA\ACATAfA*AAA;ApApAYAvAvAdAzAzAAAAAvAvAAAAAAAŦAAA)AAA)AAAΦAAAΦAAApAzAzAwAAAwAAAAAAAXAXAAXAXAAAAAXAXA3AAAAAA=AAAGAAAAAARAAAlAA	AlAAAA/A/A\A5A5A;AXAXA	<[8`@
$iA0@/@H@
-b K@C@8	oC@oo@@@)bb`@r`@`@`@`@`@`@`@`@`@a@a@"a@2a@Ba@Ra@ba@ra@a@a@a@a@a@a@a@a@b@b@"b@2b@Bb@Rb@bb@rb@b@b@b@b@b@b@b@b@c@c@"c@2c@Bc@Rc@bc@rc@c@c@c@c@c@c@c@c@d@d@"d@2d@Bd@Rd@bd@rd@d@d@d@d@d@d@d@d@e@e@"e@2e@Be@Re@be@re@e@e@e@e@e@e@e@e@f@f@"f@2f@Bf@Rf@bf@rf@f@f@f@f@f@f@f@f@g@g@"g@2g@Bg@Rg@bg@rg@g@g@g@g@g@g@g@g@h@h@"h@2h@Bh@Rh@bh@rh@h@h@h@h@h@h@h@h@i@i@"i@2i@Bi@Ri@bi@ri@i@i@i@i@i@i@i@i@j@j@"j@2j@Bj@Rj@bj@rj@j@j@j@j@j@j@j@j@k@k@"k@2k@Bk@Rk@bk@rk@k@k@k@k@k@k@k@k@l@l@"l@2l@Bl@Rl@bl@rl@l@l@l@l@l@l@l@l@m@m@"m@2m@Bm@Rm@bm@rm@m@m@m@m@m@m@m@m@n@n@"n@2n@Bn@Rn@bn@AamAmAmAjjAmAmAmAmAmAmAmAmAnAnAnAA@iAAA@AxAA@@;AA&kAд@#AAA @
ApAZkAl@AȓAAP@AAA`@'ApAA#phA
+AȔA\A@0APA]A)A
'AAlAla@4AArA`7A
FA0AJA"@
SAAAUj@XAA[A@
dA8AmA#0/A
+A`AA# dA
+AABA#P1A
+AhAAcpA
gAA)A%0ZA
sAAA%YA
sA@AzA%YA
sAAA``A
AAA#@0A
+AxAA#fA
+AțAAp7A
A8AA%pYA

AAA%0YA
AAA0`A
QAA‘Alg@ɑAA͑A|f@ɑA@AÑAk@ɑAAΑAh@ɑAAA#gA
+AA&kA@AA7A#.A
+AȟAA# dA
+AHAAA#0A
+AؠAKA#/A
+A@AA#fA
+AAVA;1A
ՑA@AܑAи@AAA@A0AA @AA`A9A
AAAF @
ApAA|j@ɑAxAA`@pAAAp@AAApA
gAxA*AphA
+APA2AA
dAA;A@
0A8AEA`A
NAЫAYA)A
jA`AdA@7A
mAA)A0ZA
xA8AA``A
QAhAuAP#A
A`AA ,A
AhAA@
dA0AA dA
AXAA@
0AAŦAP1A
+AXAΦAfA
+AA٦A`cA
AxAA@
0AAAgA
+AAAGA
A(AA`A
+AA3A.A
+A(A=A0A
+AAGA/A
+A ARA1A
ՑAA\AA
gA0ApAP7A
mAAwApYA

AAA0`A
QAAAAAA7AAAA Mb$FreeBSD: release/9.1.0/lib/csu/amd64/crt1.c 216338 2010-12-09 21:31:21Z dim $$FreeBSD: release/9.1.0/lib/csu/common/crtbrand.c 217375 2011-01-13 20:44:31Z dim $GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]$FreeBSD: release/9.1.0/lib/csu/amd64/crti.S 217105 2011-01-07 16:07:51Z kib $GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]GCC: (GNU) 4.2.1 20070831 patched [FreeBSD]$FreeBSD: release/9.1.0/lib/csu/amd64/crtn.S 217105 2011-01-07 16:07:51Z kib $.shstrtab.interp.note.ABI-tag.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.ctors.dtors.jcr.data.rel.ro.dynamic.got.got.plt.data.bss.comment@@!0@0
'H@H#//@/7o@@@DoC@CPSC@C8] K@ Kg8`@8`bL`@L` mpn@pns$iA$iy@iA@inAAaaaa4 @)b@)0+b0+h-b- 4b4 `JbHJp HJMM

Man Man