Current Path : /compat/linux/proc/68247/cwd/usr/src/lib/libkvm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/cwd/usr/src/lib/libkvm/kvm_ia64.c |
/* $FreeBSD: release/9.1.0/lib/libkvm/kvm_ia64.c 224680 2011-08-06 15:59:54Z marcel $ */ /* $NetBSD: kvm_alpha.c,v 1.7.2.1 1997/11/02 20:34:26 mellon Exp $ */ /* * Copyright (c) 1994, 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Chris G. Demetriou * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #include <sys/types.h> #include <sys/elf64.h> #include <sys/mman.h> #include <machine/atomic.h> #include <machine/bootinfo.h> #include <machine/pte.h> #include <kvm.h> #include <limits.h> #include <stdlib.h> #include <unistd.h> #include "kvm_private.h" #define REGION_BASE(n) (((uint64_t)(n)) << 61) #define REGION_ADDR(x) ((x) & ((1LL<<61)-1LL)) #define NKPTEPG(ps) ((ps) / sizeof(struct ia64_lpte)) #define NKPTEDIR(ps) ((ps) >> 3) #define KPTE_PTE_INDEX(va,ps) (((va)/(ps)) % NKPTEPG(ps)) #define KPTE_DIR0_INDEX(va,ps) ((((va)/(ps)) / NKPTEPG(ps)) / NKPTEDIR(ps)) #define KPTE_DIR1_INDEX(va,ps) ((((va)/(ps)) / NKPTEPG(ps)) % NKPTEDIR(ps)) #define PBVM_BASE 0x9ffc000000000000UL #define PBVM_PGSZ (64 * 1024) struct vmstate { void *mmapbase; size_t mmapsize; size_t pagesize; u_long kptdir; u_long *pbvm_pgtbl; u_int pbvm_pgtblsz; }; /* * Map the ELF headers into the process' address space. We do this in two * steps: first the ELF header itself and using that information the whole * set of headers. */ static int _kvm_maphdrs(kvm_t *kd, size_t sz) { struct vmstate *vm = kd->vmst; /* munmap() previous mmap(). */ if (vm->mmapbase != NULL) { munmap(vm->mmapbase, vm->mmapsize); vm->mmapbase = NULL; } vm->mmapsize = sz; vm->mmapbase = mmap(NULL, sz, PROT_READ, MAP_PRIVATE, kd->pmfd, 0); if (vm->mmapbase == MAP_FAILED) { _kvm_err(kd, kd->program, "cannot mmap corefile"); return (-1); } return (0); } /* * Translate a physical memory address to a file-offset in the crash-dump. */ static size_t _kvm_pa2off(kvm_t *kd, uint64_t pa, off_t *ofs, size_t pgsz) { Elf64_Ehdr *e = kd->vmst->mmapbase; Elf64_Phdr *p = (Elf64_Phdr*)((char*)e + e->e_phoff); int n = e->e_phnum; if (pa != REGION_ADDR(pa)) { _kvm_err(kd, kd->program, "internal error"); return (0); } while (n && (pa < p->p_paddr || pa >= p->p_paddr + p->p_memsz)) p++, n--; if (n == 0) return (0); *ofs = (pa - p->p_paddr) + p->p_offset; if (pgsz == 0) return (p->p_memsz - (pa - p->p_paddr)); return (pgsz - ((size_t)pa & (pgsz - 1))); } static ssize_t _kvm_read_phys(kvm_t *kd, uint64_t pa, void *buf, size_t bufsz) { off_t ofs; size_t sz; sz = _kvm_pa2off(kd, pa, &ofs, 0); if (sz < bufsz) return ((ssize_t)sz); if (lseek(kd->pmfd, ofs, 0) == -1) return (-1); return (read(kd->pmfd, buf, bufsz)); } void _kvm_freevtop(kvm_t *kd) { struct vmstate *vm = kd->vmst; if (vm->pbvm_pgtbl != NULL) free(vm->pbvm_pgtbl); if (vm->mmapbase != NULL) munmap(vm->mmapbase, vm->mmapsize); free(vm); kd->vmst = NULL; } int _kvm_initvtop(kvm_t *kd) { struct bootinfo bi; struct nlist nl[2]; uint64_t va; Elf64_Ehdr *ehdr; size_t hdrsz; ssize_t sz; kd->vmst = (struct vmstate *)_kvm_malloc(kd, sizeof(*kd->vmst)); if (kd->vmst == NULL) { _kvm_err(kd, kd->program, "cannot allocate vm"); return (-1); } kd->vmst->pagesize = getpagesize(); if (_kvm_maphdrs(kd, sizeof(Elf64_Ehdr)) == -1) return (-1); ehdr = kd->vmst->mmapbase; hdrsz = ehdr->e_phoff + ehdr->e_phentsize * ehdr->e_phnum; if (_kvm_maphdrs(kd, hdrsz) == -1) return (-1); /* * Load the PBVM page table. We need this to resolve PBVM addresses. * The PBVM page table is obtained from the bootinfo structure, of * which the physical address is given to us in e_entry. If e_entry * is 0, then this is assumed to be a pre-PBVM kernel. */ if (ehdr->e_entry != 0) { sz = _kvm_read_phys(kd, ehdr->e_entry, &bi, sizeof(bi)); if (sz != sizeof(bi)) { _kvm_err(kd, kd->program, "cannot read bootinfo from PA %#lx", ehdr->e_entry); return (-1); } if (bi.bi_magic != BOOTINFO_MAGIC) { _kvm_err(kd, kd->program, "invalid bootinfo"); return (-1); } kd->vmst->pbvm_pgtbl = _kvm_malloc(kd, bi.bi_pbvm_pgtblsz); if (kd->vmst->pbvm_pgtbl == NULL) { _kvm_err(kd, kd->program, "cannot allocate page table"); return (-1); } kd->vmst->pbvm_pgtblsz = bi.bi_pbvm_pgtblsz; sz = _kvm_read_phys(kd, bi.bi_pbvm_pgtbl, kd->vmst->pbvm_pgtbl, bi.bi_pbvm_pgtblsz); if (sz != bi.bi_pbvm_pgtblsz) { _kvm_err(kd, kd->program, "cannot read page table from PA %#lx", bi.bi_pbvm_pgtbl); return (-1); } } else { kd->vmst->pbvm_pgtbl = NULL; kd->vmst->pbvm_pgtblsz = 0; } /* * At this point we've got enough information to use kvm_read() for * direct mapped (ie region 6 and region 7) address, such as symbol * addresses/values. */ nl[0].n_name = "ia64_kptdir"; nl[1].n_name = 0; if (kvm_nlist(kd, nl) != 0) { _kvm_err(kd, kd->program, "bad namelist"); return (-1); } if (kvm_read(kd, (nl[0].n_value), &va, sizeof(va)) != sizeof(va)) { _kvm_err(kd, kd->program, "cannot read kptdir"); return (-1); } if (va < REGION_BASE(6)) { _kvm_err(kd, kd->program, "kptdir is itself virtual"); return (-1); } kd->vmst->kptdir = va; return (0); } int _kvm_kvatop(kvm_t *kd, u_long va, off_t *ofs) { struct ia64_lpte pte; uint64_t pa, pgaddr, pt0addr, pt1addr; size_t pgno, pgsz, pt0no, pt1no; if (va >= REGION_BASE(6)) { /* Regions 6 and 7: direct mapped. */ pa = REGION_ADDR(va); return (_kvm_pa2off(kd, pa, ofs, 0)); } else if (va >= REGION_BASE(5)) { /* Region 5: Kernel Virtual Memory. */ va = REGION_ADDR(va); pgsz = kd->vmst->pagesize; pt0no = KPTE_DIR0_INDEX(va, pgsz); pt1no = KPTE_DIR1_INDEX(va, pgsz); pgno = KPTE_PTE_INDEX(va, pgsz); if (pt0no >= NKPTEDIR(pgsz)) goto fail; pt0addr = kd->vmst->kptdir + (pt0no << 3); if (kvm_read(kd, pt0addr, &pt1addr, 8) != 8) goto fail; if (pt1addr == 0) goto fail; pt1addr += pt1no << 3; if (kvm_read(kd, pt1addr, &pgaddr, 8) != 8) goto fail; if (pgaddr == 0) goto fail; pgaddr += pgno * sizeof(pte); if (kvm_read(kd, pgaddr, &pte, sizeof(pte)) != sizeof(pte)) goto fail; if (!(pte.pte & PTE_PRESENT)) goto fail; pa = (pte.pte & PTE_PPN_MASK) + (va & (pgsz - 1)); return (_kvm_pa2off(kd, pa, ofs, pgsz)); } else if (va >= PBVM_BASE) { /* Region 4: Pre-Boot Virtual Memory (PBVM). */ va -= PBVM_BASE; pgsz = PBVM_PGSZ; pt0no = va / pgsz; if (pt0no >= (kd->vmst->pbvm_pgtblsz >> 3)) goto fail; pt0addr = kd->vmst->pbvm_pgtbl[pt0no]; if (!(pt0addr & PTE_PRESENT)) goto fail; pa = (pt0addr & PTE_PPN_MASK) + va % pgsz; return (_kvm_pa2off(kd, pa, ofs, pgsz)); } fail: _kvm_err(kd, kd->program, "invalid kernel virtual address"); *ofs = ~0UL; return (0); }