Current Path : /compat/linux/proc/68247/root/compat/linux/proc/68247/root/sys/dev/kbd/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/compat/linux/proc/68247/root/sys/dev/kbd/kbd.c |
/*- * Copyright (c) 1999 Kazutaka YOKOTA <yokota@zodiac.mech.utsunomiya-u.ac.jp> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer as * the first lines of this file unmodified. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/kbd/kbd.c 224126 2011-07-17 08:19:19Z ed $"); #include "opt_kbd.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/conf.h> #include <sys/fcntl.h> #include <sys/poll.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/selinfo.h> #include <sys/sysctl.h> #include <sys/uio.h> #include <sys/kbio.h> #include <dev/kbd/kbdreg.h> #define KBD_INDEX(dev) dev2unit(dev) #define KB_QSIZE 512 #define KB_BUFSIZE 64 typedef struct genkbd_softc { int gkb_flags; /* flag/status bits */ #define KB_ASLEEP (1 << 0) struct selinfo gkb_rsel; char gkb_q[KB_QSIZE]; /* input queue */ unsigned int gkb_q_start; unsigned int gkb_q_length; } genkbd_softc_t; static SLIST_HEAD(, keyboard_driver) keyboard_drivers = SLIST_HEAD_INITIALIZER(keyboard_drivers); SET_DECLARE(kbddriver_set, const keyboard_driver_t); /* local arrays */ /* * We need at least one entry each in order to initialize a keyboard * for the kernel console. The arrays will be increased dynamically * when necessary. */ static int keyboards = 1; static keyboard_t *kbd_ini; static keyboard_t **keyboard = &kbd_ini; static keyboard_switch_t *kbdsw_ini; keyboard_switch_t **kbdsw = &kbdsw_ini; static int keymap_restrict_change; SYSCTL_NODE(_hw, OID_AUTO, kbd, CTLFLAG_RD, 0, "kbd"); SYSCTL_INT(_hw_kbd, OID_AUTO, keymap_restrict_change, CTLFLAG_RW, &keymap_restrict_change, 0, "restrict ability to change keymap"); #define ARRAY_DELTA 4 static int kbd_realloc_array(void) { keyboard_t **new_kbd; keyboard_switch_t **new_kbdsw; int newsize; int s; s = spltty(); newsize = ((keyboards + ARRAY_DELTA)/ARRAY_DELTA)*ARRAY_DELTA; new_kbd = malloc(sizeof(*new_kbd)*newsize, M_DEVBUF, M_NOWAIT|M_ZERO); if (new_kbd == NULL) { splx(s); return (ENOMEM); } new_kbdsw = malloc(sizeof(*new_kbdsw)*newsize, M_DEVBUF, M_NOWAIT|M_ZERO); if (new_kbdsw == NULL) { free(new_kbd, M_DEVBUF); splx(s); return (ENOMEM); } bcopy(keyboard, new_kbd, sizeof(*keyboard)*keyboards); bcopy(kbdsw, new_kbdsw, sizeof(*kbdsw)*keyboards); if (keyboards > 1) { free(keyboard, M_DEVBUF); free(kbdsw, M_DEVBUF); } keyboard = new_kbd; kbdsw = new_kbdsw; keyboards = newsize; splx(s); if (bootverbose) printf("kbd: new array size %d\n", keyboards); return (0); } /* * Low-level keyboard driver functions * Keyboard subdrivers, such as the AT keyboard driver and the USB keyboard * driver, call these functions to initialize the keyboard_t structure * and register it to the virtual keyboard driver `kbd'. */ /* initialize the keyboard_t structure */ void kbd_init_struct(keyboard_t *kbd, char *name, int type, int unit, int config, int port, int port_size) { kbd->kb_flags = KB_NO_DEVICE; /* device has not been found */ kbd->kb_name = name; kbd->kb_type = type; kbd->kb_unit = unit; kbd->kb_config = config & ~KB_CONF_PROBE_ONLY; kbd->kb_led = 0; /* unknown */ kbd->kb_io_base = port; kbd->kb_io_size = port_size; kbd->kb_data = NULL; kbd->kb_keymap = NULL; kbd->kb_accentmap = NULL; kbd->kb_fkeytab = NULL; kbd->kb_fkeytab_size = 0; kbd->kb_delay1 = KB_DELAY1; /* these values are advisory only */ kbd->kb_delay2 = KB_DELAY2; kbd->kb_count = 0L; bzero(kbd->kb_lastact, sizeof(kbd->kb_lastact)); } void kbd_set_maps(keyboard_t *kbd, keymap_t *keymap, accentmap_t *accmap, fkeytab_t *fkeymap, int fkeymap_size) { kbd->kb_keymap = keymap; kbd->kb_accentmap = accmap; kbd->kb_fkeytab = fkeymap; kbd->kb_fkeytab_size = fkeymap_size; } /* declare a new keyboard driver */ int kbd_add_driver(keyboard_driver_t *driver) { if (SLIST_NEXT(driver, link)) return (EINVAL); SLIST_INSERT_HEAD(&keyboard_drivers, driver, link); return (0); } int kbd_delete_driver(keyboard_driver_t *driver) { SLIST_REMOVE(&keyboard_drivers, driver, keyboard_driver, link); SLIST_NEXT(driver, link) = NULL; return (0); } /* register a keyboard and associate it with a function table */ int kbd_register(keyboard_t *kbd) { const keyboard_driver_t **list; const keyboard_driver_t *p; keyboard_t *mux; keyboard_info_t ki; int index; mux = kbd_get_keyboard(kbd_find_keyboard("kbdmux", -1)); for (index = 0; index < keyboards; ++index) { if (keyboard[index] == NULL) break; } if (index >= keyboards) { if (kbd_realloc_array()) return (-1); } kbd->kb_index = index; KBD_UNBUSY(kbd); KBD_VALID(kbd); kbd->kb_active = 0; /* disabled until someone calls kbd_enable() */ kbd->kb_token = NULL; kbd->kb_callback.kc_func = NULL; kbd->kb_callback.kc_arg = NULL; SLIST_FOREACH(p, &keyboard_drivers, link) { if (strcmp(p->name, kbd->kb_name) == 0) { keyboard[index] = kbd; kbdsw[index] = p->kbdsw; if (mux != NULL) { bzero(&ki, sizeof(ki)); strcpy(ki.kb_name, kbd->kb_name); ki.kb_unit = kbd->kb_unit; (void)kbdd_ioctl(mux, KBADDKBD, (caddr_t) &ki); } return (index); } } SET_FOREACH(list, kbddriver_set) { p = *list; if (strcmp(p->name, kbd->kb_name) == 0) { keyboard[index] = kbd; kbdsw[index] = p->kbdsw; if (mux != NULL) { bzero(&ki, sizeof(ki)); strcpy(ki.kb_name, kbd->kb_name); ki.kb_unit = kbd->kb_unit; (void)kbdd_ioctl(mux, KBADDKBD, (caddr_t) &ki); } return (index); } } return (-1); } int kbd_unregister(keyboard_t *kbd) { int error; int s; if ((kbd->kb_index < 0) || (kbd->kb_index >= keyboards)) return (ENOENT); if (keyboard[kbd->kb_index] != kbd) return (ENOENT); s = spltty(); if (KBD_IS_BUSY(kbd)) { error = (*kbd->kb_callback.kc_func)(kbd, KBDIO_UNLOADING, kbd->kb_callback.kc_arg); if (error) { splx(s); return (error); } if (KBD_IS_BUSY(kbd)) { splx(s); return (EBUSY); } } KBD_INVALID(kbd); keyboard[kbd->kb_index] = NULL; kbdsw[kbd->kb_index] = NULL; splx(s); return (0); } /* find a funciton table by the driver name */ keyboard_switch_t *kbd_get_switch(char *driver) { const keyboard_driver_t **list; const keyboard_driver_t *p; SLIST_FOREACH(p, &keyboard_drivers, link) { if (strcmp(p->name, driver) == 0) return (p->kbdsw); } SET_FOREACH(list, kbddriver_set) { p = *list; if (strcmp(p->name, driver) == 0) return (p->kbdsw); } return (NULL); } /* * Keyboard client functions * Keyboard clients, such as the console driver `syscons' and the keyboard * cdev driver, use these functions to claim and release a keyboard for * exclusive use. */ /* * find the keyboard specified by a driver name and a unit number * starting at given index */ int kbd_find_keyboard2(char *driver, int unit, int index) { int i; if ((index < 0) || (index >= keyboards)) return (-1); for (i = index; i < keyboards; ++i) { if (keyboard[i] == NULL) continue; if (!KBD_IS_VALID(keyboard[i])) continue; if (strcmp("*", driver) && strcmp(keyboard[i]->kb_name, driver)) continue; if ((unit != -1) && (keyboard[i]->kb_unit != unit)) continue; return (i); } return (-1); } /* find the keyboard specified by a driver name and a unit number */ int kbd_find_keyboard(char *driver, int unit) { return (kbd_find_keyboard2(driver, unit, 0)); } /* allocate a keyboard */ int kbd_allocate(char *driver, int unit, void *id, kbd_callback_func_t *func, void *arg) { int index; int s; if (func == NULL) return (-1); s = spltty(); index = kbd_find_keyboard(driver, unit); if (index >= 0) { if (KBD_IS_BUSY(keyboard[index])) { splx(s); return (-1); } keyboard[index]->kb_token = id; KBD_BUSY(keyboard[index]); keyboard[index]->kb_callback.kc_func = func; keyboard[index]->kb_callback.kc_arg = arg; kbdd_clear_state(keyboard[index]); } splx(s); return (index); } int kbd_release(keyboard_t *kbd, void *id) { int error; int s; s = spltty(); if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) { error = EINVAL; } else if (kbd->kb_token != id) { error = EPERM; } else { kbd->kb_token = NULL; KBD_UNBUSY(kbd); kbd->kb_callback.kc_func = NULL; kbd->kb_callback.kc_arg = NULL; kbdd_clear_state(kbd); error = 0; } splx(s); return (error); } int kbd_change_callback(keyboard_t *kbd, void *id, kbd_callback_func_t *func, void *arg) { int error; int s; s = spltty(); if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) { error = EINVAL; } else if (kbd->kb_token != id) { error = EPERM; } else if (func == NULL) { error = EINVAL; } else { kbd->kb_callback.kc_func = func; kbd->kb_callback.kc_arg = arg; error = 0; } splx(s); return (error); } /* get a keyboard structure */ keyboard_t *kbd_get_keyboard(int index) { if ((index < 0) || (index >= keyboards)) return (NULL); if (keyboard[index] == NULL) return (NULL); if (!KBD_IS_VALID(keyboard[index])) return (NULL); return (keyboard[index]); } /* * The back door for the console driver; configure keyboards * This function is for the kernel console to initialize keyboards * at very early stage. */ int kbd_configure(int flags) { const keyboard_driver_t **list; const keyboard_driver_t *p; SLIST_FOREACH(p, &keyboard_drivers, link) { if (p->configure != NULL) (*p->configure)(flags); } SET_FOREACH(list, kbddriver_set) { p = *list; if (p->configure != NULL) (*p->configure)(flags); } return (0); } #ifdef KBD_INSTALL_CDEV /* * Virtual keyboard cdev driver functions * The virtual keyboard driver dispatches driver functions to * appropriate subdrivers. */ #define KBD_UNIT(dev) dev2unit(dev) static d_open_t genkbdopen; static d_close_t genkbdclose; static d_read_t genkbdread; static d_write_t genkbdwrite; static d_ioctl_t genkbdioctl; static d_poll_t genkbdpoll; static struct cdevsw kbd_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT, .d_open = genkbdopen, .d_close = genkbdclose, .d_read = genkbdread, .d_write = genkbdwrite, .d_ioctl = genkbdioctl, .d_poll = genkbdpoll, .d_name = "kbd", }; int kbd_attach(keyboard_t *kbd) { if (kbd->kb_index >= keyboards) return (EINVAL); if (keyboard[kbd->kb_index] != kbd) return (EINVAL); kbd->kb_dev = make_dev(&kbd_cdevsw, kbd->kb_index, UID_ROOT, GID_WHEEL, 0600, "%s%r", kbd->kb_name, kbd->kb_unit); make_dev_alias(kbd->kb_dev, "kbd%r", kbd->kb_index); kbd->kb_dev->si_drv1 = malloc(sizeof(genkbd_softc_t), M_DEVBUF, M_WAITOK | M_ZERO); printf("kbd%d at %s%d\n", kbd->kb_index, kbd->kb_name, kbd->kb_unit); return (0); } int kbd_detach(keyboard_t *kbd) { if (kbd->kb_index >= keyboards) return (EINVAL); if (keyboard[kbd->kb_index] != kbd) return (EINVAL); free(kbd->kb_dev->si_drv1, M_DEVBUF); destroy_dev(kbd->kb_dev); return (0); } /* * Generic keyboard cdev driver functions * Keyboard subdrivers may call these functions to implement common * driver functions. */ static void genkbd_putc(genkbd_softc_t *sc, char c) { unsigned int p; if (sc->gkb_q_length == KB_QSIZE) return; p = (sc->gkb_q_start + sc->gkb_q_length) % KB_QSIZE; sc->gkb_q[p] = c; sc->gkb_q_length++; } static size_t genkbd_getc(genkbd_softc_t *sc, char *buf, size_t len) { /* Determine copy size. */ if (sc->gkb_q_length == 0) return (0); if (len >= sc->gkb_q_length) len = sc->gkb_q_length; if (len >= KB_QSIZE - sc->gkb_q_start) len = KB_QSIZE - sc->gkb_q_start; /* Copy out data and progress offset. */ memcpy(buf, sc->gkb_q + sc->gkb_q_start, len); sc->gkb_q_start = (sc->gkb_q_start + len) % KB_QSIZE; sc->gkb_q_length -= len; return (len); } static kbd_callback_func_t genkbd_event; static int genkbdopen(struct cdev *dev, int mode, int flag, struct thread *td) { keyboard_t *kbd; genkbd_softc_t *sc; int s; int i; s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { splx(s); return (ENXIO); } i = kbd_allocate(kbd->kb_name, kbd->kb_unit, sc, genkbd_event, (void *)sc); if (i < 0) { splx(s); return (EBUSY); } /* assert(i == kbd->kb_index) */ /* assert(kbd == kbd_get_keyboard(i)) */ /* * NOTE: even when we have successfully claimed a keyboard, * the device may still be missing (!KBD_HAS_DEVICE(kbd)). */ sc->gkb_q_length = 0; splx(s); return (0); } static int genkbdclose(struct cdev *dev, int mode, int flag, struct thread *td) { keyboard_t *kbd; genkbd_softc_t *sc; int s; /* * NOTE: the device may have already become invalid. * kbd == NULL || !KBD_IS_VALID(kbd) */ s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { /* XXX: we shall be forgiving and don't report error... */ } else { kbd_release(kbd, (void *)sc); } splx(s); return (0); } static int genkbdread(struct cdev *dev, struct uio *uio, int flag) { keyboard_t *kbd; genkbd_softc_t *sc; u_char buffer[KB_BUFSIZE]; int len; int error; int s; /* wait for input */ s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { splx(s); return (ENXIO); } while (sc->gkb_q_length == 0) { if (flag & O_NONBLOCK) { splx(s); return (EWOULDBLOCK); } sc->gkb_flags |= KB_ASLEEP; error = tsleep(sc, PZERO | PCATCH, "kbdrea", 0); kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((kbd == NULL) || !KBD_IS_VALID(kbd)) { splx(s); return (ENXIO); /* our keyboard has gone... */ } if (error) { sc->gkb_flags &= ~KB_ASLEEP; splx(s); return (error); } } splx(s); /* copy as much input as possible */ error = 0; while (uio->uio_resid > 0) { len = imin(uio->uio_resid, sizeof(buffer)); len = genkbd_getc(sc, buffer, len); if (len <= 0) break; error = uiomove(buffer, len, uio); if (error) break; } return (error); } static int genkbdwrite(struct cdev *dev, struct uio *uio, int flag) { keyboard_t *kbd; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((kbd == NULL) || !KBD_IS_VALID(kbd)) return (ENXIO); return (ENODEV); } static int genkbdioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td) { keyboard_t *kbd; int error; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((kbd == NULL) || !KBD_IS_VALID(kbd)) return (ENXIO); error = kbdd_ioctl(kbd, cmd, arg); if (error == ENOIOCTL) error = ENODEV; return (error); } static int genkbdpoll(struct cdev *dev, int events, struct thread *td) { keyboard_t *kbd; genkbd_softc_t *sc; int revents; int s; revents = 0; s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { revents = POLLHUP; /* the keyboard has gone */ } else if (events & (POLLIN | POLLRDNORM)) { if (sc->gkb_q_length > 0) revents = events & (POLLIN | POLLRDNORM); else selrecord(td, &sc->gkb_rsel); } splx(s); return (revents); } static int genkbd_event(keyboard_t *kbd, int event, void *arg) { genkbd_softc_t *sc; size_t len; u_char *cp; int mode; u_int c; /* assert(KBD_IS_VALID(kbd)) */ sc = (genkbd_softc_t *)arg; switch (event) { case KBDIO_KEYINPUT: break; case KBDIO_UNLOADING: /* the keyboard is going... */ kbd_release(kbd, (void *)sc); if (sc->gkb_flags & KB_ASLEEP) { sc->gkb_flags &= ~KB_ASLEEP; wakeup(sc); } selwakeuppri(&sc->gkb_rsel, PZERO); return (0); default: return (EINVAL); } /* obtain the current key input mode */ if (kbdd_ioctl(kbd, KDGKBMODE, (caddr_t)&mode)) mode = K_XLATE; /* read all pending input */ while (kbdd_check_char(kbd)) { c = kbdd_read_char(kbd, FALSE); if (c == NOKEY) continue; if (c == ERRKEY) /* XXX: ring bell? */ continue; if (!KBD_IS_BUSY(kbd)) /* the device is not open, discard the input */ continue; /* store the byte as is for K_RAW and K_CODE modes */ if (mode != K_XLATE) { genkbd_putc(sc, KEYCHAR(c)); continue; } /* K_XLATE */ if (c & RELKEY) /* key release is ignored */ continue; /* process special keys; most of them are just ignored... */ if (c & SPCLKEY) { switch (KEYCHAR(c)) { default: /* ignore them... */ continue; case BTAB: /* a backtab: ESC [ Z */ genkbd_putc(sc, 0x1b); genkbd_putc(sc, '['); genkbd_putc(sc, 'Z'); continue; } } /* normal chars, normal chars with the META, function keys */ switch (KEYFLAGS(c)) { case 0: /* a normal char */ genkbd_putc(sc, KEYCHAR(c)); break; case MKEY: /* the META flag: prepend ESC */ genkbd_putc(sc, 0x1b); genkbd_putc(sc, KEYCHAR(c)); break; case FKEY | SPCLKEY: /* a function key, return string */ cp = kbdd_get_fkeystr(kbd, KEYCHAR(c), &len); if (cp != NULL) { while (len-- > 0) genkbd_putc(sc, *cp++); } break; } } /* wake up sleeping/polling processes */ if (sc->gkb_q_length > 0) { if (sc->gkb_flags & KB_ASLEEP) { sc->gkb_flags &= ~KB_ASLEEP; wakeup(sc); } selwakeuppri(&sc->gkb_rsel, PZERO); } return (0); } #endif /* KBD_INSTALL_CDEV */ /* * Generic low-level keyboard functions * The low-level functions in the keyboard subdriver may use these * functions. */ #ifndef KBD_DISABLE_KEYMAP_LOAD static int key_change_ok(struct keyent_t *, struct keyent_t *, struct thread *); static int keymap_change_ok(keymap_t *, keymap_t *, struct thread *); static int accent_change_ok(accentmap_t *, accentmap_t *, struct thread *); static int fkey_change_ok(fkeytab_t *, fkeyarg_t *, struct thread *); #endif int genkbd_commonioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { keymap_t *mapp; okeymap_t *omapp; keyarg_t *keyp; fkeyarg_t *fkeyp; int s; int i, j; int error; s = spltty(); switch (cmd) { case KDGKBINFO: /* get keyboard information */ ((keyboard_info_t *)arg)->kb_index = kbd->kb_index; i = imin(strlen(kbd->kb_name) + 1, sizeof(((keyboard_info_t *)arg)->kb_name)); bcopy(kbd->kb_name, ((keyboard_info_t *)arg)->kb_name, i); ((keyboard_info_t *)arg)->kb_unit = kbd->kb_unit; ((keyboard_info_t *)arg)->kb_type = kbd->kb_type; ((keyboard_info_t *)arg)->kb_config = kbd->kb_config; ((keyboard_info_t *)arg)->kb_flags = kbd->kb_flags; break; case KDGKBTYPE: /* get keyboard type */ *(int *)arg = kbd->kb_type; break; case KDGETREPEAT: /* get keyboard repeat rate */ ((int *)arg)[0] = kbd->kb_delay1; ((int *)arg)[1] = kbd->kb_delay2; break; case GIO_KEYMAP: /* get keyboard translation table */ error = copyout(kbd->kb_keymap, *(void **)arg, sizeof(keymap_t)); splx(s); return (error); case OGIO_KEYMAP: /* get keyboard translation table (compat) */ mapp = kbd->kb_keymap; omapp = (okeymap_t *)arg; omapp->n_keys = mapp->n_keys; for (i = 0; i < NUM_KEYS; i++) { for (j = 0; j < NUM_STATES; j++) omapp->key[i].map[j] = mapp->key[i].map[j]; omapp->key[i].spcl = mapp->key[i].spcl; omapp->key[i].flgs = mapp->key[i].flgs; } return (0); case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table (compat) */ #ifndef KBD_DISABLE_KEYMAP_LOAD mapp = malloc(sizeof *mapp, M_TEMP, M_NOWAIT); if (cmd == OPIO_KEYMAP) { omapp = (okeymap_t *)arg; mapp->n_keys = omapp->n_keys; for (i = 0; i < NUM_KEYS; i++) { for (j = 0; j < NUM_STATES; j++) mapp->key[i].map[j] = omapp->key[i].map[j]; mapp->key[i].spcl = omapp->key[i].spcl; mapp->key[i].flgs = omapp->key[i].flgs; } } else { error = copyin(*(void **)arg, mapp, sizeof *mapp); if (error != 0) { splx(s); free(mapp, M_TEMP); return (error); } } error = keymap_change_ok(kbd->kb_keymap, mapp, curthread); if (error != 0) { splx(s); free(mapp, M_TEMP); return (error); } bzero(kbd->kb_accentmap, sizeof(*kbd->kb_accentmap)); bcopy(mapp, kbd->kb_keymap, sizeof(*kbd->kb_keymap)); free(mapp, M_TEMP); break; #else splx(s); return (ENODEV); #endif case GIO_KEYMAPENT: /* get keyboard translation table entry */ keyp = (keyarg_t *)arg; if (keyp->keynum >= sizeof(kbd->kb_keymap->key) / sizeof(kbd->kb_keymap->key[0])) { splx(s); return (EINVAL); } bcopy(&kbd->kb_keymap->key[keyp->keynum], &keyp->key, sizeof(keyp->key)); break; case PIO_KEYMAPENT: /* set keyboard translation table entry */ #ifndef KBD_DISABLE_KEYMAP_LOAD keyp = (keyarg_t *)arg; if (keyp->keynum >= sizeof(kbd->kb_keymap->key) / sizeof(kbd->kb_keymap->key[0])) { splx(s); return (EINVAL); } error = key_change_ok(&kbd->kb_keymap->key[keyp->keynum], &keyp->key, curthread); if (error != 0) { splx(s); return (error); } bcopy(&keyp->key, &kbd->kb_keymap->key[keyp->keynum], sizeof(keyp->key)); break; #else splx(s); return (ENODEV); #endif case GIO_DEADKEYMAP: /* get accent key translation table */ bcopy(kbd->kb_accentmap, arg, sizeof(*kbd->kb_accentmap)); break; case PIO_DEADKEYMAP: /* set accent key translation table */ #ifndef KBD_DISABLE_KEYMAP_LOAD error = accent_change_ok(kbd->kb_accentmap, (accentmap_t *)arg, curthread); if (error != 0) { splx(s); return (error); } bcopy(arg, kbd->kb_accentmap, sizeof(*kbd->kb_accentmap)); break; #else splx(s); return (ENODEV); #endif case GETFKEY: /* get functionkey string */ fkeyp = (fkeyarg_t *)arg; if (fkeyp->keynum >= kbd->kb_fkeytab_size) { splx(s); return (EINVAL); } bcopy(kbd->kb_fkeytab[fkeyp->keynum].str, fkeyp->keydef, kbd->kb_fkeytab[fkeyp->keynum].len); fkeyp->flen = kbd->kb_fkeytab[fkeyp->keynum].len; break; case SETFKEY: /* set functionkey string */ #ifndef KBD_DISABLE_KEYMAP_LOAD fkeyp = (fkeyarg_t *)arg; if (fkeyp->keynum >= kbd->kb_fkeytab_size) { splx(s); return (EINVAL); } error = fkey_change_ok(&kbd->kb_fkeytab[fkeyp->keynum], fkeyp, curthread); if (error != 0) { splx(s); return (error); } kbd->kb_fkeytab[fkeyp->keynum].len = imin(fkeyp->flen, MAXFK); bcopy(fkeyp->keydef, kbd->kb_fkeytab[fkeyp->keynum].str, kbd->kb_fkeytab[fkeyp->keynum].len); break; #else splx(s); return (ENODEV); #endif default: splx(s); return (ENOIOCTL); } splx(s); return (0); } #ifndef KBD_DISABLE_KEYMAP_LOAD #define RESTRICTED_KEY(key, i) \ ((key->spcl & (0x80 >> i)) && \ (key->map[i] == RBT || key->map[i] == SUSP || \ key->map[i] == STBY || key->map[i] == DBG || \ key->map[i] == PNC || key->map[i] == HALT || \ key->map[i] == PDWN)) static int key_change_ok(struct keyent_t *oldkey, struct keyent_t *newkey, struct thread *td) { int i; /* Low keymap_restrict_change means any changes are OK. */ if (keymap_restrict_change <= 0) return (0); /* High keymap_restrict_change means only root can change the keymap. */ if (keymap_restrict_change >= 2) { for (i = 0; i < NUM_STATES; i++) if (oldkey->map[i] != newkey->map[i]) return priv_check(td, PRIV_KEYBOARD); if (oldkey->spcl != newkey->spcl) return priv_check(td, PRIV_KEYBOARD); if (oldkey->flgs != newkey->flgs) return priv_check(td, PRIV_KEYBOARD); return (0); } /* Otherwise we have to see if any special keys are being changed. */ for (i = 0; i < NUM_STATES; i++) { /* * If either the oldkey or the newkey action is restricted * then we must make sure that the action doesn't change. */ if (!RESTRICTED_KEY(oldkey, i) && !RESTRICTED_KEY(newkey, i)) continue; if ((oldkey->spcl & (0x80 >> i)) == (newkey->spcl & (0x80 >> i)) && oldkey->map[i] == newkey->map[i]) continue; return priv_check(td, PRIV_KEYBOARD); } return (0); } static int keymap_change_ok(keymap_t *oldmap, keymap_t *newmap, struct thread *td) { int keycode, error; for (keycode = 0; keycode < NUM_KEYS; keycode++) { if ((error = key_change_ok(&oldmap->key[keycode], &newmap->key[keycode], td)) != 0) return (error); } return (0); } static int accent_change_ok(accentmap_t *oldmap, accentmap_t *newmap, struct thread *td) { struct acc_t *oldacc, *newacc; int accent, i; if (keymap_restrict_change <= 2) return (0); if (oldmap->n_accs != newmap->n_accs) return priv_check(td, PRIV_KEYBOARD); for (accent = 0; accent < oldmap->n_accs; accent++) { oldacc = &oldmap->acc[accent]; newacc = &newmap->acc[accent]; if (oldacc->accchar != newacc->accchar) return priv_check(td, PRIV_KEYBOARD); for (i = 0; i < NUM_ACCENTCHARS; ++i) { if (oldacc->map[i][0] != newacc->map[i][0]) return priv_check(td, PRIV_KEYBOARD); if (oldacc->map[i][0] == 0) /* end of table */ break; if (oldacc->map[i][1] != newacc->map[i][1]) return priv_check(td, PRIV_KEYBOARD); } } return (0); } static int fkey_change_ok(fkeytab_t *oldkey, fkeyarg_t *newkey, struct thread *td) { if (keymap_restrict_change <= 3) return (0); if (oldkey->len != newkey->flen || bcmp(oldkey->str, newkey->keydef, oldkey->len) != 0) return priv_check(td, PRIV_KEYBOARD); return (0); } #endif /* get a pointer to the string associated with the given function key */ u_char *genkbd_get_fkeystr(keyboard_t *kbd, int fkey, size_t *len) { if (kbd == NULL) return (NULL); fkey -= F_FN; if (fkey > kbd->kb_fkeytab_size) return (NULL); *len = kbd->kb_fkeytab[fkey].len; return (kbd->kb_fkeytab[fkey].str); } /* diagnostic dump */ static char *get_kbd_type_name(int type) { static struct { int type; char *name; } name_table[] = { { KB_84, "AT 84" }, { KB_101, "AT 101/102" }, { KB_OTHER, "generic" }, }; int i; for (i = 0; i < sizeof(name_table)/sizeof(name_table[0]); ++i) { if (type == name_table[i].type) return (name_table[i].name); } return ("unknown"); } void genkbd_diag(keyboard_t *kbd, int level) { if (level > 0) { printf("kbd%d: %s%d, %s (%d), config:0x%x, flags:0x%x", kbd->kb_index, kbd->kb_name, kbd->kb_unit, get_kbd_type_name(kbd->kb_type), kbd->kb_type, kbd->kb_config, kbd->kb_flags); if (kbd->kb_io_base > 0) printf(", port:0x%x-0x%x", kbd->kb_io_base, kbd->kb_io_base + kbd->kb_io_size - 1); printf("\n"); } } #define set_lockkey_state(k, s, l) \ if (!((s) & l ## DOWN)) { \ int i; \ (s) |= l ## DOWN; \ (s) ^= l ## ED; \ i = (s) & LOCK_MASK; \ (void)kbdd_ioctl((k), KDSETLED, (caddr_t)&i); \ } static u_int save_accent_key(keyboard_t *kbd, u_int key, int *accents) { int i; /* make an index into the accent map */ i = key - F_ACC + 1; if ((i > kbd->kb_accentmap->n_accs) || (kbd->kb_accentmap->acc[i - 1].accchar == 0)) { /* the index is out of range or pointing to an empty entry */ *accents = 0; return (ERRKEY); } /* * If the same accent key has been hit twice, produce the accent * char itself. */ if (i == *accents) { key = kbd->kb_accentmap->acc[i - 1].accchar; *accents = 0; return (key); } /* remember the index and wait for the next key */ *accents = i; return (NOKEY); } static u_int make_accent_char(keyboard_t *kbd, u_int ch, int *accents) { struct acc_t *acc; int i; acc = &kbd->kb_accentmap->acc[*accents - 1]; *accents = 0; /* * If the accent key is followed by the space key, * produce the accent char itself. */ if (ch == ' ') return (acc->accchar); /* scan the accent map */ for (i = 0; i < NUM_ACCENTCHARS; ++i) { if (acc->map[i][0] == 0) /* end of table */ break; if (acc->map[i][0] == ch) return (acc->map[i][1]); } /* this char cannot be accented... */ return (ERRKEY); } int genkbd_keyaction(keyboard_t *kbd, int keycode, int up, int *shiftstate, int *accents) { struct keyent_t *key; int state = *shiftstate; int action; int f; int i; i = keycode; f = state & (AGRS | ALKED); if ((f == AGRS1) || (f == AGRS2) || (f == ALKED)) i += ALTGR_OFFSET; key = &kbd->kb_keymap->key[i]; i = ((state & SHIFTS) ? 1 : 0) | ((state & CTLS) ? 2 : 0) | ((state & ALTS) ? 4 : 0); if (((key->flgs & FLAG_LOCK_C) && (state & CLKED)) || ((key->flgs & FLAG_LOCK_N) && (state & NLKED)) ) i ^= 1; if (up) { /* break: key released */ action = kbd->kb_lastact[keycode]; kbd->kb_lastact[keycode] = NOP; switch (action) { case LSHA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = LSH; /* FALL THROUGH */ case LSH: state &= ~SHIFTS1; break; case RSHA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = RSH; /* FALL THROUGH */ case RSH: state &= ~SHIFTS2; break; case LCTRA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = LCTR; /* FALL THROUGH */ case LCTR: state &= ~CTLS1; break; case RCTRA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = RCTR; /* FALL THROUGH */ case RCTR: state &= ~CTLS2; break; case LALTA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = LALT; /* FALL THROUGH */ case LALT: state &= ~ALTS1; break; case RALTA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = RALT; /* FALL THROUGH */ case RALT: state &= ~ALTS2; break; case ASH: state &= ~AGRS1; break; case META: state &= ~METAS1; break; case NLK: state &= ~NLKDOWN; break; case CLK: #ifndef PC98 state &= ~CLKDOWN; #else state &= ~CLKED; i = state & LOCK_MASK; (void)kbdd_ioctl(kbd, KDSETLED, (caddr_t)&i); #endif break; case SLK: state &= ~SLKDOWN; break; case ALK: state &= ~ALKDOWN; break; case NOP: /* release events of regular keys are not reported */ *shiftstate &= ~SHIFTAON; return (NOKEY); } *shiftstate = state & ~SHIFTAON; return (SPCLKEY | RELKEY | action); } else { /* make: key pressed */ action = key->map[i]; state &= ~SHIFTAON; if (key->spcl & (0x80 >> i)) { /* special keys */ if (kbd->kb_lastact[keycode] == NOP) kbd->kb_lastact[keycode] = action; if (kbd->kb_lastact[keycode] != action) action = NOP; switch (action) { /* LOCKING KEYS */ case NLK: set_lockkey_state(kbd, state, NLK); break; case CLK: #ifndef PC98 set_lockkey_state(kbd, state, CLK); #else state |= CLKED; i = state & LOCK_MASK; (void)kbdd_ioctl(kbd, KDSETLED, (caddr_t)&i); #endif break; case SLK: set_lockkey_state(kbd, state, SLK); break; case ALK: set_lockkey_state(kbd, state, ALK); break; /* NON-LOCKING KEYS */ case SPSC: case RBT: case SUSP: case STBY: case DBG: case NEXT: case PREV: case PNC: case HALT: case PDWN: *accents = 0; break; case BTAB: *accents = 0; action |= BKEY; break; case LSHA: state |= SHIFTAON; action = LSH; /* FALL THROUGH */ case LSH: state |= SHIFTS1; break; case RSHA: state |= SHIFTAON; action = RSH; /* FALL THROUGH */ case RSH: state |= SHIFTS2; break; case LCTRA: state |= SHIFTAON; action = LCTR; /* FALL THROUGH */ case LCTR: state |= CTLS1; break; case RCTRA: state |= SHIFTAON; action = RCTR; /* FALL THROUGH */ case RCTR: state |= CTLS2; break; case LALTA: state |= SHIFTAON; action = LALT; /* FALL THROUGH */ case LALT: state |= ALTS1; break; case RALTA: state |= SHIFTAON; action = RALT; /* FALL THROUGH */ case RALT: state |= ALTS2; break; case ASH: state |= AGRS1; break; case META: state |= METAS1; break; case NOP: *shiftstate = state; return (NOKEY); default: /* is this an accent (dead) key? */ *shiftstate = state; if (action >= F_ACC && action <= L_ACC) { action = save_accent_key(kbd, action, accents); switch (action) { case NOKEY: case ERRKEY: return (action); default: if (state & METAS) return (action | MKEY); else return (action); } /* NOT REACHED */ } /* other special keys */ if (*accents > 0) { *accents = 0; return (ERRKEY); } if (action >= F_FN && action <= L_FN) action |= FKEY; /* XXX: return fkey string for the FKEY? */ return (SPCLKEY | action); } *shiftstate = state; return (SPCLKEY | action); } else { /* regular keys */ kbd->kb_lastact[keycode] = NOP; *shiftstate = state; if (*accents > 0) { /* make an accented char */ action = make_accent_char(kbd, action, accents); if (action == ERRKEY) return (action); } if (state & METAS) action |= MKEY; return (action); } } /* NOT REACHED */ }