config root man

Current Path : /compat/linux/proc/68247/root/usr/src/contrib/gdb/gdb/doc/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //compat/linux/proc/68247/root/usr/src/contrib/gdb/gdb/doc/gdb.info-1

This is gdb.info, produced by makeinfo version 4.6 from ./gdb.texinfo.

INFO-DIR-SECTION Software development
START-INFO-DIR-ENTRY
* Gdb: (gdb).                     The GNU debugger.
END-INFO-DIR-ENTRY

   This file documents the GNU debugger GDB.

   This is the Ninth Edition, of `Debugging with GDB: the GNU
Source-Level Debugger' for GDB Version 6.1.1.

   Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Free Software" and "Free Software Needs Free
Documentation", with the Front-Cover Texts being "A GNU Manual," and
with the Back-Cover Texts as in (a) below.

   (a) The Free Software Foundation's Back-Cover Text is: "You have
freedom to copy and modify this GNU Manual, like GNU software.  Copies
published by the Free Software Foundation raise funds for GNU
development."


File: gdb.info,  Node: Top,  Next: Summary,  Prev: (dir),  Up: (dir)

Debugging with GDB
******************

This file describes GDB, the GNU symbolic debugger.

   This is the Ninth Edition, for GDB Version 6.1.1.

   Copyright (C) 1988-2004 Free Software Foundation, Inc.

* Menu:

* Summary::                     Summary of GDB
* Sample Session::              A sample GDB session

* Invocation::                  Getting in and out of GDB
* Commands::                    GDB commands
* Running::                     Running programs under GDB
* Stopping::                    Stopping and continuing
* Stack::                       Examining the stack
* Source::                      Examining source files
* Data::                        Examining data
* Macros::                      Preprocessor Macros
* Tracepoints::                 Debugging remote targets non-intrusively
* Overlays::                    Debugging programs that use overlays

* Languages::                   Using GDB with different languages

* Symbols::                     Examining the symbol table
* Altering::                    Altering execution
* GDB Files::                   GDB files
* Targets::                     Specifying a debugging target
* Remote Debugging::            Debugging remote programs
* Configurations::              Configuration-specific information
* Controlling GDB::             Controlling GDB
* Sequences::                   Canned sequences of commands
* TUI::                         GDB Text User Interface
* Interpreters::		Command Interpreters
* Emacs::                       Using GDB under GNU Emacs
* Annotations::                 GDB's annotation interface.
* GDB/MI::                      GDB's Machine Interface.

* GDB Bugs::                    Reporting bugs in GDB
* Formatting Documentation::    How to format and print GDB documentation

* Command Line Editing::        Command Line Editing
* Using History Interactively:: Using History Interactively
* Installing GDB::              Installing GDB
* Maintenance Commands::        Maintenance Commands
* Remote Protocol::             GDB Remote Serial Protocol
* Agent Expressions::           The GDB Agent Expression Mechanism
* Copying::			GNU General Public License says
                                how you can copy and share GDB
* GNU Free Documentation License::  The license for this documentation
* Index::                       Index


File: gdb.info,  Node: Summary,  Next: Sample Session,  Prev: Top,  Up: Top

Summary of GDB
**************

The purpose of a debugger such as GDB is to allow you to see what is
going on "inside" another program while it executes--or what another
program was doing at the moment it crashed.

   GDB can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

   * Start your program, specifying anything that might affect its
     behavior.

   * Make your program stop on specified conditions.

   * Examine what has happened, when your program has stopped.

   * Change things in your program, so you can experiment with
     correcting the effects of one bug and go on to learn about another.

   You can use GDB to debug programs written in C and C++.  For more
information, see *Note Supported languages: Support.  For more
information, see *Note C and C++: C.

   Support for Modula-2 is partial.  For information on Modula-2, see
*Note Modula-2: Modula-2.

   Debugging Pascal programs which use sets, subranges, file variables,
or nested functions does not currently work.  GDB does not support
entering expressions, printing values, or similar features using Pascal
syntax.

   GDB can be used to debug programs written in Fortran, although it
may be necessary to refer to some variables with a trailing underscore.

   GDB can be used to debug programs written in Objective-C, using
either the Apple/NeXT or the GNU Objective-C runtime.

* Menu:

* Free Software::               Freely redistributable software
* Contributors::                Contributors to GDB


File: gdb.info,  Node: Free Software,  Next: Contributors,  Up: Summary

Free software
=============

GDB is "free software", protected by the GNU General Public License
(GPL).  The GPL gives you the freedom to copy or adapt a licensed
program--but every person getting a copy also gets with it the freedom
to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies.  Typical
software companies use copyrights to limit your freedoms; the Free
Software Foundation uses the GPL to preserve these freedoms.

   Fundamentally, the General Public License is a license which says
that you have these freedoms and that you cannot take these freedoms
away from anyone else.

Free Software Needs Free Documentation
======================================

The biggest deficiency in the free software community today is not in
the software--it is the lack of good free documentation that we can
include with the free software.  Many of our most important programs do
not come with free reference manuals and free introductory texts.
Documentation is an essential part of any software package; when an
important free software package does not come with a free manual and a
free tutorial, that is a major gap.  We have many such gaps today.

   Consider Perl, for instance.  The tutorial manuals that people
normally use are non-free.  How did this come about?  Because the
authors of those manuals published them with restrictive terms--no
copying, no modification, source files not available--which exclude
them from the free software world.

   That wasn't the first time this sort of thing happened, and it was
far from the last.  Many times we have heard a GNU user eagerly
describe a manual that he is writing, his intended contribution to the
community, only to learn that he had ruined everything by signing a
publication contract to make it non-free.

   Free documentation, like free software, is a matter of freedom, not
price.  The problem with the non-free manual is not that publishers
charge a price for printed copies--that in itself is fine.  (The Free
Software Foundation sells printed copies of manuals, too.)  The problem
is the restrictions on the use of the manual.  Free manuals are
available in source code form, and give you permission to copy and
modify.  Non-free manuals do not allow this.

   The criteria of freedom for a free manual are roughly the same as for
free software.  Redistribution (including the normal kinds of
commercial redistribution) must be permitted, so that the manual can
accompany every copy of the program, both on-line and on paper.

   Permission for modification of the technical content is crucial too.
When people modify the software, adding or changing features, if they
are conscientious they will change the manual too--so they can provide
accurate and clear documentation for the modified program.  A manual
that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

   Some kinds of limits on the way modification is handled are
acceptable.  For example, requirements to preserve the original
author's copyright notice, the distribution terms, or the list of
authors, are ok.  It is also no problem to require modified versions to
include notice that they were modified.  Even entire sections that may
not be deleted or changed are acceptable, as long as they deal with
nontechnical topics (like this one).  These kinds of restrictions are
acceptable because they don't obstruct the community's normal use of
the manual.

   However, it must be possible to modify all the _technical_ content
of the manual, and then distribute the result in all the usual media,
through all the usual channels.  Otherwise, the restrictions obstruct
the use of the manual, it is not free, and we need another manual to
replace it.

   Please spread the word about this issue.  Our community continues to
lose manuals to proprietary publishing.  If we spread the word that
free software needs free reference manuals and free tutorials, perhaps
the next person who wants to contribute by writing documentation will
realize, before it is too late, that only free manuals contribute to
the free software community.

   If you are writing documentation, please insist on publishing it
under the GNU Free Documentation License or another free documentation
license.  Remember that this decision requires your approval--you don't
have to let the publisher decide.  Some commercial publishers will use
a free license if you insist, but they will not propose the option; it
is up to you to raise the issue and say firmly that this is what you
want.  If the publisher you are dealing with refuses, please try other
publishers.  If you're not sure whether a proposed license is free,
write to <licensing@gnu.org>.

   You can encourage commercial publishers to sell more free, copylefted
manuals and tutorials by buying them, and particularly by buying copies
from the publishers that paid for their writing or for major
improvements.  Meanwhile, try to avoid buying non-free documentation at
all.  Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom.
Check the history of the book, and try to reward the publishers that
have paid or pay the authors to work on it.

   The Free Software Foundation maintains a list of free documentation
published by other publishers, at
<http://www.fsf.org/doc/other-free-books.html>.


File: gdb.info,  Node: Contributors,  Prev: Free Software,  Up: Summary

Contributors to GDB
===================

Richard Stallman was the original author of GDB, and of many other GNU
programs.  Many others have contributed to its development.  This
section attempts to credit major contributors.  One of the virtues of
free software is that everyone is free to contribute to it; with
regret, we cannot actually acknowledge everyone here.  The file
`ChangeLog' in the GDB distribution approximates a blow-by-blow account.

   Changes much prior to version 2.0 are lost in the mists of time.

     _Plea:_ Additions to this section are particularly welcome.  If you
     or your friends (or enemies, to be evenhanded) have been unfairly
     omitted from this list, we would like to add your names!

   So that they may not regard their many labors as thankless, we
particularly thank those who shepherded GDB through major releases:
Andrew Cagney (releases 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0); Jim Blandy
(release 4.18); Jason Molenda (release 4.17); Stan Shebs (release 4.14);
Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu
Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John
Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases
3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0).

   Richard Stallman, assisted at various times by Peter TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.

   Michael Tiemann is the author of most of the GNU C++ support in GDB,
with significant additional contributions from Per Bothner and Daniel
Berlin.  James Clark wrote the GNU C++ demangler.  Early work on C++
was by Peter TerMaat (who also did much general update work leading to
release 3.0).

   GDB uses the BFD subroutine library to examine multiple object-file
formats; BFD was a joint project of David V.  Henkel-Wallace, Rich
Pixley, Steve Chamberlain, and John Gilmore.

   David Johnson wrote the original COFF support; Pace Willison did the
original support for encapsulated COFF.

   Brent Benson of Harris Computer Systems contributed DWARF 2 support.

   Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
support.  Jean-Daniel Fekete contributed Sun 386i support.  Chris
Hanson improved the HP9000 support.  Noboyuki Hikichi and Tomoyuki
Hasei contributed Sony/News OS 3 support.  David Johnson contributed
Encore Umax support.  Jyrki Kuoppala contributed Altos 3068 support.
Jeff Law contributed HP PA and SOM support.  Keith Packard contributed
NS32K support.  Doug Rabson contributed Acorn Risc Machine support.
Bob Rusk contributed Harris Nighthawk CX-UX support.  Chris Smith
contributed Convex support (and Fortran debugging).  Jonathan Stone
contributed Pyramid support.  Michael Tiemann contributed SPARC support.
Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
Pace Willison contributed Intel 386 support.  Jay Vosburgh contributed
Symmetry support.  Marko Mlinar contributed OpenRISC 1000 support.

   Andreas Schwab contributed M68K GNU/Linux support.

   Rich Schaefer and Peter Schauer helped with support of SunOS shared
libraries.

   Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about
several machine instruction sets.

   Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped
develop remote debugging.  Intel Corporation, Wind River Systems, AMD,
and ARM contributed remote debugging modules for the i960, VxWorks,
A29K UDI, and RDI targets, respectively.

   Brian Fox is the author of the readline libraries providing
command-line editing and command history.

   Andrew Beers of SUNY Buffalo wrote the language-switching code, the
Modula-2 support, and contributed the Languages chapter of this manual.

   Fred Fish wrote most of the support for Unix System Vr4.  He also
enhanced the command-completion support to cover C++ overloaded symbols.

   Hitachi America (now Renesas America), Ltd. sponsored the support for
H8/300, H8/500, and Super-H processors.

   NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx
processors.

   Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and
M32R/D processors.

   Toshiba sponsored the support for the TX39 Mips processor.

   Matsushita sponsored the support for the MN10200 and MN10300
processors.

   Fujitsu sponsored the support for SPARClite and FR30 processors.

   Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
watchpoints.

   Michael Snyder added support for tracepoints.

   Stu Grossman wrote gdbserver.

   Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly
innumerable bug fixes and cleanups throughout GDB.

   The following people at the Hewlett-Packard Company contributed
support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
(narrow mode), HP's implementation of kernel threads, HP's aC++
compiler, and the Text User Interface (nee Terminal User Interface):
Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
provided HP-specific information in this manual.

   DJ Delorie ported GDB to MS-DOS, for the DJGPP project.  Robert
Hoehne made significant contributions to the DJGPP port.

   Cygnus Solutions has sponsored GDB maintenance and much of its
development since 1991.  Cygnus engineers who have worked on GDB
fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
Zuhn have made contributions both large and small.

   Jim Blandy added support for preprocessor macros, while working for
Red Hat.


File: gdb.info,  Node: Sample Session,  Next: Invocation,  Prev: Summary,  Up: Top

A Sample GDB Session
********************

You can use this manual at your leisure to read all about GDB.
However, a handful of commands are enough to get started using the
debugger.  This chapter illustrates those commands.

   One of the preliminary versions of GNU `m4' (a generic macro
processor) exhibits the following bug: sometimes, when we change its
quote strings from the default, the commands used to capture one macro
definition within another stop working.  In the following short `m4'
session, we define a macro `foo' which expands to `0000'; we then use
the `m4' built-in `defn' to define `bar' as the same thing.  However,
when we change the open quote string to `<QUOTE>' and the close quote
string to `<UNQUOTE>', the same procedure fails to define a new synonym
`baz':

     $ cd gnu/m4
     $ ./m4
     define(foo,0000)
     
     foo
     0000
     define(bar,defn(`foo'))
     
     bar
     0000
     changequote(<QUOTE>,<UNQUOTE>)
     
     define(baz,defn(<QUOTE>foo<UNQUOTE>))
     baz
     C-d
     m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.

     $ gdb m4
     GDB is free software and you are welcome to distribute copies
      of it under certain conditions; type "show copying" to see
      the conditions.
     There is absolutely no warranty for GDB; type "show warranty"
      for details.
     
     GDB 6.1.1, Copyright 1999 Free Software Foundation, Inc...
     (gdb)

GDB reads only enough symbol data to know where to find the rest when
needed; as a result, the first prompt comes up very quickly.  We now
tell GDB to use a narrower display width than usual, so that examples
fit in this manual.

     (gdb) set width 70

We need to see how the `m4' built-in `changequote' works.  Having
looked at the source, we know the relevant subroutine is
`m4_changequote', so we set a breakpoint there with the GDB `break'
command.

     (gdb) break m4_changequote
     Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the `run' command, we start `m4' running under GDB control; as
long as control does not reach the `m4_changequote' subroutine, the
program runs as usual:

     (gdb) run
     Starting program: /work/Editorial/gdb/gnu/m4/m4
     define(foo,0000)
     
     foo
     0000

To trigger the breakpoint, we call `changequote'.  GDB suspends
execution of `m4', displaying information about the context where it
stops.

     changequote(<QUOTE>,<UNQUOTE>)
     
     Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
         at builtin.c:879
     879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command `n' (`next') to advance execution to the next
line of the current function.

     (gdb) n
     882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
      : nil,

`set_quotes' looks like a promising subroutine.  We can go into it by
using the command `s' (`step') instead of `next'.  `step' goes to the
next line to be executed in _any_ subroutine, so it steps into
`set_quotes'.

     (gdb) s
     set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
         at input.c:530
     530         if (lquote != def_lquote)

The display that shows the subroutine where `m4' is now suspended (and
its arguments) is called a stack frame display.  It shows a summary of
the stack.  We can use the `backtrace' command (which can also be
spelled `bt'), to see where we are in the stack as a whole: the
`backtrace' command displays a stack frame for each active subroutine.

     (gdb) bt
     #0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
         at input.c:530
     #1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
         at builtin.c:882
     #2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
     #3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
         at macro.c:71
     #4  0x79dc in expand_input () at macro.c:40
     #5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens.  The first two
times, we can use `s'; the next two times we use `n' to avoid falling
into the `xstrdup' subroutine.

     (gdb) s
     0x3b5c  532         if (rquote != def_rquote)
     (gdb) s
     0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
     def_lquote : xstrdup(lq);
     (gdb) n
     536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
      : xstrdup(rq);
     (gdb) n
     538         len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables
`lquote' and `rquote' to see if they are in fact the new left and right
quotes we specified.  We use the command `p' (`print') to see their
values.

     (gdb) p lquote
     $1 = 0x35d40 "<QUOTE>"
     (gdb) p rquote
     $2 = 0x35d50 "<UNQUOTE>"

`lquote' and `rquote' are indeed the new left and right quotes.  To
look at some context, we can display ten lines of source surrounding
the current line with the `l' (`list') command.

     (gdb) l
     533             xfree(rquote);
     534
     535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
      : xstrdup (lq);
     536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
      : xstrdup (rq);
     537
     538         len_lquote = strlen(rquote);
     539         len_rquote = strlen(lquote);
     540     }
     541
     542     void

Let us step past the two lines that set `len_lquote' and `len_rquote',
and then examine the values of those variables.

     (gdb) n
     539         len_rquote = strlen(lquote);
     (gdb) n
     540     }
     (gdb) p len_lquote
     $3 = 9
     (gdb) p len_rquote
     $4 = 7

That certainly looks wrong, assuming `len_lquote' and `len_rquote' are
meant to be the lengths of `lquote' and `rquote' respectively.  We can
set them to better values using the `p' command, since it can print the
value of any expression--and that expression can include subroutine
calls and assignments.

     (gdb) p len_lquote=strlen(lquote)
     $5 = 7
     (gdb) p len_rquote=strlen(rquote)
     $6 = 9

Is that enough to fix the problem of using the new quotes with the `m4'
built-in `defn'?  We can allow `m4' to continue executing with the `c'
(`continue') command, and then try the example that caused trouble
initially:

     (gdb) c
     Continuing.
     
     define(baz,defn(<QUOTE>foo<UNQUOTE>))
     
     baz
     0000

Success!  The new quotes now work just as well as the default ones.  The
problem seems to have been just the two typos defining the wrong
lengths.  We allow `m4' exit by giving it an EOF as input:

     C-d
     Program exited normally.

The message `Program exited normally.' is from GDB; it indicates `m4'
has finished executing.  We can end our GDB session with the GDB `quit'
command.

     (gdb) quit


File: gdb.info,  Node: Invocation,  Next: Commands,  Prev: Sample Session,  Up: Top

Getting In and Out of GDB
*************************

This chapter discusses how to start GDB, and how to get out of it.  The
essentials are:
   * type `gdb' to start GDB.

   * type `quit' or `C-d' to exit.

* Menu:

* Invoking GDB::                How to start GDB
* Quitting GDB::                How to quit GDB
* Shell Commands::              How to use shell commands inside GDB
* Logging output::              How to log GDB's output to a file


File: gdb.info,  Node: Invoking GDB,  Next: Quitting GDB,  Up: Invocation

Invoking GDB
============

Invoke GDB by running the program `gdb'.  Once started, GDB reads
commands from the terminal until you tell it to exit.

   You can also run `gdb' with a variety of arguments and options, to
specify more of your debugging environment at the outset.

   The command-line options described here are designed to cover a
variety of situations; in some environments, some of these options may
effectively be unavailable.

   The most usual way to start GDB is with one argument, specifying an
executable program:

     gdb PROGRAM

You can also start with both an executable program and a core file
specified:

     gdb PROGRAM CORE

   You can, instead, specify a process ID as a second argument, if you
want to debug a running process:

     gdb PROGRAM 1234

would attach GDB to process `1234' (unless you also have a file named
`1234'; GDB does check for a core file first).

   Taking advantage of the second command-line argument requires a
fairly complete operating system; when you use GDB as a remote debugger
attached to a bare board, there may not be any notion of "process", and
there is often no way to get a core dump.  GDB will warn you if it is
unable to attach or to read core dumps.

   You can optionally have `gdb' pass any arguments after the
executable file to the inferior using `--args'.  This option stops
option processing.
     gdb --args gcc -O2 -c foo.c
   This will cause `gdb' to debug `gcc', and to set `gcc''s
command-line arguments (*note Arguments::) to `-O2 -c foo.c'.

   You can run `gdb' without printing the front material, which
describes GDB's non-warranty, by specifying `-silent':

     gdb -silent

You can further control how GDB starts up by using command-line
options.  GDB itself can remind you of the options available.

Type

     gdb -help

to display all available options and briefly describe their use (`gdb
-h' is a shorter equivalent).

   All options and command line arguments you give are processed in
sequential order.  The order makes a difference when the `-x' option is
used.

* Menu:

* File Options::                Choosing files
* Mode Options::                Choosing modes


File: gdb.info,  Node: File Options,  Next: Mode Options,  Up: Invoking GDB

Choosing files
--------------

When GDB starts, it reads any arguments other than options as
specifying an executable file and core file (or process ID).  This is
the same as if the arguments were specified by the `-se' and `-c' (or
`-p' options respectively.  (GDB reads the first argument that does not
have an associated option flag as equivalent to the `-se' option
followed by that argument; and the second argument that does not have
an associated option flag, if any, as equivalent to the `-c'/`-p'
option followed by that argument.)  If the second argument begins with
a decimal digit, GDB will first attempt to attach to it as a process,
and if that fails, attempt to open it as a corefile.  If you have a
corefile whose name begins with a digit, you can prevent GDB from
treating it as a pid by prefixing it with `./', eg. `./12345'.

   If GDB has not been configured to included core file support, such
as for most embedded targets, then it will complain about a second
argument and ignore it.

   Many options have both long and short forms; both are shown in the
following list.  GDB also recognizes the long forms if you truncate
them, so long as enough of the option is present to be unambiguous.
(If you prefer, you can flag option arguments with `--' rather than
`-', though we illustrate the more usual convention.)

`-symbols FILE'
`-s FILE'
     Read symbol table from file FILE.

`-exec FILE'
`-e FILE'
     Use file FILE as the executable file to execute when appropriate,
     and for examining pure data in conjunction with a core dump.

`-se FILE'
     Read symbol table from file FILE and use it as the executable file.

`-core FILE'
`-c FILE'
     Use file FILE as a core dump to examine.

`-c NUMBER'

`-pid NUMBER'
`-p NUMBER'
     Connect to process ID NUMBER, as with the `attach' command.  If
     there is no such process, GDB will attempt to open a core file
     named NUMBER.

`-command FILE'
`-x FILE'
     Execute GDB commands from file FILE.  *Note Command files: Command
     Files.

`-directory DIRECTORY'
`-d DIRECTORY'
     Add DIRECTORY to the path to search for source files.

`-m'
`-mapped'
     _Warning: this option depends on operating system facilities that
     are not supported on all systems._
     If memory-mapped files are available on your system through the
     `mmap' system call, you can use this option to have GDB write the
     symbols from your program into a reusable file in the current
     directory.  If the program you are debugging is called
     `/tmp/fred', the mapped symbol file is `/tmp/fred.syms'.  Future
     GDB debugging sessions notice the presence of this file, and can
     quickly map in symbol information from it, rather than reading the
     symbol table from the executable program.

     The `.syms' file is specific to the host machine where GDB is run.
     It holds an exact image of the internal GDB symbol table.  It
     cannot be shared across multiple host platforms.

`-r'
`-readnow'
     Read each symbol file's entire symbol table immediately, rather
     than the default, which is to read it incrementally as it is
     needed.  This makes startup slower, but makes future operations
     faster.


   You typically combine the `-mapped' and `-readnow' options in order
to build a `.syms' file that contains complete symbol information.
(*Note Commands to specify files: Files, for information on `.syms'
files.)  A simple GDB invocation to do nothing but build a `.syms' file
for future use is:

     gdb -batch -nx -mapped -readnow programname


File: gdb.info,  Node: Mode Options,  Prev: File Options,  Up: Invoking GDB

Choosing modes
--------------

You can run GDB in various alternative modes--for example, in batch
mode or quiet mode.

`-nx'
`-n'
     Do not execute commands found in any initialization files.
     Normally, GDB executes the commands in these files after all the
     command options and arguments have been processed.  *Note Command
     files: Command Files.

`-quiet'
`-silent'
`-q'
     "Quiet".  Do not print the introductory and copyright messages.
     These messages are also suppressed in batch mode.

`-batch'
     Run in batch mode.  Exit with status `0' after processing all the
     command files specified with `-x' (and all commands from
     initialization files, if not inhibited with `-n').  Exit with
     nonzero status if an error occurs in executing the GDB commands in
     the command files.

     Batch mode may be useful for running GDB as a filter, for example
     to download and run a program on another computer; in order to
     make this more useful, the message

          Program exited normally.

     (which is ordinarily issued whenever a program running under GDB
     control terminates) is not issued when running in batch mode.

`-nowindows'
`-nw'
     "No windows".  If GDB comes with a graphical user interface (GUI)
     built in, then this option tells GDB to only use the command-line
     interface.  If no GUI is available, this option has no effect.

`-windows'
`-w'
     If GDB includes a GUI, then this option requires it to be used if
     possible.

`-cd DIRECTORY'
     Run GDB using DIRECTORY as its working directory, instead of the
     current directory.

`-fullname'
`-f'
     GNU Emacs sets this option when it runs GDB as a subprocess.  It
     tells GDB to output the full file name and line number in a
     standard, recognizable fashion each time a stack frame is
     displayed (which includes each time your program stops).  This
     recognizable format looks like two `\032' characters, followed by
     the file name, line number and character position separated by
     colons, and a newline.  The Emacs-to-GDB interface program uses
     the two `\032' characters as a signal to display the source code
     for the frame.

`-epoch'
     The Epoch Emacs-GDB interface sets this option when it runs GDB as
     a subprocess.  It tells GDB to modify its print routines so as to
     allow Epoch to display values of expressions in a separate window.

`-annotate LEVEL'
     This option sets the "annotation level" inside GDB.  Its effect is
     identical to using `set annotate LEVEL' (*note Annotations::).
     The annotation LEVEL controls how much information GDB prints
     together with its prompt, values of expressions, source lines, and
     other types of output.  Level 0 is the normal, level 1 is for use
     when GDB is run as a subprocess of GNU Emacs, level 3 is the
     maximum annotation suitable for programs that control GDB, and
     level 2 has been deprecated.

     The annotation mechanism has largely been superseeded by GDB/MI
     (*note GDB/MI::).

`-async'
     Use the asynchronous event loop for the command-line interface.
     GDB processes all events, such as user keyboard input, via a
     special event loop.  This allows GDB to accept and process user
     commands in parallel with the debugged process being run(1), so
     you don't need to wait for control to return to GDB before you
     type the next command.  (_Note:_ as of version 5.1, the target
     side of the asynchronous operation is not yet in place, so
     `-async' does not work fully yet.)

     When the standard input is connected to a terminal device, GDB
     uses the asynchronous event loop by default, unless disabled by the
     `-noasync' option.

`-noasync'
     Disable the asynchronous event loop for the command-line interface.

`--args'
     Change interpretation of command line so that arguments following
     the executable file are passed as command line arguments to the
     inferior.  This option stops option processing.

`-baud BPS'
`-b BPS'
     Set the line speed (baud rate or bits per second) of any serial
     interface used by GDB for remote debugging.

`-tty DEVICE'
`-t DEVICE'
     Run using DEVICE for your program's standard input and output.

`-tui'
     Activate the "Text User Interface" when starting.  The Text User
     Interface manages several text windows on the terminal, showing
     source, assembly, registers and GDB command outputs (*note GDB
     Text User Interface: TUI.).  Alternatively, the Text User
     Interface can be enabled by invoking the program `gdbtui'.  Do not
     use this option if you run GDB from Emacs (*note Using GDB under
     GNU Emacs: Emacs.).

`-interpreter INTERP'
     Use the interpreter INTERP for interface with the controlling
     program or device.  This option is meant to be set by programs
     which communicate with GDB using it as a back end.  *Note Command
     Interpreters: Interpreters.

     `--interpreter=mi' (or `--interpreter=mi2') causes GDB to use the
     "GDB/MI interface" (*note The GDB/MI Interface: GDB/MI.) included
     since GDBN version 6.0.  The previous GDB/MI interface, included
     in GDB version 5.3 and selected with `--interpreter=mi1', is
     deprecated.  Earlier GDB/MI interfaces are no longer supported.

`-write'
     Open the executable and core files for both reading and writing.
     This is equivalent to the `set write on' command inside GDB (*note
     Patching::).

`-statistics'
     This option causes GDB to print statistics about time and memory
     usage after it completes each command and returns to the prompt.

`-version'
     This option causes GDB to print its version number and no-warranty
     blurb, and exit.


   ---------- Footnotes ----------

   (1) GDB built with DJGPP tools for MS-DOS/MS-Windows supports this
mode of operation, but the event loop is suspended when the debuggee
runs.


File: gdb.info,  Node: Quitting GDB,  Next: Shell Commands,  Prev: Invoking GDB,  Up: Invocation

Quitting GDB
============

`quit [EXPRESSION]'
`q'
     To exit GDB, use the `quit' command (abbreviated `q'), or type an
     end-of-file character (usually `C-d').  If you do not supply
     EXPRESSION, GDB will terminate normally; otherwise it will
     terminate using the result of EXPRESSION as the error code.

   An interrupt (often `C-c') does not exit from GDB, but rather
terminates the action of any GDB command that is in progress and
returns to GDB command level.  It is safe to type the interrupt
character at any time because GDB does not allow it to take effect
until a time when it is safe.

   If you have been using GDB to control an attached process or device,
you can release it with the `detach' command (*note Debugging an
already-running process: Attach.).


File: gdb.info,  Node: Shell Commands,  Next: Logging output,  Prev: Quitting GDB,  Up: Invocation

Shell commands
==============

If you need to execute occasional shell commands during your debugging
session, there is no need to leave or suspend GDB; you can just use the
`shell' command.

`shell COMMAND STRING'
     Invoke a standard shell to execute COMMAND STRING.  If it exists,
     the environment variable `SHELL' determines which shell to run.
     Otherwise GDB uses the default shell (`/bin/sh' on Unix systems,
     `COMMAND.COM' on MS-DOS, etc.).

   The utility `make' is often needed in development environments.  You
do not have to use the `shell' command for this purpose in GDB:

`make MAKE-ARGS'
     Execute the `make' program with the specified arguments.  This is
     equivalent to `shell make MAKE-ARGS'.


File: gdb.info,  Node: Logging output,  Prev: Shell Commands,  Up: Invocation

Logging output
==============

You may want to save the output of GDB commands to a file.  There are
several commands to control GDB's logging.

`set logging on'
     Enable logging.

`set logging off'
     Disable logging.

`set logging file FILE'
     Change the name of the current logfile.  The default logfile is
     `gdb.txt'.

`set logging overwrite [on|off]'
     By default, GDB will append to the logfile.  Set `overwrite' if
     you want `set logging on' to overwrite the logfile instead.

`set logging redirect [on|off]'
     By default, GDB output will go to both the terminal and the
     logfile.  Set `redirect' if you want output to go only to the log
     file.

`show logging'
     Show the current values of the logging settings.


File: gdb.info,  Node: Commands,  Next: Running,  Prev: Invocation,  Up: Top

GDB Commands
************

You can abbreviate a GDB command to the first few letters of the command
name, if that abbreviation is unambiguous; and you can repeat certain
GDB commands by typing just <RET>.  You can also use the <TAB> key to
get GDB to fill out the rest of a word in a command (or to show you the
alternatives available, if there is more than one possibility).

* Menu:

* Command Syntax::              How to give commands to GDB
* Completion::                  Command completion
* Help::                        How to ask GDB for help


File: gdb.info,  Node: Command Syntax,  Next: Completion,  Up: Commands

Command syntax
==============

A GDB command is a single line of input.  There is no limit on how long
it can be.  It starts with a command name, which is followed by
arguments whose meaning depends on the command name.  For example, the
command `step' accepts an argument which is the number of times to
step, as in `step 5'.  You can also use the `step' command with no
arguments.  Some commands do not allow any arguments.

   GDB command names may always be truncated if that abbreviation is
unambiguous.  Other possible command abbreviations are listed in the
documentation for individual commands.  In some cases, even ambiguous
abbreviations are allowed; for example, `s' is specially defined as
equivalent to `step' even though there are other commands whose names
start with `s'.  You can test abbreviations by using them as arguments
to the `help' command.

   A blank line as input to GDB (typing just <RET>) means to repeat the
previous command.  Certain commands (for example, `run') will not
repeat this way; these are commands whose unintentional repetition
might cause trouble and which you are unlikely to want to repeat.

   The `list' and `x' commands, when you repeat them with <RET>,
construct new arguments rather than repeating exactly as typed.  This
permits easy scanning of source or memory.

   GDB can also use <RET> in another way: to partition lengthy output,
in a way similar to the common utility `more' (*note Screen size:
Screen Size.).  Since it is easy to press one <RET> too many in this
situation, GDB disables command repetition after any command that
generates this sort of display.

   Any text from a `#' to the end of the line is a comment; it does
nothing.  This is useful mainly in command files (*note Command files:
Command Files.).

   The `C-o' binding is useful for repeating a complex sequence of
commands.  This command accepts the current line, like `RET', and then
fetches the next line relative to the current line from the history for
editing.


File: gdb.info,  Node: Completion,  Next: Help,  Prev: Command Syntax,  Up: Commands

Command completion
==================

GDB can fill in the rest of a word in a command for you, if there is
only one possibility; it can also show you what the valid possibilities
are for the next word in a command, at any time.  This works for GDB
commands, GDB subcommands, and the names of symbols in your program.

   Press the <TAB> key whenever you want GDB to fill out the rest of a
word.  If there is only one possibility, GDB fills in the word, and
waits for you to finish the command (or press <RET> to enter it).  For
example, if you type

     (gdb) info bre <TAB>

GDB fills in the rest of the word `breakpoints', since that is the only
`info' subcommand beginning with `bre':

     (gdb) info breakpoints

You can either press <RET> at this point, to run the `info breakpoints'
command, or backspace and enter something else, if `breakpoints' does
not look like the command you expected.  (If you were sure you wanted
`info breakpoints' in the first place, you might as well just type
<RET> immediately after `info bre', to exploit command abbreviations
rather than command completion).

   If there is more than one possibility for the next word when you
press <TAB>, GDB sounds a bell.  You can either supply more characters
and try again, or just press <TAB> a second time; GDB displays all the
possible completions for that word.  For example, you might want to set
a breakpoint on a subroutine whose name begins with `make_', but when
you type `b make_<TAB>' GDB just sounds the bell.  Typing <TAB> again
displays all the function names in your program that begin with those
characters, for example:

     (gdb) b make_ <TAB>
GDB sounds bell; press <TAB> again, to see:
     make_a_section_from_file     make_environ
     make_abs_section             make_function_type
     make_blockvector             make_pointer_type
     make_cleanup                 make_reference_type
     make_command                 make_symbol_completion_list
     (gdb) b make_

After displaying the available possibilities, GDB copies your partial
input (`b make_' in the example) so you can finish the command.

   If you just want to see the list of alternatives in the first place,
you can press `M-?' rather than pressing <TAB> twice.  `M-?' means
`<META> ?'.  You can type this either by holding down a key designated
as the <META> shift on your keyboard (if there is one) while typing
`?', or as <ESC> followed by `?'.

   Sometimes the string you need, while logically a "word", may contain
parentheses or other characters that GDB normally excludes from its
notion of a word.  To permit word completion to work in this situation,
you may enclose words in `'' (single quote marks) in GDB commands.

   The most likely situation where you might need this is in typing the
name of a C++ function.  This is because C++ allows function
overloading (multiple definitions of the same function, distinguished
by argument type).  For example, when you want to set a breakpoint you
may need to distinguish whether you mean the version of `name' that
takes an `int' parameter, `name(int)', or the version that takes a
`float' parameter, `name(float)'.  To use the word-completion
facilities in this situation, type a single quote `'' at the beginning
of the function name.  This alerts GDB that it may need to consider
more information than usual when you press <TAB> or `M-?' to request
word completion:

     (gdb) b 'bubble( M-?
     bubble(double,double)    bubble(int,int)
     (gdb) b 'bubble(

   In some cases, GDB can tell that completing a name requires using
quotes.  When this happens, GDB inserts the quote for you (while
completing as much as it can) if you do not type the quote in the first
place:

     (gdb) b bub <TAB>
GDB alters your input line to the following, and rings a bell:
     (gdb) b 'bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you
have not yet started typing the argument list when you ask for
completion on an overloaded symbol.

   For more information about overloaded functions, see *Note C++
expressions: C plus plus expressions.  You can use the command `set
overload-resolution off' to disable overload resolution; see *Note GDB
features for C++: Debugging C plus plus.


File: gdb.info,  Node: Help,  Prev: Completion,  Up: Commands

Getting help
============

You can always ask GDB itself for information on its commands, using
the command `help'.

`help'
`h'
     You can use `help' (abbreviated `h') with no arguments to display
     a short list of named classes of commands:

          (gdb) help
          List of classes of commands:
          
          aliases -- Aliases of other commands
          breakpoints -- Making program stop at certain points
          data -- Examining data
          files -- Specifying and examining files
          internals -- Maintenance commands
          obscure -- Obscure features
          running -- Running the program
          stack -- Examining the stack
          status -- Status inquiries
          support -- Support facilities
          tracepoints -- Tracing of program execution without

          stopping the program
          user-defined -- User-defined commands
          
          Type "help" followed by a class name for a list of
          commands in that class.
          Type "help" followed by command name for full
          documentation.
          Command name abbreviations are allowed if unambiguous.
          (gdb)

`help CLASS'
     Using one of the general help classes as an argument, you can get a
     list of the individual commands in that class.  For example, here
     is the help display for the class `status':

          (gdb) help status
          Status inquiries.
          
          List of commands:
          
          info -- Generic command for showing things
           about the program being debugged
          show -- Generic command for showing things
           about the debugger
          
          Type "help" followed by command name for full
          documentation.
          Command name abbreviations are allowed if unambiguous.
          (gdb)

`help COMMAND'
     With a command name as `help' argument, GDB displays a short
     paragraph on how to use that command.

`apropos ARGS'
     The `apropos ARGS' command searches through all of the GDB
     commands, and their documentation, for the regular expression
     specified in ARGS. It prints out all matches found. For example:

          apropos reload

     results in:

          set symbol-reloading -- Set dynamic symbol table reloading
                                           multiple times in one run
          show symbol-reloading -- Show dynamic symbol table reloading
                                           multiple times in one run

`complete ARGS'
     The `complete ARGS' command lists all the possible completions for
     the beginning of a command.  Use ARGS to specify the beginning of
     the command you want completed.  For example:

          complete i

     results in:

          if
          ignore
          info
          inspect

     This is intended for use by GNU Emacs.

   In addition to `help', you can use the GDB commands `info' and
`show' to inquire about the state of your program, or the state of GDB
itself.  Each command supports many topics of inquiry; this manual
introduces each of them in the appropriate context.  The listings under
`info' and under `show' in the Index point to all the sub-commands.
*Note Index::.

`info'
     This command (abbreviated `i') is for describing the state of your
     program.  For example, you can list the arguments given to your
     program with `info args', list the registers currently in use with
     `info registers', or list the breakpoints you have set with `info
     breakpoints'.  You can get a complete list of the `info'
     sub-commands with `help info'.

`set'
     You can assign the result of an expression to an environment
     variable with `set'.  For example, you can set the GDB prompt to a
     $-sign with `set prompt $'.

`show'
     In contrast to `info', `show' is for describing the state of GDB
     itself.  You can change most of the things you can `show', by
     using the related command `set'; for example, you can control what
     number system is used for displays with `set radix', or simply
     inquire which is currently in use with `show radix'.

     To display all the settable parameters and their current values,
     you can use `show' with no arguments; you may also use `info set'.
     Both commands produce the same display.

   Here are three miscellaneous `show' subcommands, all of which are
exceptional in lacking corresponding `set' commands:

`show version'
     Show what version of GDB is running.  You should include this
     information in GDB bug-reports.  If multiple versions of GDB are
     in use at your site, you may need to determine which version of
     GDB you are running; as GDB evolves, new commands are introduced,
     and old ones may wither away.  Also, many system vendors ship
     variant versions of GDB, and there are variant versions of GDB in
     GNU/Linux distributions as well.  The version number is the same
     as the one announced when you start GDB.

`show copying'
     Display information about permission for copying GDB.

`show warranty'
     Display the GNU "NO WARRANTY" statement, or a warranty, if your
     version of GDB comes with one.



File: gdb.info,  Node: Running,  Next: Stopping,  Prev: Commands,  Up: Top

Running Programs Under GDB
**************************

When you run a program under GDB, you must first generate debugging
information when you compile it.

   You may start GDB with its arguments, if any, in an environment of
your choice.  If you are doing native debugging, you may redirect your
program's input and output, debug an already running process, or kill a
child process.

* Menu:

* Compilation::                 Compiling for debugging
* Starting::                    Starting your program
* Arguments::                   Your program's arguments
* Environment::                 Your program's environment

* Working Directory::           Your program's working directory
* Input/Output::                Your program's input and output
* Attach::                      Debugging an already-running process
* Kill Process::                Killing the child process

* Threads::                     Debugging programs with multiple threads
* Processes::                   Debugging programs with multiple processes


File: gdb.info,  Node: Compilation,  Next: Starting,  Up: Running

Compiling for debugging
=======================

In order to debug a program effectively, you need to generate debugging
information when you compile it.  This debugging information is stored
in the object file; it describes the data type of each variable or
function and the correspondence between source line numbers and
addresses in the executable code.

   To request debugging information, specify the `-g' option when you
run the compiler.

   Most compilers do not include information about preprocessor macros
in the debugging information if you specify the `-g' flag alone,
because this information is rather large.  Version 3.1 of GCC, the GNU
C compiler, provides macro information if you specify the options
`-gdwarf-2' and `-g3'; the former option requests debugging information
in the Dwarf 2 format, and the latter requests "extra information".  In
the future, we hope to find more compact ways to represent macro
information, so that it can be included with `-g' alone.

   Many C compilers are unable to handle the `-g' and `-O' options
together.  Using those compilers, you cannot generate optimized
executables containing debugging information.

   GCC, the GNU C compiler, supports `-g' with or without `-O', making
it possible to debug optimized code.  We recommend that you _always_
use `-g' whenever you compile a program.  You may think your program is
correct, but there is no sense in pushing your luck.

   When you debug a program compiled with `-g -O', remember that the
optimizer is rearranging your code; the debugger shows you what is
really there.  Do not be too surprised when the execution path does not
exactly match your source file!  An extreme example: if you define a
variable, but never use it, GDB never sees that variable--because the
compiler optimizes it out of existence.

   Some things do not work as well with `-g -O' as with just `-g',
particularly on machines with instruction scheduling.  If in doubt,
recompile with `-g' alone, and if this fixes the problem, please report
it to us as a bug (including a test case!).

   Older versions of the GNU C compiler permitted a variant option
`-gg' for debugging information.  GDB no longer supports this format;
if your GNU C compiler has this option, do not use it.


File: gdb.info,  Node: Starting,  Next: Arguments,  Prev: Compilation,  Up: Running

Starting your program
=====================

`run'
`r'
     Use the `run' command to start your program under GDB.  You must
     first specify the program name (except on VxWorks) with an
     argument to GDB (*note Getting In and Out of GDB: Invocation.), or
     by using the `file' or `exec-file' command (*note Commands to
     specify files: Files.).


   If you are running your program in an execution environment that
supports processes, `run' creates an inferior process and makes that
process run your program.  (In environments without processes, `run'
jumps to the start of your program.)

   The execution of a program is affected by certain information it
receives from its superior.  GDB provides ways to specify this
information, which you must do _before_ starting your program.  (You
can change it after starting your program, but such changes only affect
your program the next time you start it.)  This information may be
divided into four categories:

The _arguments._
     Specify the arguments to give your program as the arguments of the
     `run' command.  If a shell is available on your target, the shell
     is used to pass the arguments, so that you may use normal
     conventions (such as wildcard expansion or variable substitution)
     in describing the arguments.  In Unix systems, you can control
     which shell is used with the `SHELL' environment variable.  *Note
     Your program's arguments: Arguments.

The _environment._
     Your program normally inherits its environment from GDB, but you
     can use the GDB commands `set environment' and `unset environment'
     to change parts of the environment that affect your program.
     *Note Your program's environment: Environment.

The _working directory._
     Your program inherits its working directory from GDB.  You can set
     the GDB working directory with the `cd' command in GDB.  *Note
     Your program's working directory: Working Directory.

The _standard input and output._
     Your program normally uses the same device for standard input and
     standard output as GDB is using.  You can redirect input and output
     in the `run' command line, or you can use the `tty' command to set
     a different device for your program.  *Note Your program's input
     and output: Input/Output.

     _Warning:_ While input and output redirection work, you cannot use
     pipes to pass the output of the program you are debugging to
     another program; if you attempt this, GDB is likely to wind up
     debugging the wrong program.

   When you issue the `run' command, your program begins to execute
immediately.  *Note Stopping and continuing: Stopping, for discussion
of how to arrange for your program to stop.  Once your program has
stopped, you may call functions in your program, using the `print' or
`call' commands.  *Note Examining Data: Data.

   If the modification time of your symbol file has changed since the
last time GDB read its symbols, GDB discards its symbol table, and
reads it again.  When it does this, GDB tries to retain your current
breakpoints.


File: gdb.info,  Node: Arguments,  Next: Environment,  Prev: Starting,  Up: Running

Your program's arguments
========================

The arguments to your program can be specified by the arguments of the
`run' command.  They are passed to a shell, which expands wildcard
characters and performs redirection of I/O, and thence to your program.
Your `SHELL' environment variable (if it exists) specifies what shell
GDB uses.  If you do not define `SHELL', GDB uses the default shell
(`/bin/sh' on Unix).

   On non-Unix systems, the program is usually invoked directly by GDB,
which emulates I/O redirection via the appropriate system calls, and
the wildcard characters are expanded by the startup code of the
program, not by the shell.

   `run' with no arguments uses the same arguments used by the previous
`run', or those set by the `set args' command.

`set args'
     Specify the arguments to be used the next time your program is
     run.  If `set args' has no arguments, `run' executes your program
     with no arguments.  Once you have run your program with arguments,
     using `set args' before the next `run' is the only way to run it
     again without arguments.

`show args'
     Show the arguments to give your program when it is started.


File: gdb.info,  Node: Environment,  Next: Working Directory,  Prev: Arguments,  Up: Running

Your program's environment
==========================

The "environment" consists of a set of environment variables and their
values.  Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your search
path for programs to run.  Usually you set up environment variables with
the shell and they are inherited by all the other programs you run.
When debugging, it can be useful to try running your program with a
modified environment without having to start GDB over again.

`path DIRECTORY'
     Add DIRECTORY to the front of the `PATH' environment variable (the
     search path for executables) that will be passed to your program.
     The value of `PATH' used by GDB does not change.  You may specify
     several directory names, separated by whitespace or by a
     system-dependent separator character (`:' on Unix, `;' on MS-DOS
     and MS-Windows).  If DIRECTORY is already in the path, it is moved
     to the front, so it is searched sooner.

     You can use the string `$cwd' to refer to whatever is the current
     working directory at the time GDB searches the path.  If you use
     `.' instead, it refers to the directory where you executed the
     `path' command.  GDB replaces `.' in the DIRECTORY argument (with
     the current path) before adding DIRECTORY to the search path.

`show paths'
     Display the list of search paths for executables (the `PATH'
     environment variable).

`show environment [VARNAME]'
     Print the value of environment variable VARNAME to be given to
     your program when it starts.  If you do not supply VARNAME, print
     the names and values of all environment variables to be given to
     your program.  You can abbreviate `environment' as `env'.

`set environment VARNAME [=VALUE]'
     Set environment variable VARNAME to VALUE.  The value changes for
     your program only, not for GDB itself.  VALUE may be any string;
     the values of environment variables are just strings, and any
     interpretation is supplied by your program itself.  The VALUE
     parameter is optional; if it is eliminated, the variable is set to
     a null value.

     For example, this command:

          set env USER = foo

     tells the debugged program, when subsequently run, that its user
     is named `foo'.  (The spaces around `=' are used for clarity here;
     they are not actually required.)

`unset environment VARNAME'
     Remove variable VARNAME from the environment to be passed to your
     program.  This is different from `set env VARNAME ='; `unset
     environment' removes the variable from the environment, rather
     than assigning it an empty value.

   _Warning:_ On Unix systems, GDB runs your program using the shell
indicated by your `SHELL' environment variable if it exists (or
`/bin/sh' if not).  If your `SHELL' variable names a shell that runs an
initialization file--such as `.cshrc' for C-shell, or `.bashrc' for
BASH--any variables you set in that file affect your program.  You may
wish to move setting of environment variables to files that are only
run when you sign on, such as `.login' or `.profile'.


File: gdb.info,  Node: Working Directory,  Next: Input/Output,  Prev: Environment,  Up: Running

Your program's working directory
================================

Each time you start your program with `run', it inherits its working
directory from the current working directory of GDB.  The GDB working
directory is initially whatever it inherited from its parent process
(typically the shell), but you can specify a new working directory in
GDB with the `cd' command.

   The GDB working directory also serves as a default for the commands
that specify files for GDB to operate on.  *Note Commands to specify
files: Files.

`cd DIRECTORY'
     Set the GDB working directory to DIRECTORY.

`pwd'
     Print the GDB working directory.


File: gdb.info,  Node: Input/Output,  Next: Attach,  Prev: Working Directory,  Up: Running

Your program's input and output
===============================

By default, the program you run under GDB does input and output to the
same terminal that GDB uses.  GDB switches the terminal to its own
terminal modes to interact with you, but it records the terminal modes
your program was using and switches back to them when you continue
running your program.

`info terminal'
     Displays information recorded by GDB about the terminal modes your
     program is using.

   You can redirect your program's input and/or output using shell
redirection with the `run' command.  For example,

     run > outfile

starts your program, diverting its output to the file `outfile'.

   Another way to specify where your program should do input and output
is with the `tty' command.  This command accepts a file name as
argument, and causes this file to be the default for future `run'
commands.  It also resets the controlling terminal for the child
process, for future `run' commands.  For example,

     tty /dev/ttyb

directs that processes started with subsequent `run' commands default
to do input and output on the terminal `/dev/ttyb' and have that as
their controlling terminal.

   An explicit redirection in `run' overrides the `tty' command's
effect on the input/output device, but not its effect on the controlling
terminal.

   When you use the `tty' command or redirect input in the `run'
command, only the input _for your program_ is affected.  The input for
GDB still comes from your terminal.


File: gdb.info,  Node: Attach,  Next: Kill Process,  Prev: Input/Output,  Up: Running

Debugging an already-running process
====================================

`attach PROCESS-ID'
     This command attaches to a running process--one that was started
     outside GDB.  (`info files' shows your active targets.)  The
     command takes as argument a process ID.  The usual way to find out
     the process-id of a Unix process is with the `ps' utility, or with
     the `jobs -l' shell command.

     `attach' does not repeat if you press <RET> a second time after
     executing the command.

   To use `attach', your program must be running in an environment
which supports processes; for example, `attach' does not work for
programs on bare-board targets that lack an operating system.  You must
also have permission to send the process a signal.

   When you use `attach', the debugger finds the program running in the
process first by looking in the current working directory, then (if the
program is not found) by using the source file search path (*note
Specifying source directories: Source Path.).  You can also use the
`file' command to load the program.  *Note Commands to Specify Files:
Files.

   The first thing GDB does after arranging to debug the specified
process is to stop it.  You can examine and modify an attached process
with all the GDB commands that are ordinarily available when you start
processes with `run'.  You can insert breakpoints; you can step and
continue; you can modify storage.  If you would rather the process
continue running, you may use the `continue' command after attaching
GDB to the process.

`detach'
     When you have finished debugging the attached process, you can use
     the `detach' command to release it from GDB control.  Detaching
     the process continues its execution.  After the `detach' command,
     that process and GDB become completely independent once more, and
     you are ready to `attach' another process or start one with `run'.
     `detach' does not repeat if you press <RET> again after executing
     the command.

   If you exit GDB or use the `run' command while you have an attached
process, you kill that process.  By default, GDB asks for confirmation
if you try to do either of these things; you can control whether or not
you need to confirm by using the `set confirm' command (*note Optional
warnings and messages: Messages/Warnings.).


File: gdb.info,  Node: Kill Process,  Next: Threads,  Prev: Attach,  Up: Running

Killing the child process
=========================

`kill'
     Kill the child process in which your program is running under GDB.

   This command is useful if you wish to debug a core dump instead of a
running process.  GDB ignores any core dump file while your program is
running.

   On some operating systems, a program cannot be executed outside GDB
while you have breakpoints set on it inside GDB.  You can use the
`kill' command in this situation to permit running your program outside
the debugger.

   The `kill' command is also useful if you wish to recompile and
relink your program, since on many systems it is impossible to modify an
executable file while it is running in a process.  In this case, when
you next type `run', GDB notices that the file has changed, and reads
the symbol table again (while trying to preserve your current
breakpoint settings).


File: gdb.info,  Node: Threads,  Next: Processes,  Prev: Kill Process,  Up: Running

Debugging programs with multiple threads
========================================

In some operating systems, such as HP-UX and Solaris, a single program
may have more than one "thread" of execution.  The precise semantics of
threads differ from one operating system to another, but in general the
threads of a single program are akin to multiple processes--except that
they share one address space (that is, they can all examine and modify
the same variables).  On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

   GDB provides these facilities for debugging multi-thread programs:

   * automatic notification of new threads

   * `thread THREADNO', a command to switch among threads

   * `info threads', a command to inquire about existing threads

   * `thread apply [THREADNO] [ALL] ARGS', a command to apply a command
     to a list of threads

   * thread-specific breakpoints

     _Warning:_ These facilities are not yet available on every GDB
     configuration where the operating system supports threads.  If
     your GDB does not support threads, these commands have no effect.
     For example, a system without thread support shows no output from
     `info threads', and always rejects the `thread' command, like this:

          (gdb) info threads
          (gdb) thread 1
          Thread ID 1 not known.  Use the "info threads" command to
          see the IDs of currently known threads.

   The GDB thread debugging facility allows you to observe all threads
while your program runs--but whenever GDB takes control, one thread in
particular is always the focus of debugging.  This thread is called the
"current thread".  Debugging commands show program information from the
perspective of the current thread.

   Whenever GDB detects a new thread in your program, it displays the
target system's identification for the thread with a message in the
form `[New SYSTAG]'.  SYSTAG is a thread identifier whose form varies
depending on the particular system.  For example, on LynxOS, you might
see

     [New process 35 thread 27]

when GDB notices a new thread.  In contrast, on an SGI system, the
SYSTAG is simply something like `process 368', with no further
qualifier.

   For debugging purposes, GDB associates its own thread number--always
a single integer--with each thread in your program.

`info threads'
     Display a summary of all threads currently in your program.  GDB
     displays for each thread (in this order):

       1. the thread number assigned by GDB

       2. the target system's thread identifier (SYSTAG)

       3. the current stack frame summary for that thread

     An asterisk `*' to the left of the GDB thread number indicates the
     current thread.

     For example,

     (gdb) info threads
       3 process 35 thread 27  0x34e5 in sigpause ()
       2 process 35 thread 23  0x34e5 in sigpause ()
     * 1 process 35 thread 13  main (argc=1, argv=0x7ffffff8)
         at threadtest.c:68

   On HP-UX systems:

   For debugging purposes, GDB associates its own thread number--a
small integer assigned in thread-creation order--with each thread in
your program.

   Whenever GDB detects a new thread in your program, it displays both
GDB's thread number and the target system's identification for the
thread with a message in the form `[New SYSTAG]'.  SYSTAG is a thread
identifier whose form varies depending on the particular system.  For
example, on HP-UX, you see

     [New thread 2 (system thread 26594)]

when GDB notices a new thread.

`info threads'
     Display a summary of all threads currently in your program.  GDB
     displays for each thread (in this order):

       1. the thread number assigned by GDB

       2. the target system's thread identifier (SYSTAG)

       3. the current stack frame summary for that thread

     An asterisk `*' to the left of the GDB thread number indicates the
     current thread.

     For example,

     (gdb) info threads
         * 3 system thread 26607  worker (wptr=0x7b09c318 "@") \

     at quicksort.c:137
           2 system thread 26606  0x7b0030d8 in __ksleep () \

     from /usr/lib/libc.2
           1 system thread 27905  0x7b003498 in _brk () \

     from /usr/lib/libc.2

`thread THREADNO'
     Make thread number THREADNO the current thread.  The command
     argument THREADNO is the internal GDB thread number, as shown in
     the first field of the `info threads' display.  GDB responds by
     displaying the system identifier of the thread you selected, and
     its current stack frame summary:

          (gdb) thread 2
          [Switching to process 35 thread 23]
          0x34e5 in sigpause ()

     As with the `[New ...]' message, the form of the text after
     `Switching to' depends on your system's conventions for identifying
     threads.

`thread apply [THREADNO] [ALL]  ARGS'
     The `thread apply' command allows you to apply a command to one or
     more threads.  Specify the numbers of the threads that you want
     affected with the command argument THREADNO.  THREADNO is the
     internal GDB thread number, as shown in the first field of the
     `info threads' display.  To apply a command to all threads, use
     `thread apply all' ARGS.

   Whenever GDB stops your program, due to a breakpoint or a signal, it
automatically selects the thread where that breakpoint or signal
happened.  GDB alerts you to the context switch with a message of the
form `[Switching to SYSTAG]' to identify the thread.

   *Note Stopping and starting multi-thread programs: Thread Stops, for
more information about how GDB behaves when you stop and start programs
with multiple threads.

   *Note Setting watchpoints: Set Watchpoints, for information about
watchpoints in programs with multiple threads.


File: gdb.info,  Node: Processes,  Prev: Threads,  Up: Running

Debugging programs with multiple processes
==========================================

On most systems, GDB has no special support for debugging programs
which create additional processes using the `fork' function.  When a
program forks, GDB will continue to debug the parent process and the
child process will run unimpeded.  If you have set a breakpoint in any
code which the child then executes, the child will get a `SIGTRAP'
signal which (unless it catches the signal) will cause it to terminate.

   However, if you want to debug the child process there is a workaround
which isn't too painful.  Put a call to `sleep' in the code which the
child process executes after the fork.  It may be useful to sleep only
if a certain environment variable is set, or a certain file exists, so
that the delay need not occur when you don't want to run GDB on the
child.  While the child is sleeping, use the `ps' program to get its
process ID.  Then tell GDB (a new invocation of GDB if you are also
debugging the parent process) to attach to the child process (*note
Attach::).  From that point on you can debug the child process just
like any other process which you attached to.

   On some systems, GDB provides support for debugging programs that
create additional processes using the `fork' or `vfork' functions.
Currently, the only platforms with this feature are HP-UX (11.x and
later only?) and GNU/Linux (kernel version 2.5.60 and later).

   By default, when a program forks, GDB will continue to debug the
parent process and the child process will run unimpeded.

   If you want to follow the child process instead of the parent
process, use the command `set follow-fork-mode'.

`set follow-fork-mode MODE'
     Set the debugger response to a program call of `fork' or `vfork'.
     A call to `fork' or `vfork' creates a new process.  The MODE can
     be:

    `parent'
          The original process is debugged after a fork.  The child
          process runs unimpeded.  This is the default.

    `child'
          The new process is debugged after a fork.  The parent process
          runs unimpeded.


`show follow-fork-mode'
     Display the current debugger response to a `fork' or `vfork' call.

   If you ask to debug a child process and a `vfork' is followed by an
`exec', GDB executes the new target up to the first breakpoint in the
new target.  If you have a breakpoint set on `main' in your original
program, the breakpoint will also be set on the child process's `main'.

   When a child process is spawned by `vfork', you cannot debug the
child or parent until an `exec' call completes.

   If you issue a `run' command to GDB after an `exec' call executes,
the new target restarts.  To restart the parent process, use the `file'
command with the parent executable name as its argument.

   You can use the `catch' command to make GDB stop whenever a `fork',
`vfork', or `exec' call is made.  *Note Setting catchpoints: Set
Catchpoints.


File: gdb.info,  Node: Stopping,  Next: Stack,  Prev: Running,  Up: Top

Stopping and Continuing
***********************

The principal purposes of using a debugger are so that you can stop your
program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.

   Inside GDB, your program may stop for any of several reasons, such
as a signal, a breakpoint, or reaching a new line after a GDB command
such as `step'.  You may then examine and change variables, set new
breakpoints or remove old ones, and then continue execution.  Usually,
the messages shown by GDB provide ample explanation of the status of
your program--but you can also explicitly request this information at
any time.

`info program'
     Display information about the status of your program: whether it is
     running or not, what process it is, and why it stopped.

* Menu:

* Breakpoints::                 Breakpoints, watchpoints, and catchpoints
* Continuing and Stepping::     Resuming execution
* Signals::                     Signals
* Thread Stops::                Stopping and starting multi-thread programs


File: gdb.info,  Node: Breakpoints,  Next: Continuing and Stepping,  Up: Stopping

Breakpoints, watchpoints, and catchpoints
=========================================

A "breakpoint" makes your program stop whenever a certain point in the
program is reached.  For each breakpoint, you can add conditions to
control in finer detail whether your program stops.  You can set
breakpoints with the `break' command and its variants (*note Setting
breakpoints: Set Breaks.), to specify the place where your program
should stop by line number, function name or exact address in the
program.

   In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can
set breakpoints in shared libraries before the executable is run.
There is a minor limitation on HP-UX systems: you must wait until the
executable is run in order to set breakpoints in shared library
routines that are not called directly by the program (for example,
routines that are arguments in a `pthread_create' call).

   A "watchpoint" is a special breakpoint that stops your program when
the value of an expression changes.  You must use a different command
to set watchpoints (*note Setting watchpoints: Set Watchpoints.), but
aside from that, you can manage a watchpoint like any other breakpoint:
you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

   You can arrange to have values from your program displayed
automatically whenever GDB stops at a breakpoint.  *Note Automatic
display: Auto Display.

   A "catchpoint" is another special breakpoint that stops your program
when a certain kind of event occurs, such as the throwing of a C++
exception or the loading of a library.  As with watchpoints, you use a
different command to set a catchpoint (*note Setting catchpoints: Set
Catchpoints.), but aside from that, you can manage a catchpoint like any
other breakpoint.  (To stop when your program receives a signal, use the
`handle' command; see *Note Signals: Signals.)

   GDB assigns a number to each breakpoint, watchpoint, or catchpoint
when you create it; these numbers are successive integers starting with
one.  In many of the commands for controlling various features of
breakpoints you use the breakpoint number to say which breakpoint you
want to change.  Each breakpoint may be "enabled" or "disabled"; if
disabled, it has no effect on your program until you enable it again.

   Some GDB commands accept a range of breakpoints on which to operate.
A breakpoint range is either a single breakpoint number, like `5', or
two such numbers, in increasing order, separated by a hyphen, like
`5-7'.  When a breakpoint range is given to a command, all breakpoint
in that range are operated on.

* Menu:

* Set Breaks::                  Setting breakpoints
* Set Watchpoints::             Setting watchpoints
* Set Catchpoints::             Setting catchpoints
* Delete Breaks::               Deleting breakpoints
* Disabling::                   Disabling breakpoints
* Conditions::                  Break conditions
* Break Commands::              Breakpoint command lists
* Breakpoint Menus::            Breakpoint menus
* Error in Breakpoints::        ``Cannot insert breakpoints''
* Breakpoint related warnings:: ``Breakpoint address adjusted...''


File: gdb.info,  Node: Set Breaks,  Next: Set Watchpoints,  Up: Breakpoints

Setting breakpoints
-------------------

Breakpoints are set with the `break' command (abbreviated `b').  The
debugger convenience variable `$bpnum' records the number of the
breakpoint you've set most recently; see *Note Convenience variables:
Convenience Vars, for a discussion of what you can do with convenience
variables.

   You have several ways to say where the breakpoint should go.

`break FUNCTION'
     Set a breakpoint at entry to function FUNCTION.  When using source
     languages that permit overloading of symbols, such as C++,
     FUNCTION may refer to more than one possible place to break.
     *Note Breakpoint menus: Breakpoint Menus, for a discussion of that
     situation.

`break +OFFSET'
`break -OFFSET'
     Set a breakpoint some number of lines forward or back from the
     position at which execution stopped in the currently selected
     "stack frame".  (*Note Frames: Frames, for a description of stack
     frames.)

`break LINENUM'
     Set a breakpoint at line LINENUM in the current source file.  The
     current source file is the last file whose source text was printed.
     The breakpoint will stop your program just before it executes any
     of the code on that line.

`break FILENAME:LINENUM'
     Set a breakpoint at line LINENUM in source file FILENAME.

`break FILENAME:FUNCTION'
     Set a breakpoint at entry to function FUNCTION found in file
     FILENAME.  Specifying a file name as well as a function name is
     superfluous except when multiple files contain similarly named
     functions.

`break *ADDRESS'
     Set a breakpoint at address ADDRESS.  You can use this to set
     breakpoints in parts of your program which do not have debugging
     information or source files.

`break'
     When called without any arguments, `break' sets a breakpoint at
     the next instruction to be executed in the selected stack frame
     (*note Examining the Stack: Stack.).  In any selected frame but the
     innermost, this makes your program stop as soon as control returns
     to that frame.  This is similar to the effect of a `finish'
     command in the frame inside the selected frame--except that
     `finish' does not leave an active breakpoint.  If you use `break'
     without an argument in the innermost frame, GDB stops the next
     time it reaches the current location; this may be useful inside
     loops.

     GDB normally ignores breakpoints when it resumes execution, until
     at least one instruction has been executed.  If it did not do
     this, you would be unable to proceed past a breakpoint without
     first disabling the breakpoint.  This rule applies whether or not
     the breakpoint already existed when your program stopped.

`break ... if COND'
     Set a breakpoint with condition COND; evaluate the expression COND
     each time the breakpoint is reached, and stop only if the value is
     nonzero--that is, if COND evaluates as true.  `...' stands for one
     of the possible arguments described above (or no argument)
     specifying where to break.  *Note Break conditions: Conditions,
     for more information on breakpoint conditions.

`tbreak ARGS'
     Set a breakpoint enabled only for one stop.  ARGS are the same as
     for the `break' command, and the breakpoint is set in the same
     way, but the breakpoint is automatically deleted after the first
     time your program stops there.  *Note Disabling breakpoints:
     Disabling.

`hbreak ARGS'
     Set a hardware-assisted breakpoint.  ARGS are the same as for the
     `break' command and the breakpoint is set in the same way, but the
     breakpoint requires hardware support and some target hardware may
     not have this support.  The main purpose of this is EPROM/ROM code
     debugging, so you can set a breakpoint at an instruction without
     changing the instruction.  This can be used with the new
     trap-generation provided by SPARClite DSU and some x86-based
     targets.  These targets will generate traps when a program
     accesses some data or instruction address that is assigned to the
     debug registers.  However the hardware breakpoint registers can
     take a limited number of breakpoints.  For example, on the DSU,
     only two data breakpoints can be set at a time, and GDB will
     reject this command if more than two are used.  Delete or disable
     unused hardware breakpoints before setting new ones (*note
     Disabling: Disabling.).  *Note Break conditions: Conditions.
     *Note set remote hardware-breakpoint-limit::.

`thbreak ARGS'
     Set a hardware-assisted breakpoint enabled only for one stop.  ARGS
     are the same as for the `hbreak' command and the breakpoint is set
     in the same way.  However, like the `tbreak' command, the
     breakpoint is automatically deleted after the first time your
     program stops there.  Also, like the `hbreak' command, the
     breakpoint requires hardware support and some target hardware may
     not have this support.  *Note Disabling breakpoints: Disabling.
     See also *Note Break conditions: Conditions.

`rbreak REGEX'
     Set breakpoints on all functions matching the regular expression
     REGEX.  This command sets an unconditional breakpoint on all
     matches, printing a list of all breakpoints it set.  Once these
     breakpoints are set, they are treated just like the breakpoints
     set with the `break' command.  You can delete them, disable them,
     or make them conditional the same way as any other breakpoint.

     The syntax of the regular expression is the standard one used with
     tools like `grep'.  Note that this is different from the syntax
     used by shells, so for instance `foo*' matches all functions that
     include an `fo' followed by zero or more `o's.  There is an
     implicit `.*' leading and trailing the regular expression you
     supply, so to match only functions that begin with `foo', use
     `^foo'.

     When debugging C++ programs, `rbreak' is useful for setting
     breakpoints on overloaded functions that are not members of any
     special classes.

`info breakpoints [N]'
`info break [N]'
`info watchpoints [N]'
     Print a table of all breakpoints, watchpoints, and catchpoints set
     and not deleted, with the following columns for each breakpoint:

    _Breakpoint Numbers_

    _Type_
          Breakpoint, watchpoint, or catchpoint.

    _Disposition_
          Whether the breakpoint is marked to be disabled or deleted
          when hit.

    _Enabled or Disabled_
          Enabled breakpoints are marked with `y'.  `n' marks
          breakpoints that are not enabled.

    _Address_
          Where the breakpoint is in your program, as a memory address.
          If the breakpoint is pending (see below for details) on a
          future load of a shared library, the address will be listed
          as `<PENDING>'.

    _What_
          Where the breakpoint is in the source for your program, as a
          file and line number.  For a pending breakpoint, the original
          string passed to the breakpoint command will be listed as it
          cannot be resolved until the appropriate shared library is
          loaded in the future.

     If a breakpoint is conditional, `info break' shows the condition on
     the line following the affected breakpoint; breakpoint commands,
     if any, are listed after that.  A pending breakpoint is allowed to
     have a condition specified for it.  The condition is not parsed
     for validity until a shared library is loaded that allows the
     pending breakpoint to resolve to a valid location.

     `info break' with a breakpoint number N as argument lists only
     that breakpoint.  The convenience variable `$_' and the default
     examining-address for the `x' command are set to the address of
     the last breakpoint listed (*note Examining memory: Memory.).

     `info break' displays a count of the number of times the breakpoint
     has been hit.  This is especially useful in conjunction with the
     `ignore' command.  You can ignore a large number of breakpoint
     hits, look at the breakpoint info to see how many times the
     breakpoint was hit, and then run again, ignoring one less than
     that number.  This will get you quickly to the last hit of that
     breakpoint.

   GDB allows you to set any number of breakpoints at the same place in
your program.  There is nothing silly or meaningless about this.  When
the breakpoints are conditional, this is even useful (*note Break
conditions: Conditions.).

   If a specified breakpoint location cannot be found, it may be due to
the fact that the location is in a shared library that is yet to be
loaded.  In such a case, you may want GDB to create a special
breakpoint (known as a "pending breakpoint") that attempts to resolve
itself in the future when an appropriate shared library gets loaded.

   Pending breakpoints are useful to set at the start of your GDB
session for locations that you know will be dynamically loaded later by
the program being debugged.  When shared libraries are loaded, a check
is made to see if the load resolves any pending breakpoint locations.
If a pending breakpoint location gets resolved, a regular breakpoint is
created and the original pending breakpoint is removed.

   GDB provides some additional commands for controlling pending
breakpoint support:

`set breakpoint pending auto'
     This is the default behavior.  When GDB cannot find the breakpoint
     location, it queries you whether a pending breakpoint should be
     created.

`set breakpoint pending on'
     This indicates that an unrecognized breakpoint location should
     automatically result in a pending breakpoint being created.

`set breakpoint pending off'
     This indicates that pending breakpoints are not to be created.  Any
     unrecognized breakpoint location results in an error.  This
     setting does not affect any pending breakpoints previously created.

`show breakpoint pending'
     Show the current behavior setting for creating pending breakpoints.

   Normal breakpoint operations apply to pending breakpoints as well.
You may specify a condition for a pending breakpoint and/or commands to
run when the breakpoint is reached.  You can also enable or disable the
pending breakpoint.  When you specify a condition for a pending
breakpoint, the parsing of the condition will be deferred until the
point where the pending breakpoint location is resolved.  Disabling a
pending breakpoint tells GDB to not attempt to resolve the breakpoint
on any subsequent shared library load.  When a pending breakpoint is
re-enabled, GDB checks to see if the location is already resolved.
This is done because any number of shared library loads could have
occurred since the time the breakpoint was disabled and one or more of
these loads could resolve the location.

   GDB itself sometimes sets breakpoints in your program for special
purposes, such as proper handling of `longjmp' (in C programs).  These
internal breakpoints are assigned negative numbers, starting with `-1';
`info breakpoints' does not display them.  You can see these
breakpoints with the GDB maintenance command `maint info breakpoints'
(*note maint info breakpoints::).


File: gdb.info,  Node: Set Watchpoints,  Next: Set Catchpoints,  Prev: Set Breaks,  Up: Breakpoints

Setting watchpoints
-------------------

You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.

   Depending on your system, watchpoints may be implemented in software
or hardware.  GDB does software watchpointing by single-stepping your
program and testing the variable's value each time, which is hundreds of
times slower than normal execution.  (But this may still be worth it, to
catch errors where you have no clue what part of your program is the
culprit.)

   On some systems, such as HP-UX, GNU/Linux and some other x86-based
targets, GDB includes support for hardware watchpoints, which do not
slow down the running of your program.

`watch EXPR'
     Set a watchpoint for an expression.  GDB will break when EXPR is
     written into by the program and its value changes.

`rwatch EXPR'
     Set a watchpoint that will break when watch EXPR is read by the
     program.

`awatch EXPR'
     Set a watchpoint that will break when EXPR is either read or
     written into by the program.

`info watchpoints'
     This command prints a list of watchpoints, breakpoints, and
     catchpoints; it is the same as `info break'.

   GDB sets a "hardware watchpoint" if possible.  Hardware watchpoints
execute very quickly, and the debugger reports a change in value at the
exact instruction where the change occurs.  If GDB cannot set a
hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the
instruction, after the change occurs.

   When you issue the `watch' command, GDB reports

     Hardware watchpoint NUM: EXPR

if it was able to set a hardware watchpoint.

   Currently, the `awatch' and `rwatch' commands can only set hardware
watchpoints, because accesses to data that don't change the value of
the watched expression cannot be detected without examining every
instruction as it is being executed, and GDB does not do that
currently.  If GDB finds that it is unable to set a hardware breakpoint
with the `awatch' or `rwatch' command, it will print a message like
this:

     Expression cannot be implemented with read/access watchpoint.

   Sometimes, GDB cannot set a hardware watchpoint because the data
type of the watched expression is wider than what a hardware watchpoint
on the target machine can handle.  For example, some systems can only
watch regions that are up to 4 bytes wide; on such systems you cannot
set hardware watchpoints for an expression that yields a
double-precision floating-point number (which is typically 8 bytes
wide).  As a work-around, it might be possible to break the large region
into a series of smaller ones and watch them with separate watchpoints.

   If you set too many hardware watchpoints, GDB might be unable to
insert all of them when you resume the execution of your program.
Since the precise number of active watchpoints is unknown until such
time as the program is about to be resumed, GDB might not be able to
warn you about this when you set the watchpoints, and the warning will
be printed only when the program is resumed:

     Hardware watchpoint NUM: Could not insert watchpoint

If this happens, delete or disable some of the watchpoints.

   The SPARClite DSU will generate traps when a program accesses some
data or instruction address that is assigned to the debug registers.
For the data addresses, DSU facilitates the `watch' command.  However
the hardware breakpoint registers can only take two data watchpoints,
and both watchpoints must be the same kind.  For example, you can set
two watchpoints with `watch' commands, two with `rwatch' commands, *or*
two with `awatch' commands, but you cannot set one watchpoint with one
command and the other with a different command.  GDB will reject the
command if you try to mix watchpoints.  Delete or disable unused
watchpoint commands before setting new ones.

   If you call a function interactively using `print' or `call', any
watchpoints you have set will be inactive until GDB reaches another
kind of breakpoint or the call completes.

   GDB automatically deletes watchpoints that watch local (automatic)
variables, or expressions that involve such variables, when they go out
of scope, that is, when the execution leaves the block in which these
variables were defined.  In particular, when the program being debugged
terminates, _all_ local variables go out of scope, and so only
watchpoints that watch global variables remain set.  If you rerun the
program, you will need to set all such watchpoints again.  One way of
doing that would be to set a code breakpoint at the entry to the `main'
function and when it breaks, set all the watchpoints.

     _Warning:_ In multi-thread programs, watchpoints have only limited
     usefulness.  With the current watchpoint implementation, GDB can
     only watch the value of an expression _in a single thread_.  If
     you are confident that the expression can only change due to the
     current thread's activity (and if you are also confident that no
     other thread can become current), then you can use watchpoints as
     usual.  However, GDB may not notice when a non-current thread's
     activity changes the expression.

     _HP-UX Warning:_ In multi-thread programs, software watchpoints
     have only limited usefulness.  If GDB creates a software
     watchpoint, it can only watch the value of an expression _in a
     single thread_.  If you are confident that the expression can only
     change due to the current thread's activity (and if you are also
     confident that no other thread can become current), then you can
     use software watchpoints as usual.  However, GDB may not notice
     when a non-current thread's activity changes the expression.
     (Hardware watchpoints, in contrast, watch an expression in all
     threads.)

   *Note set remote hardware-watchpoint-limit::.


File: gdb.info,  Node: Set Catchpoints,  Next: Delete Breaks,  Prev: Set Watchpoints,  Up: Breakpoints

Setting catchpoints
-------------------

You can use "catchpoints" to cause the debugger to stop for certain
kinds of program events, such as C++ exceptions or the loading of a
shared library.  Use the `catch' command to set a catchpoint.

`catch EVENT'
     Stop when EVENT occurs.  EVENT can be any of the following:
    `throw'
          The throwing of a C++ exception.

    `catch'
          The catching of a C++ exception.

    `exec'
          A call to `exec'.  This is currently only available for HP-UX.

    `fork'
          A call to `fork'.  This is currently only available for HP-UX.

    `vfork'
          A call to `vfork'.  This is currently only available for
          HP-UX.

    `load'
    `load LIBNAME'
          The dynamic loading of any shared library, or the loading of
          the library LIBNAME.  This is currently only available for
          HP-UX.

    `unload'
    `unload LIBNAME'
          The unloading of any dynamically loaded shared library, or
          the unloading of the library LIBNAME.  This is currently only
          available for HP-UX.

`tcatch EVENT'
     Set a catchpoint that is enabled only for one stop.  The
     catchpoint is automatically deleted after the first time the event
     is caught.


   Use the `info break' command to list the current catchpoints.

   There are currently some limitations to C++ exception handling
(`catch throw' and `catch catch') in GDB:

   * If you call a function interactively, GDB normally returns control
     to you when the function has finished executing.  If the call
     raises an exception, however, the call may bypass the mechanism
     that returns control to you and cause your program either to abort
     or to simply continue running until it hits a breakpoint, catches
     a signal that GDB is listening for, or exits.  This is the case
     even if you set a catchpoint for the exception; catchpoints on
     exceptions are disabled within interactive calls.

   * You cannot raise an exception interactively.

   * You cannot install an exception handler interactively.

   Sometimes `catch' is not the best way to debug exception handling:
if you need to know exactly where an exception is raised, it is better
to stop _before_ the exception handler is called, since that way you
can see the stack before any unwinding takes place.  If you set a
breakpoint in an exception handler instead, it may not be easy to find
out where the exception was raised.

   To stop just before an exception handler is called, you need some
knowledge of the implementation.  In the case of GNU C++, exceptions are
raised by calling a library function named `__raise_exception' which
has the following ANSI C interface:

         /* ADDR is where the exception identifier is stored.
            ID is the exception identifier.  */
         void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding
takes place, set a breakpoint on `__raise_exception' (*note
Breakpoints; watchpoints; and exceptions: Breakpoints.).

   With a conditional breakpoint (*note Break conditions: Conditions.)
that depends on the value of ID, you can stop your program when a
specific exception is raised.  You can use multiple conditional
breakpoints to stop your program when any of a number of exceptions are
raised.


File: gdb.info,  Node: Delete Breaks,  Next: Disabling,  Prev: Set Catchpoints,  Up: Breakpoints

Deleting breakpoints
--------------------

It is often necessary to eliminate a breakpoint, watchpoint, or
catchpoint once it has done its job and you no longer want your program
to stop there.  This is called "deleting" the breakpoint.  A breakpoint
that has been deleted no longer exists; it is forgotten.

   With the `clear' command you can delete breakpoints according to
where they are in your program.  With the `delete' command you can
delete individual breakpoints, watchpoints, or catchpoints by specifying
their breakpoint numbers.

   It is not necessary to delete a breakpoint to proceed past it.  GDB
automatically ignores breakpoints on the first instruction to be
executed when you continue execution without changing the execution
address.

`clear'
     Delete any breakpoints at the next instruction to be executed in
     the selected stack frame (*note Selecting a frame: Selection.).
     When the innermost frame is selected, this is a good way to delete
     a breakpoint where your program just stopped.

`clear FUNCTION'
`clear FILENAME:FUNCTION'
     Delete any breakpoints set at entry to the function FUNCTION.

`clear LINENUM'
`clear FILENAME:LINENUM'
     Delete any breakpoints set at or within the code of the specified
     line.

`delete [breakpoints] [RANGE...]'
     Delete the breakpoints, watchpoints, or catchpoints of the
     breakpoint ranges specified as arguments.  If no argument is
     specified, delete all breakpoints (GDB asks confirmation, unless
     you have `set confirm off').  You can abbreviate this command as
     `d'.


File: gdb.info,  Node: Disabling,  Next: Conditions,  Prev: Delete Breaks,  Up: Breakpoints

Disabling breakpoints
---------------------

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
prefer to "disable" it.  This makes the breakpoint inoperative as if it
had been deleted, but remembers the information on the breakpoint so
that you can "enable" it again later.

   You disable and enable breakpoints, watchpoints, and catchpoints with
the `enable' and `disable' commands, optionally specifying one or more
breakpoint numbers as arguments.  Use `info break' or `info watch' to
print a list of breakpoints, watchpoints, and catchpoints if you do not
know which numbers to use.

   A breakpoint, watchpoint, or catchpoint can have any of four
different states of enablement:

   * Enabled.  The breakpoint stops your program.  A breakpoint set
     with the `break' command starts out in this state.

   * Disabled.  The breakpoint has no effect on your program.

   * Enabled once.  The breakpoint stops your program, but then becomes
     disabled.

   * Enabled for deletion.  The breakpoint stops your program, but
     immediately after it does so it is deleted permanently.  A
     breakpoint set with the `tbreak' command starts out in this state.

   You can use the following commands to enable or disable breakpoints,
watchpoints, and catchpoints:

`disable [breakpoints] [RANGE...]'
     Disable the specified breakpoints--or all breakpoints, if none are
     listed.  A disabled breakpoint has no effect but is not forgotten.
     All options such as ignore-counts, conditions and commands are
     remembered in case the breakpoint is enabled again later.  You may
     abbreviate `disable' as `dis'.

`enable [breakpoints] [RANGE...]'
     Enable the specified breakpoints (or all defined breakpoints).
     They become effective once again in stopping your program.

`enable [breakpoints] once RANGE...'
     Enable the specified breakpoints temporarily.  GDB disables any of
     these breakpoints immediately after stopping your program.

`enable [breakpoints] delete RANGE...'
     Enable the specified breakpoints to work once, then die.  GDB
     deletes any of these breakpoints as soon as your program stops
     there.

   Except for a breakpoint set with `tbreak' (*note Setting
breakpoints: Set Breaks.), breakpoints that you set are initially
enabled; subsequently, they become disabled or enabled only when you
use one of the commands above.  (The command `until' can set and delete
a breakpoint of its own, but it does not change the state of your other
breakpoints; see *Note Continuing and stepping: Continuing and
Stepping.)


File: gdb.info,  Node: Conditions,  Next: Break Commands,  Prev: Disabling,  Up: Breakpoints

Break conditions
----------------

The simplest sort of breakpoint breaks every time your program reaches a
specified place.  You can also specify a "condition" for a breakpoint.
A condition is just a Boolean expression in your programming language
(*note Expressions: Expressions.).  A breakpoint with a condition
evaluates the expression each time your program reaches it, and your
program stops only if the condition is _true_.

   This is the converse of using assertions for program validation; in
that situation, you want to stop when the assertion is violated--that
is, when the condition is false.  In C, if you want to test an
assertion expressed by the condition ASSERT, you should set the
condition `! ASSERT' on the appropriate breakpoint.

   Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow--but
it might be simpler, say, to just set a watchpoint on a variable name,
and specify a condition that tests whether the new value is an
interesting one.

   Break conditions can have side effects, and may even call functions
in your program.  This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to format
special data structures. The effects are completely predictable unless
there is another enabled breakpoint at the same address.  (In that
case, GDB might see the other breakpoint first and stop your program
without checking the condition of this one.)  Note that breakpoint
commands are usually more convenient and flexible than break conditions
for the purpose of performing side effects when a breakpoint is reached
(*note Breakpoint command lists: Break Commands.).

   Break conditions can be specified when a breakpoint is set, by using
`if' in the arguments to the `break' command.  *Note Setting
breakpoints: Set Breaks.  They can also be changed at any time with the
`condition' command.

   You can also use the `if' keyword with the `watch' command.  The
`catch' command does not recognize the `if' keyword; `condition' is the
only way to impose a further condition on a catchpoint.

`condition BNUM EXPRESSION'
     Specify EXPRESSION as the break condition for breakpoint,
     watchpoint, or catchpoint number BNUM.  After you set a condition,
     breakpoint BNUM stops your program only if the value of EXPRESSION
     is true (nonzero, in C).  When you use `condition', GDB checks
     EXPRESSION immediately for syntactic correctness, and to determine
     whether symbols in it have referents in the context of your
     breakpoint.  If EXPRESSION uses symbols not referenced in the
     context of the breakpoint, GDB prints an error message:

          No symbol "foo" in current context.

     GDB does not actually evaluate EXPRESSION at the time the
     `condition' command (or a command that sets a breakpoint with a
     condition, like `break if ...') is given, however.  *Note
     Expressions: Expressions.

`condition BNUM'
     Remove the condition from breakpoint number BNUM.  It becomes an
     ordinary unconditional breakpoint.

   A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times.  This is so
useful that there is a special way to do it, using the "ignore count"
of the breakpoint.  Every breakpoint has an ignore count, which is an
integer.  Most of the time, the ignore count is zero, and therefore has
no effect.  But if your program reaches a breakpoint whose ignore count
is positive, then instead of stopping, it just decrements the ignore
count by one and continues.  As a result, if the ignore count value is
N, the breakpoint does not stop the next N times your program reaches
it.

`ignore BNUM COUNT'
     Set the ignore count of breakpoint number BNUM to COUNT.  The next
     COUNT times the breakpoint is reached, your program's execution
     does not stop; other than to decrement the ignore count, GDB takes
     no action.

     To make the breakpoint stop the next time it is reached, specify a
     count of zero.

     When you use `continue' to resume execution of your program from a
     breakpoint, you can specify an ignore count directly as an
     argument to `continue', rather than using `ignore'.  *Note
     Continuing and stepping: Continuing and Stepping.

     If a breakpoint has a positive ignore count and a condition, the
     condition is not checked.  Once the ignore count reaches zero, GDB
     resumes checking the condition.

     You could achieve the effect of the ignore count with a condition
     such as `$foo-- <= 0' using a debugger convenience variable that
     is decremented each time.  *Note Convenience variables:
     Convenience Vars.

   Ignore counts apply to breakpoints, watchpoints, and catchpoints.


File: gdb.info,  Node: Break Commands,  Next: Breakpoint Menus,  Prev: Conditions,  Up: Breakpoints

Breakpoint command lists
------------------------

You can give any breakpoint (or watchpoint or catchpoint) a series of
commands to execute when your program stops due to that breakpoint.  For
example, you might want to print the values of certain expressions, or
enable other breakpoints.

`commands [BNUM]'
`... COMMAND-LIST ...'
`end'
     Specify a list of commands for breakpoint number BNUM.  The
     commands themselves appear on the following lines.  Type a line
     containing just `end' to terminate the commands.

     To remove all commands from a breakpoint, type `commands' and
     follow it immediately with `end'; that is, give no commands.

     With no BNUM argument, `commands' refers to the last breakpoint,
     watchpoint, or catchpoint set (not to the breakpoint most recently
     encountered).

   Pressing <RET> as a means of repeating the last GDB command is
disabled within a COMMAND-LIST.

   You can use breakpoint commands to start your program up again.
Simply use the `continue' command, or `step', or any other command that
resumes execution.

   Any other commands in the command list, after a command that resumes
execution, are ignored.  This is because any time you resume execution
(even with a simple `next' or `step'), you may encounter another
breakpoint--which could have its own command list, leading to
ambiguities about which list to execute.

   If the first command you specify in a command list is `silent', the
usual message about stopping at a breakpoint is not printed.  This may
be desirable for breakpoints that are to print a specific message and
then continue.  If none of the remaining commands print anything, you
see no sign that the breakpoint was reached.  `silent' is meaningful
only at the beginning of a breakpoint command list.

   The commands `echo', `output', and `printf' allow you to print
precisely controlled output, and are often useful in silent
breakpoints.  *Note Commands for controlled output: Output.

   For example, here is how you could use breakpoint commands to print
the value of `x' at entry to `foo' whenever `x' is positive.

     break foo if x>0
     commands
     silent
     printf "x is %d\n",x
     cont
     end

   One application for breakpoint commands is to compensate for one bug
so you can test for another.  Put a breakpoint just after the erroneous
line of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them.  End with the `continue' command so
that your program does not stop, and start with the `silent' command so
that no output is produced.  Here is an example:

     break 403
     commands
     silent
     set x = y + 4
     cont
     end


File: gdb.info,  Node: Breakpoint Menus,  Next: Error in Breakpoints,  Prev: Break Commands,  Up: Breakpoints

Breakpoint menus
----------------

Some programming languages (notably C++ and Objective-C) permit a
single function name to be defined several times, for application in
different contexts.  This is called "overloading".  When a function
name is overloaded, `break FUNCTION' is not enough to tell GDB where
you want a breakpoint.  If you realize this is a problem, you can use
something like `break FUNCTION(TYPES)' to specify which particular
version of the function you want.  Otherwise, GDB offers you a menu of
numbered choices for different possible breakpoints, and waits for your
selection with the prompt `>'.  The first two options are always `[0]
cancel' and `[1] all'.  Typing `1' sets a breakpoint at each definition
of FUNCTION, and typing `0' aborts the `break' command without setting
any new breakpoints.

   For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol `String::after'.  We choose three
particular definitions of that function name:

     (gdb) b String::after
     [0] cancel
     [1] all
     [2] file:String.cc; line number:867
     [3] file:String.cc; line number:860
     [4] file:String.cc; line number:875
     [5] file:String.cc; line number:853
     [6] file:String.cc; line number:846
     [7] file:String.cc; line number:735
     > 2 4 6
     Breakpoint 1 at 0xb26c: file String.cc, line 867.
     Breakpoint 2 at 0xb344: file String.cc, line 875.
     Breakpoint 3 at 0xafcc: file String.cc, line 846.
     Multiple breakpoints were set.
     Use the "delete" command to delete unwanted
      breakpoints.
     (gdb)


File: gdb.info,  Node: Error in Breakpoints,  Next: Breakpoint related warnings,  Prev: Breakpoint Menus,  Up: Breakpoints

"Cannot insert breakpoints"
---------------------------

Under some operating systems, breakpoints cannot be used in a program if
any other process is running that program.  In this situation,
attempting to run or continue a program with a breakpoint causes GDB to
print an error message:

     Cannot insert breakpoints.
     The same program may be running in another process.

   When this happens, you have three ways to proceed:

  1. Remove or disable the breakpoints, then continue.

  2. Suspend GDB, and copy the file containing your program to a new
     name.  Resume GDB and use the `exec-file' command to specify that
     GDB should run your program under that name.  Then start your
     program again.

  3. Relink your program so that the text segment is nonsharable, using
     the linker option `-N'.  The operating system limitation may not
     apply to nonsharable executables.

   A similar message can be printed if you request too many active
hardware-assisted breakpoints and watchpoints:

     Stopped; cannot insert breakpoints.
     You may have requested too many hardware breakpoints and watchpoints.

This message is printed when you attempt to resume the program, since
only then GDB knows exactly how many hardware breakpoints and
watchpoints it needs to insert.

   When this message is printed, you need to disable or remove some of
the hardware-assisted breakpoints and watchpoints, and then continue.


File: gdb.info,  Node: Breakpoint related warnings,  Prev: Error in Breakpoints,  Up: Breakpoints

"Breakpoint address adjusted..."
--------------------------------

Some processor architectures place constraints on the addresses at
which breakpoints may be placed.  For architectures thus constrained,
GDB will attempt to adjust the breakpoint's address to comply with the
constraints dictated by the architecture.

   One example of such an architecture is the Fujitsu FR-V.  The FR-V is
a VLIW architecture in which a number of RISC-like instructions may be
bundled together for parallel execution.  The FR-V architecture
constrains the location of a breakpoint instruction within such a
bundle to the instruction with the lowest address.  GDB honors this
constraint by adjusting a breakpoint's address to the first in the
bundle.

   It is not uncommon for optimized code to have bundles which contain
instructions from different source statements, thus it may happen that
a breakpoint's address will be adjusted from one source statement to
another.  Since this adjustment may significantly alter GDB's
breakpoint related behavior from what the user expects, a warning is
printed when the breakpoint is first set and also when the breakpoint
is hit.

   A warning like the one below is printed when setting a breakpoint
that's been subject to address adjustment:

     warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.

   Such warnings are printed both for user settable and GDB's internal
breakpoints.  If you see one of these warnings, you should verify that
a breakpoint set at the adjusted address will have the desired affect.
If not, the breakpoint in question may be removed and other breakpoints
may be set which will have the desired behavior.  E.g., it may be
sufficient to place the breakpoint at a later instruction.  A
conditional breakpoint may also be useful in some cases to prevent the
breakpoint from triggering too often.

   GDB will also issue a warning when stopping at one of these adjusted
breakpoints:

     warning: Breakpoint 1 address previously adjusted from 0x00010414
     to 0x00010410.

   When this warning is encountered, it may be too late to take remedial
action except in cases where the breakpoint is hit earlier or more
frequently than expected.


File: gdb.info,  Node: Continuing and Stepping,  Next: Signals,  Prev: Breakpoints,  Up: Stopping

Continuing and stepping
=======================

"Continuing" means resuming program execution until your program
completes normally.  In contrast, "stepping" means executing just one
more "step" of your program, where "step" may mean either one line of
source code, or one machine instruction (depending on what particular
command you use).  Either when continuing or when stepping, your
program may stop even sooner, due to a breakpoint or a signal.  (If it
stops due to a signal, you may want to use `handle', or use `signal 0'
to resume execution.  *Note Signals: Signals.)

`continue [IGNORE-COUNT]'
`c [IGNORE-COUNT]'
`fg [IGNORE-COUNT]'
     Resume program execution, at the address where your program last
     stopped; any breakpoints set at that address are bypassed.  The
     optional argument IGNORE-COUNT allows you to specify a further
     number of times to ignore a breakpoint at this location; its
     effect is like that of `ignore' (*note Break conditions:
     Conditions.).

     The argument IGNORE-COUNT is meaningful only when your program
     stopped due to a breakpoint.  At other times, the argument to
     `continue' is ignored.

     The synonyms `c' and `fg' (for "foreground", as the debugged
     program is deemed to be the foreground program) are provided
     purely for convenience, and have exactly the same behavior as
     `continue'.

   To resume execution at a different place, you can use `return'
(*note Returning from a function: Returning.) to go back to the calling
function; or `jump' (*note Continuing at a different address: Jumping.)
to go to an arbitrary location in your program.

   A typical technique for using stepping is to set a breakpoint (*note
Breakpoints; watchpoints; and catchpoints: Breakpoints.) at the
beginning of the function or the section of your program where a problem
is believed to lie, run your program until it stops at that breakpoint,
and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

`step'
     Continue running your program until control reaches a different
     source line, then stop it and return control to GDB.  This command
     is abbreviated `s'.

          _Warning:_ If you use the `step' command while control is
          within a function that was compiled without debugging
          information, execution proceeds until control reaches a
          function that does have debugging information.  Likewise, it
          will not step into a function which is compiled without
          debugging information.  To step through functions without
          debugging information, use the `stepi' command, described
          below.

     The `step' command only stops at the first instruction of a source
     line.  This prevents the multiple stops that could otherwise occur
     in `switch' statements, `for' loops, etc.  `step' continues to
     stop if a function that has debugging information is called within
     the line.  In other words, `step' _steps inside_ any functions
     called within the line.

     Also, the `step' command only enters a function if there is line
     number information for the function.  Otherwise it acts like the
     `next' command.  This avoids problems when using `cc -gl' on MIPS
     machines.  Previously, `step' entered subroutines if there was any
     debugging information about the routine.

`step COUNT'
     Continue running as in `step', but do so COUNT times.  If a
     breakpoint is reached, or a signal not related to stepping occurs
     before COUNT steps, stepping stops right away.

`next [COUNT]'
     Continue to the next source line in the current (innermost) stack
     frame.  This is similar to `step', but function calls that appear
     within the line of code are executed without stopping.  Execution
     stops when control reaches a different line of code at the
     original stack level that was executing when you gave the `next'
     command.  This command is abbreviated `n'.

     An argument COUNT is a repeat count, as for `step'.

     The `next' command only stops at the first instruction of a source
     line.  This prevents multiple stops that could otherwise occur in
     `switch' statements, `for' loops, etc.

`set step-mode'
`set step-mode on'
     The `set step-mode on' command causes the `step' command to stop
     at the first instruction of a function which contains no debug line
     information rather than stepping over it.

     This is useful in cases where you may be interested in inspecting
     the machine instructions of a function which has no symbolic info
     and do not want GDB to automatically skip over this function.

`set step-mode off'
     Causes the `step' command to step over any functions which
     contains no debug information.  This is the default.

`finish'
     Continue running until just after function in the selected stack
     frame returns.  Print the returned value (if any).

     Contrast this with the `return' command (*note Returning from a
     function: Returning.).

`until'
`u'
     Continue running until a source line past the current line, in the
     current stack frame, is reached.  This command is used to avoid
     single stepping through a loop more than once.  It is like the
     `next' command, except that when `until' encounters a jump, it
     automatically continues execution until the program counter is
     greater than the address of the jump.

     This means that when you reach the end of a loop after single
     stepping though it, `until' makes your program continue execution
     until it exits the loop.  In contrast, a `next' command at the end
     of a loop simply steps back to the beginning of the loop, which
     forces you to step through the next iteration.

     `until' always stops your program if it attempts to exit the
     current stack frame.

     `until' may produce somewhat counterintuitive results if the order
     of machine code does not match the order of the source lines.  For
     example, in the following excerpt from a debugging session, the `f'
     (`frame') command shows that execution is stopped at line `206';
     yet when we use `until', we get to line `195':

          (gdb) f
          #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
          206                 expand_input();
          (gdb) until
          195             for ( ; argc > 0; NEXTARG) {

     This happened because, for execution efficiency, the compiler had
     generated code for the loop closure test at the end, rather than
     the start, of the loop--even though the test in a C `for'-loop is
     written before the body of the loop.  The `until' command appeared
     to step back to the beginning of the loop when it advanced to this
     expression; however, it has not really gone to an earlier
     statement--not in terms of the actual machine code.

     `until' with no argument works by means of single instruction
     stepping, and hence is slower than `until' with an argument.

`until LOCATION'
`u LOCATION'
     Continue running your program until either the specified location
     is reached, or the current stack frame returns.  LOCATION is any of
     the forms of argument acceptable to `break' (*note Setting
     breakpoints: Set Breaks.).  This form of the command uses
     breakpoints, and hence is quicker than `until' without an
     argument.  The specified location is actually reached only if it
     is in the current frame.  This implies that `until' can be used to
     skip over recursive function invocations.  For instance in the
     code below, if the current location is line `96', issuing `until
     99' will execute the program up to line `99' in the same
     invocation of factorial, i.e. after the inner invocations have
     returned.

          94	int factorial (int value)
          95	{
          96	    if (value > 1) {
          97            value *= factorial (value - 1);
          98	    }
          99	    return (value);
          100     }

`advance LOCATION'
     Continue running the program up to the given location.  An
     argument is required, anything of the same form as arguments for
     the `break' command.  Execution will also stop upon exit from the
     current stack frame.  This command is similar to `until', but
     `advance' will not skip over recursive function calls, and the
     target location doesn't have to be in the same frame as the
     current one.

`stepi'
`stepi ARG'
`si'
     Execute one machine instruction, then stop and return to the
     debugger.

     It is often useful to do `display/i $pc' when stepping by machine
     instructions.  This makes GDB automatically display the next
     instruction to be executed, each time your program stops.  *Note
     Automatic display: Auto Display.

     An argument is a repeat count, as in `step'.

`nexti'
`nexti ARG'
`ni'
     Execute one machine instruction, but if it is a function call,
     proceed until the function returns.

     An argument is a repeat count, as in `next'.


File: gdb.info,  Node: Signals,  Next: Thread Stops,  Prev: Continuing and Stepping,  Up: Stopping

Signals
=======

A signal is an asynchronous event that can happen in a program.  The
operating system defines the possible kinds of signals, and gives each
kind a name and a number.  For example, in Unix `SIGINT' is the signal
a program gets when you type an interrupt character (often `C-c');
`SIGSEGV' is the signal a program gets from referencing a place in
memory far away from all the areas in use; `SIGALRM' occurs when the
alarm clock timer goes off (which happens only if your program has
requested an alarm).

   Some signals, including `SIGALRM', are a normal part of the
functioning of your program.  Others, such as `SIGSEGV', indicate
errors; these signals are "fatal" (they kill your program immediately)
if the program has not specified in advance some other way to handle
the signal.  `SIGINT' does not indicate an error in your program, but
it is normally fatal so it can carry out the purpose of the interrupt:
to kill the program.

   GDB has the ability to detect any occurrence of a signal in your
program.  You can tell GDB in advance what to do for each kind of
signal.

   Normally, GDB is set up to let the non-erroneous signals like
`SIGALRM' be silently passed to your program (so as not to interfere
with their role in the program's functioning) but to stop your program
immediately whenever an error signal happens.  You can change these
settings with the `handle' command.

`info signals'
`info handle'
     Print a table of all the kinds of signals and how GDB has been
     told to handle each one.  You can use this to see the signal
     numbers of all the defined types of signals.

     `info handle' is an alias for `info signals'.

`handle SIGNAL KEYWORDS...'
     Change the way GDB handles signal SIGNAL.  SIGNAL can be the
     number of a signal or its name (with or without the `SIG' at the
     beginning); a list of signal numbers of the form `LOW-HIGH'; or
     the word `all', meaning all the known signals.  The KEYWORDS say
     what change to make.

   The keywords allowed by the `handle' command can be abbreviated.
Their full names are:

`nostop'
     GDB should not stop your program when this signal happens.  It may
     still print a message telling you that the signal has come in.

`stop'
     GDB should stop your program when this signal happens.  This
     implies the `print' keyword as well.

`print'
     GDB should print a message when this signal happens.

`noprint'
     GDB should not mention the occurrence of the signal at all.  This
     implies the `nostop' keyword as well.

`pass'
`noignore'
     GDB should allow your program to see this signal; your program can
     handle the signal, or else it may terminate if the signal is fatal
     and not handled.  `pass' and `noignore' are synonyms.

`nopass'
`ignore'
     GDB should not allow your program to see this signal.  `nopass'
     and `ignore' are synonyms.

   When a signal stops your program, the signal is not visible to the
program until you continue.  Your program sees the signal then, if
`pass' is in effect for the signal in question _at that time_.  In
other words, after GDB reports a signal, you can use the `handle'
command with `pass' or `nopass' to control whether your program sees
that signal when you continue.

   The default is set to `nostop', `noprint', `pass' for non-erroneous
signals such as `SIGALRM', `SIGWINCH' and `SIGCHLD', and to `stop',
`print', `pass' for the erroneous signals.

   You can also use the `signal' command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see,
or to give it any signal at any time.  For example, if your program
stopped due to some sort of memory reference error, you might store
correct values into the erroneous variables and continue, hoping to see
more execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal.  To prevent this,
you can continue with `signal 0'.  *Note Giving your program a signal:
Signaling.


File: gdb.info,  Node: Thread Stops,  Prev: Signals,  Up: Stopping

Stopping and starting multi-thread programs
===========================================

When your program has multiple threads (*note Debugging programs with
multiple threads: Threads.), you can choose whether to set breakpoints
on all threads, or on a particular thread.

`break LINESPEC thread THREADNO'
`break LINESPEC thread THREADNO if ...'
     LINESPEC specifies source lines; there are several ways of writing
     them, but the effect is always to specify some source line.

     Use the qualifier `thread THREADNO' with a breakpoint command to
     specify that you only want GDB to stop the program when a
     particular thread reaches this breakpoint.  THREADNO is one of the
     numeric thread identifiers assigned by GDB, shown in the first
     column of the `info threads' display.

     If you do not specify `thread THREADNO' when you set a breakpoint,
     the breakpoint applies to _all_ threads of your program.

     You can use the `thread' qualifier on conditional breakpoints as
     well; in this case, place `thread THREADNO' before the breakpoint
     condition, like this:

          (gdb) break frik.c:13 thread 28 if bartab > lim


   Whenever your program stops under GDB for any reason, _all_ threads
of execution stop, not just the current thread.  This allows you to
examine the overall state of the program, including switching between
threads, without worrying that things may change underfoot.

   There is an unfortunate side effect.  If one thread stops for a
breakpoint, or for some other reason, and another thread is blocked in a
system call, then the system call may return prematurely.  This is a
consequence of the interaction between multiple threads and the signals
that GDB uses to implement breakpoints and other events that stop
execution.

   To handle this problem, your program should check the return value of
each system call and react appropriately.  This is good programming
style anyways.

   For example, do not write code like this:

       sleep (10);

   The call to `sleep' will return early if a different thread stops at
a breakpoint or for some other reason.

   Instead, write this:

       int unslept = 10;
       while (unslept > 0)
         unslept = sleep (unslept);

   A system call is allowed to return early, so the system is still
conforming to its specification.  But GDB does cause your
multi-threaded program to behave differently than it would without GDB.

   Also, GDB uses internal breakpoints in the thread library to monitor
certain events such as thread creation and thread destruction.  When
such an event happens, a system call in another thread may return
prematurely, even though your program does not appear to stop.

   Conversely, whenever you restart the program, _all_ threads start
executing.  _This is true even when single-stepping_ with commands like
`step' or `next'.

   In particular, GDB cannot single-step all threads in lockstep.
Since thread scheduling is up to your debugging target's operating
system (not controlled by GDB), other threads may execute more than one
statement while the current thread completes a single step.  Moreover,
in general other threads stop in the middle of a statement, rather than
at a clean statement boundary, when the program stops.

   You might even find your program stopped in another thread after
continuing or even single-stepping.  This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the
first thread completes whatever you requested.

   On some OSes, you can lock the OS scheduler and thus allow only a
single thread to run.

`set scheduler-locking MODE'
     Set the scheduler locking mode.  If it is `off', then there is no
     locking and any thread may run at any time.  If `on', then only the
     current thread may run when the inferior is resumed.  The `step'
     mode optimizes for single-stepping.  It stops other threads from
     "seizing the prompt" by preempting the current thread while you are
     stepping.  Other threads will only rarely (or never) get a chance
     to run when you step.  They are more likely to run when you `next'
     over a function call, and they are completely free to run when you
     use commands like `continue', `until', or `finish'.  However,
     unless another thread hits a breakpoint during its timeslice, they
     will never steal the GDB prompt away from the thread that you are
     debugging.

`show scheduler-locking'
     Display the current scheduler locking mode.


File: gdb.info,  Node: Stack,  Next: Source,  Prev: Stopping,  Up: Top

Examining the Stack
*******************

When your program has stopped, the first thing you need to know is
where it stopped and how it got there.

   Each time your program performs a function call, information about
the call is generated.  That information includes the location of the
call in your program, the arguments of the call, and the local
variables of the function being called.  The information is saved in a
block of data called a "stack frame".  The stack frames are allocated
in a region of memory called the "call stack".

   When your program stops, the GDB commands for examining the stack
allow you to see all of this information.

   One of the stack frames is "selected" by GDB and many GDB commands
refer implicitly to the selected frame.  In particular, whenever you
ask GDB for the value of a variable in your program, the value is found
in the selected frame.  There are special GDB commands to select
whichever frame you are interested in. *Note Selecting a frame:
Selection.

   When your program stops, GDB automatically selects the currently
executing frame and describes it briefly, similar to the `frame'
command (*note Information about a frame: Frame Info.).

* Menu:

* Frames::                      Stack frames
* Backtrace::                   Backtraces
* Selection::                   Selecting a frame
* Frame Info::                  Information on a frame


File: gdb.info,  Node: Frames,  Next: Backtrace,  Up: Stack

Stack frames
============

The call stack is divided up into contiguous pieces called "stack
frames", or "frames" for short; each frame is the data associated with
one call to one function.  The frame contains the arguments given to
the function, the function's local variables, and the address at which
the function is executing.

   When your program is started, the stack has only one frame, that of
the function `main'.  This is called the "initial" frame or the
"outermost" frame.  Each time a function is called, a new frame is
made.  Each time a function returns, the frame for that function
invocation is eliminated.  If a function is recursive, there can be
many frames for the same function.  The frame for the function in which
execution is actually occurring is called the "innermost" frame.  This
is the most recently created of all the stack frames that still exist.

   Inside your program, stack frames are identified by their addresses.
A stack frame consists of many bytes, each of which has its own
address; each kind of computer has a convention for choosing one byte
whose address serves as the address of the frame.  Usually this address
is kept in a register called the "frame pointer register" while
execution is going on in that frame.

   GDB assigns numbers to all existing stack frames, starting with zero
for the innermost frame, one for the frame that called it, and so on
upward.  These numbers do not really exist in your program; they are
assigned by GDB to give you a way of designating stack frames in GDB
commands.

   Some compilers provide a way to compile functions so that they
operate without stack frames.  (For example, the gcc option
     `-fomit-frame-pointer'
   generates functions without a frame.)  This is occasionally done
with heavily used library functions to save the frame setup time.  GDB
has limited facilities for dealing with these function invocations.  If
the innermost function invocation has no stack frame, GDB nevertheless
regards it as though it had a separate frame, which is numbered zero as
usual, allowing correct tracing of the function call chain.  However,
GDB has no provision for frameless functions elsewhere in the stack.

`frame ARGS'
     The `frame' command allows you to move from one stack frame to
     another, and to print the stack frame you select.  ARGS may be
     either the address of the frame or the stack frame number.
     Without an argument, `frame' prints the current stack frame.

`select-frame'
     The `select-frame' command allows you to move from one stack frame
     to another without printing the frame.  This is the silent version
     of `frame'.


File: gdb.info,  Node: Backtrace,  Next: Selection,  Prev: Frames,  Up: Stack

Backtraces
==========

A backtrace is a summary of how your program got where it is.  It shows
one line per frame, for many frames, starting with the currently
executing frame (frame zero), followed by its caller (frame one), and
on up the stack.

`backtrace'
`bt'
     Print a backtrace of the entire stack: one line per frame for all
     frames in the stack.

     You can stop the backtrace at any time by typing the system
     interrupt character, normally `C-c'.

`backtrace N'
`bt N'
     Similar, but print only the innermost N frames.

`backtrace -N'
`bt -N'
     Similar, but print only the outermost N frames.

   The names `where' and `info stack' (abbreviated `info s') are
additional aliases for `backtrace'.

   Each line in the backtrace shows the frame number and the function
name.  The program counter value is also shown--unless you use `set
print address off'.  The backtrace also shows the source file name and
line number, as well as the arguments to the function.  The program
counter value is omitted if it is at the beginning of the code for that
line number.

   Here is an example of a backtrace.  It was made with the command `bt
3', so it shows the innermost three frames.

     #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
         at builtin.c:993
     #1  0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
     #2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
         at macro.c:71
     (More stack frames follow...)

The display for frame zero does not begin with a program counter value,
indicating that your program has stopped at the beginning of the code
for line `993' of `builtin.c'.

   Most programs have a standard user entry point--a place where system
libraries and startup code transition into user code.  For C this is
`main'.  When GDB finds the entry function in a backtrace it will
terminate the backtrace, to avoid tracing into highly system-specific
(and generally uninteresting) code.

   If you need to examine the startup code, or limit the number of
levels in a backtrace, you can change this behavior:

`set backtrace past-main'
`set backtrace past-main on'
     Backtraces will continue past the user entry point.

`set backtrace past-main off'
     Backtraces will stop when they encounter the user entry point.
     This is the default.

`show backtrace past-main'
     Display the current user entry point backtrace policy.

`set backtrace limit N'
`set backtrace limit 0'
     Limit the backtrace to N levels.  A value of zero means unlimited.

`show backtrace limit'
     Display the current limit on backtrace levels.


File: gdb.info,  Node: Selection,  Next: Frame Info,  Prev: Backtrace,  Up: Stack

Selecting a frame
=================

Most commands for examining the stack and other data in your program
work on whichever stack frame is selected at the moment.  Here are the
commands for selecting a stack frame; all of them finish by printing a
brief description of the stack frame just selected.

`frame N'
`f N'
     Select frame number N.  Recall that frame zero is the innermost
     (currently executing) frame, frame one is the frame that called the
     innermost one, and so on.  The highest-numbered frame is the one
     for `main'.

`frame ADDR'
`f ADDR'
     Select the frame at address ADDR.  This is useful mainly if the
     chaining of stack frames has been damaged by a bug, making it
     impossible for GDB to assign numbers properly to all frames.  In
     addition, this can be useful when your program has multiple stacks
     and switches between them.

     On the SPARC architecture, `frame' needs two addresses to select
     an arbitrary frame: a frame pointer and a stack pointer.

     On the MIPS and Alpha architecture, it needs two addresses: a stack
     pointer and a program counter.

     On the 29k architecture, it needs three addresses: a register stack
     pointer, a program counter, and a memory stack pointer.

`up N'
     Move N frames up the stack.  For positive numbers N, this advances
     toward the outermost frame, to higher frame numbers, to frames
     that have existed longer.  N defaults to one.

`down N'
     Move N frames down the stack.  For positive numbers N, this
     advances toward the innermost frame, to lower frame numbers, to
     frames that were created more recently.  N defaults to one.  You
     may abbreviate `down' as `do'.

   All of these commands end by printing two lines of output describing
the frame.  The first line shows the frame number, the function name,
the arguments, and the source file and line number of execution in that
frame.  The second line shows the text of that source line.

   For example:

     (gdb) up
     #1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
         at env.c:10
     10              read_input_file (argv[i]);

   After such a printout, the `list' command with no arguments prints
ten lines centered on the point of execution in the frame.  You can
also edit the program at the point of execution with your favorite
editing program by typing `edit'.  *Note Printing source lines: List,
for details.

`up-silently N'
`down-silently N'
     These two commands are variants of `up' and `down', respectively;
     they differ in that they do their work silently, without causing
     display of the new frame.  They are intended primarily for use in
     GDB command scripts, where the output might be unnecessary and
     distracting.


File: gdb.info,  Node: Frame Info,  Prev: Selection,  Up: Stack

Information about a frame
=========================

There are several other commands to print information about the selected
stack frame.

`frame'
`f'
     When used without any argument, this command does not change which
     frame is selected, but prints a brief description of the currently
     selected stack frame.  It can be abbreviated `f'.  With an
     argument, this command is used to select a stack frame.  *Note
     Selecting a frame: Selection.

`info frame'
`info f'
     This command prints a verbose description of the selected stack
     frame, including:

        * the address of the frame

        * the address of the next frame down (called by this frame)

        * the address of the next frame up (caller of this frame)

        * the language in which the source code corresponding to this
          frame is written

        * the address of the frame's arguments

        * the address of the frame's local variables

        * the program counter saved in it (the address of execution in
          the caller frame)

        * which registers were saved in the frame

     The verbose description is useful when something has gone wrong
     that has made the stack format fail to fit the usual conventions.

`info frame ADDR'
`info f ADDR'
     Print a verbose description of the frame at address ADDR, without
     selecting that frame.  The selected frame remains unchanged by this
     command.  This requires the same kind of address (more than one
     for some architectures) that you specify in the `frame' command.
     *Note Selecting a frame: Selection.

`info args'
     Print the arguments of the selected frame, each on a separate line.

`info locals'
     Print the local variables of the selected frame, each on a separate
     line.  These are all variables (declared either static or
     automatic) accessible at the point of execution of the selected
     frame.

`info catch'
     Print a list of all the exception handlers that are active in the
     current stack frame at the current point of execution.  To see
     other exception handlers, visit the associated frame (using the
     `up', `down', or `frame' commands); then type `info catch'.  *Note
     Setting catchpoints: Set Catchpoints.



File: gdb.info,  Node: Source,  Next: Data,  Prev: Stack,  Up: Top

Examining Source Files
**********************

GDB can print parts of your program's source, since the debugging
information recorded in the program tells GDB what source files were
used to build it.  When your program stops, GDB spontaneously prints
the line where it stopped.  Likewise, when you select a stack frame
(*note Selecting a frame: Selection.), GDB prints the line where
execution in that frame has stopped.  You can print other portions of
source files by explicit command.

   If you use GDB through its GNU Emacs interface, you may prefer to
use Emacs facilities to view source; see *Note Using GDB under GNU
Emacs: Emacs.

* Menu:

* List::                        Printing source lines
* Edit::                        Editing source files
* Search::                      Searching source files
* Source Path::                 Specifying source directories
* Machine Code::                Source and machine code


File: gdb.info,  Node: List,  Next: Edit,  Up: Source

Printing source lines
=====================

To print lines from a source file, use the `list' command (abbreviated
`l').  By default, ten lines are printed.  There are several ways to
specify what part of the file you want to print.

   Here are the forms of the `list' command most commonly used:

`list LINENUM'
     Print lines centered around line number LINENUM in the current
     source file.

`list FUNCTION'
     Print lines centered around the beginning of function FUNCTION.

`list'
     Print more lines.  If the last lines printed were printed with a
     `list' command, this prints lines following the last lines
     printed; however, if the last line printed was a solitary line
     printed as part of displaying a stack frame (*note Examining the
     Stack: Stack.), this prints lines centered around that line.

`list -'
     Print lines just before the lines last printed.

   By default, GDB prints ten source lines with any of these forms of
the `list' command.  You can change this using `set listsize':

`set listsize COUNT'
     Make the `list' command display COUNT source lines (unless the
     `list' argument explicitly specifies some other number).

`show listsize'
     Display the number of lines that `list' prints.

   Repeating a `list' command with <RET> discards the argument, so it
is equivalent to typing just `list'.  This is more useful than listing
the same lines again.  An exception is made for an argument of `-';
that argument is preserved in repetition so that each repetition moves
up in the source file.

   In general, the `list' command expects you to supply zero, one or two
"linespecs".  Linespecs specify source lines; there are several ways of
writing them, but the effect is always to specify some source line.
Here is a complete description of the possible arguments for `list':

`list LINESPEC'
     Print lines centered around the line specified by LINESPEC.

`list FIRST,LAST'
     Print lines from FIRST to LAST.  Both arguments are linespecs.

`list ,LAST'
     Print lines ending with LAST.

`list FIRST,'
     Print lines starting with FIRST.

`list +'
     Print lines just after the lines last printed.

`list -'
     Print lines just before the lines last printed.

`list'
     As described in the preceding table.

   Here are the ways of specifying a single source line--all the kinds
of linespec.

`NUMBER'
     Specifies line NUMBER of the current source file.  When a `list'
     command has two linespecs, this refers to the same source file as
     the first linespec.

`+OFFSET'
     Specifies the line OFFSET lines after the last line printed.  When
     used as the second linespec in a `list' command that has two, this
     specifies the line OFFSET lines down from the first linespec.

`-OFFSET'
     Specifies the line OFFSET lines before the last line printed.

`FILENAME:NUMBER'
     Specifies line NUMBER in the source file FILENAME.

`FUNCTION'
     Specifies the line that begins the body of the function FUNCTION.
     For example: in C, this is the line with the open brace.

`FILENAME:FUNCTION'
     Specifies the line of the open-brace that begins the body of the
     function FUNCTION in the file FILENAME.  You only need the file
     name with a function name to avoid ambiguity when there are
     identically named functions in different source files.

`*ADDRESS'
     Specifies the line containing the program address ADDRESS.
     ADDRESS may be any expression.


File: gdb.info,  Node: Edit,  Next: Search,  Prev: List,  Up: Source

Editing source files
====================

To edit the lines in a source file, use the `edit' command.  The
editing program of your choice is invoked with the current line set to
the active line in the program.  Alternatively, there are several ways
to specify what part of the file you want to print if you want to see
other parts of the program.

   Here are the forms of the `edit' command most commonly used:

`edit'
     Edit the current source file at the active line number in the
     program.

`edit NUMBER'
     Edit the current source file with NUMBER as the active line number.

`edit FUNCTION'
     Edit the file containing FUNCTION at the beginning of its
     definition.

`edit FILENAME:NUMBER'
     Specifies line NUMBER in the source file FILENAME.

`edit FILENAME:FUNCTION'
     Specifies the line that begins the body of the function FUNCTION
     in the file FILENAME.  You only need the file name with a function
     name to avoid ambiguity when there are identically named functions
     in different source files.

`edit *ADDRESS'
     Specifies the line containing the program address ADDRESS.
     ADDRESS may be any expression.

Choosing your editor
--------------------

You can customize GDB to use any editor you want (1).  By default, it
is /bin/ex, but you can change this by setting the environment variable
`EDITOR' before using GDB.  For example, to configure GDB to use the
`vi' editor, you could use these commands with the `sh' shell:
     EDITOR=/usr/bin/vi
     export EDITOR
     gdb ...
   or in the `csh' shell,
     setenv EDITOR /usr/bin/vi
     gdb ...

   ---------- Footnotes ----------

   (1) The only restriction is that your editor (say `ex'), recognizes
the following command-line syntax:
     ex +NUMBER file
   The optional numeric value +NUMBER designates the active line in the
file.


File: gdb.info,  Node: Search,  Next: Source Path,  Prev: Edit,  Up: Source

Searching source files
======================

There are two commands for searching through the current source file
for a regular expression.

`forward-search REGEXP'
`search REGEXP'
     The command `forward-search REGEXP' checks each line, starting
     with the one following the last line listed, for a match for
     REGEXP.  It lists the line that is found.  You can use the synonym
     `search REGEXP' or abbreviate the command name as `fo'.

`reverse-search REGEXP'
     The command `reverse-search REGEXP' checks each line, starting
     with the one before the last line listed and going backward, for a
     match for REGEXP.  It lists the line that is found.  You can
     abbreviate this command as `rev'.


File: gdb.info,  Node: Source Path,  Next: Machine Code,  Prev: Search,  Up: Source

Specifying source directories
=============================

Executable programs sometimes do not record the directories of the
source files from which they were compiled, just the names.  Even when
they do, the directories could be moved between the compilation and
your debugging session.  GDB has a list of directories to search for
source files; this is called the "source path".  Each time GDB wants a
source file, it tries all the directories in the list, in the order
they are present in the list, until it finds a file with the desired
name.  Note that the executable search path is _not_ used for this
purpose.  Neither is the current working directory, unless it happens
to be in the source path.

   If GDB cannot find a source file in the source path, and the object
program records a directory, GDB tries that directory too.  If the
source path is empty, and there is no record of the compilation
directory, GDB looks in the current directory as a last resort.

   Whenever you reset or rearrange the source path, GDB clears out any
information it has cached about where source files are found and where
each line is in the file.

   When you start GDB, its source path includes only `cdir' and `cwd',
in that order.  To add other directories, use the `directory' command.

`directory DIRNAME ...'

`dir DIRNAME ...'
     Add directory DIRNAME to the front of the source path.  Several
     directory names may be given to this command, separated by `:'
     (`;' on MS-DOS and MS-Windows, where `:' usually appears as part
     of absolute file names) or whitespace.  You may specify a
     directory that is already in the source path; this moves it
     forward, so GDB searches it sooner.

     You can use the string `$cdir' to refer to the compilation
     directory (if one is recorded), and `$cwd' to refer to the current
     working directory.  `$cwd' is not the same as `.'--the former
     tracks the current working directory as it changes during your GDB
     session, while the latter is immediately expanded to the current
     directory at the time you add an entry to the source path.

`directory'
     Reset the source path to empty again.  This requires confirmation.

`show directories'
     Print the source path: show which directories it contains.

   If your source path is cluttered with directories that are no longer
of interest, GDB may sometimes cause confusion by finding the wrong
versions of source.  You can correct the situation as follows:

  1. Use `directory' with no argument to reset the source path to empty.

  2. Use `directory' with suitable arguments to reinstall the
     directories you want in the source path.  You can add all the
     directories in one command.


File: gdb.info,  Node: Machine Code,  Prev: Source Path,  Up: Source

Source and machine code
=======================

You can use the command `info line' to map source lines to program
addresses (and vice versa), and the command `disassemble' to display a
range of addresses as machine instructions.  When run under GNU Emacs
mode, the `info line' command causes the arrow to point to the line
specified.  Also, `info line' prints addresses in symbolic form as well
as hex.

`info line LINESPEC'
     Print the starting and ending addresses of the compiled code for
     source line LINESPEC.  You can specify source lines in any of the
     ways understood by the `list' command (*note Printing source
     lines: List.).

   For example, we can use `info line' to discover the location of the
object code for the first line of function `m4_changequote':

     (gdb) info line m4_changequote
     Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using `*ADDR' as the form for LINESPEC) what
source line covers a particular address:
     (gdb) info line *0x63ff
     Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

   After `info line', the default address for the `x' command is
changed to the starting address of the line, so that `x/i' is
sufficient to begin examining the machine code (*note Examining memory:
Memory.).  Also, this address is saved as the value of the convenience
variable `$_' (*note Convenience variables: Convenience Vars.).

`disassemble'
     This specialized command dumps a range of memory as machine
     instructions.  The default memory range is the function
     surrounding the program counter of the selected frame.  A single
     argument to this command is a program counter value; GDB dumps the
     function surrounding this value.  Two arguments specify a range of
     addresses (first inclusive, second exclusive) to dump.

   The following example shows the disassembly of a range of addresses
of HP PA-RISC 2.0 code:

     (gdb) disas 0x32c4 0x32e4
     Dump of assembler code from 0x32c4 to 0x32e4:
     0x32c4 <main+204>:      addil 0,dp
     0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
     0x32cc <main+212>:      ldil 0x3000,r31
     0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
     0x32d4 <main+220>:      ldo 0(r31),rp
     0x32d8 <main+224>:      addil -0x800,dp
     0x32dc <main+228>:      ldo 0x588(r1),r26
     0x32e0 <main+232>:      ldil 0x3000,r31
     End of assembler dump.

   Some architectures have more than one commonly-used set of
instruction mnemonics or other syntax.

`set disassembly-flavor INSTRUCTION-SET'
     Select the instruction set to use when disassembling the program
     via the `disassemble' or `x/i' commands.

     Currently this command is only defined for the Intel x86 family.
     You can set INSTRUCTION-SET to either `intel' or `att'.  The
     default is `att', the AT&T flavor used by default by Unix
     assemblers for x86-based targets.


File: gdb.info,  Node: Data,  Next: Macros,  Prev: Source,  Up: Top

Examining Data
**************

The usual way to examine data in your program is with the `print'
command (abbreviated `p'), or its synonym `inspect'.  It evaluates and
prints the value of an expression of the language your program is
written in (*note Using GDB with Different Languages: Languages.).

`print EXPR'
`print /F EXPR'
     EXPR is an expression (in the source language).  By default the
     value of EXPR is printed in a format appropriate to its data type;
     you can choose a different format by specifying `/F', where F is a
     letter specifying the format; see *Note Output formats: Output
     Formats.

`print'
`print /F'
     If you omit EXPR, GDB displays the last value again (from the
     "value history"; *note Value history: Value History.).  This
     allows you to conveniently inspect the same value in an
     alternative format.

   A more low-level way of examining data is with the `x' command.  It
examines data in memory at a specified address and prints it in a
specified format.  *Note Examining memory: Memory.

   If you are interested in information about types, or about how the
fields of a struct or a class are declared, use the `ptype EXP' command
rather than `print'.  *Note Examining the Symbol Table: Symbols.

* Menu:

* Expressions::                 Expressions
* Variables::                   Program variables
* Arrays::                      Artificial arrays
* Output Formats::              Output formats
* Memory::                      Examining memory
* Auto Display::                Automatic display
* Print Settings::              Print settings
* Value History::               Value history
* Convenience Vars::            Convenience variables
* Registers::                   Registers
* Floating Point Hardware::     Floating point hardware
* Vector Unit::                 Vector Unit
* Auxiliary Vector::            Auxiliary data provided by operating system
* Memory Region Attributes::    Memory region attributes
* Dump/Restore Files::          Copy between memory and a file
* Character Sets::              Debugging programs that use a different
                                character set than GDB does


File: gdb.info,  Node: Expressions,  Next: Variables,  Up: Data

Expressions
===========

`print' and many other GDB commands accept an expression and compute
its value.  Any kind of constant, variable or operator defined by the
programming language you are using is valid in an expression in GDB.
This includes conditional expressions, function calls, casts, and
string constants.  It also includes preprocessor macros, if you
compiled your program to include this information; see *Note
Compilation::.

   GDB supports array constants in expressions input by the user.  The
syntax is {ELEMENT, ELEMENT...}.  For example, you can use the command
`print {1, 2, 3}' to build up an array in memory that is `malloc'ed in
the target program.

   Because C is so widespread, most of the expressions shown in
examples in this manual are in C.  *Note Using GDB with Different
Languages: Languages, for information on how to use expressions in other
languages.

   In this section, we discuss operators that you can use in GDB
expressions regardless of your programming language.

   Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer in order to examine a structure
at that address in memory.

   GDB supports these operators, in addition to those common to
programming languages:

`@'
     `@' is a binary operator for treating parts of memory as arrays.
     *Note Artificial arrays: Arrays, for more information.

`::'
     `::' allows you to specify a variable in terms of the file or
     function where it is defined.  *Note Program variables: Variables.

`{TYPE} ADDR'
     Refers to an object of type TYPE stored at address ADDR in memory.
     ADDR may be any expression whose value is an integer or pointer
     (but parentheses are required around binary operators, just as in
     a cast).  This construct is allowed regardless of what kind of
     data is normally supposed to reside at ADDR.


File: gdb.info,  Node: Variables,  Next: Arrays,  Prev: Expressions,  Up: Data

Program variables
=================

The most common kind of expression to use is the name of a variable in
your program.

   Variables in expressions are understood in the selected stack frame
(*note Selecting a frame: Selection.); they must be either:

   * global (or file-static)

or

   * visible according to the scope rules of the programming language
     from the point of execution in that frame

This means that in the function

     foo (a)
          int a;
     {
       bar (a);
       {
         int b = test ();
         bar (b);
       }
     }

you can examine and use the variable `a' whenever your program is
executing within the function `foo', but you can only use or examine
the variable `b' while your program is executing inside the block where
`b' is declared.

   There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file.  But it is possible to have more than one such variable or
function with the same name (in different source files).  If that
happens, referring to that name has unpredictable effects.  If you wish,
you can specify a static variable in a particular function or file,
using the colon-colon notation:

     FILE::VARIABLE
     FUNCTION::VARIABLE

Here FILE or FUNCTION is the name of the context for the static
VARIABLE.  In the case of file names, you can use quotes to make sure
GDB parses the file name as a single word--for example, to print a
global value of `x' defined in `f2.c':

     (gdb) p 'f2.c'::x

   This use of `::' is very rarely in conflict with the very similar
use of the same notation in C++.  GDB also supports use of the C++
scope resolution operator in GDB expressions.

     _Warning:_ Occasionally, a local variable may appear to have the
     wrong value at certain points in a function--just after entry to a
     new scope, and just before exit.
   You may see this problem when you are stepping by machine
instructions.  This is because, on most machines, it takes more than
one instruction to set up a stack frame (including local variable
definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely
built.  On exit, it usually also takes more than one machine
instruction to destroy a stack frame; after you begin stepping through
that group of instructions, local variable definitions may be gone.

   This may also happen when the compiler does significant
optimizations.  To be sure of always seeing accurate values, turn off
all optimization when compiling.

   Another possible effect of compiler optimizations is to optimize
unused variables out of existence, or assign variables to registers (as
opposed to memory addresses).  Depending on the support for such cases
offered by the debug info format used by the compiler, GDB might not be
able to display values for such local variables.  If that happens, GDB
will print a message like this:

     No symbol "foo" in current context.

   To solve such problems, either recompile without optimizations, or
use a different debug info format, if the compiler supports several such
formats.  For example, GCC, the GNU C/C++ compiler usually supports the
`-gstabs+' option.  `-gstabs+' produces debug info in a format that is
superior to formats such as COFF.  You may be able to use DWARF 2
(`-gdwarf-2'), which is also an effective form for debug info.  *Note
Options for Debugging Your Program or GNU CC: (gcc.info)Debugging
Options.


File: gdb.info,  Node: Arrays,  Next: Output Formats,  Prev: Variables,  Up: Data

Artificial arrays
=================

It is often useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically
determined size for which only a pointer exists in the program.

   You can do this by referring to a contiguous span of memory as an
"artificial array", using the binary operator `@'.  The left operand of
`@' should be the first element of the desired array and be an
individual object.  The right operand should be the desired length of
the array.  The result is an array value whose elements are all of the
type of the left argument.  The first element is actually the left
argument; the second element comes from bytes of memory immediately
following those that hold the first element, and so on.  Here is an
example.  If a program says

     int *array = (int *) malloc (len * sizeof (int));

you can print the contents of `array' with

     p *array@len

   The left operand of `@' must reside in memory.  Array values made
with `@' in this way behave just like other arrays in terms of
subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions via the value history
(*note Value history: Value History.), after printing one out.

   Another way to create an artificial array is to use a cast.  This
re-interprets a value as if it were an array.  The value need not be in
memory:
     (gdb) p/x (short[2])0x12345678
     $1 = {0x1234, 0x5678}

   As a convenience, if you leave the array length out (as in
`(TYPE[])VALUE') GDB calculates the size to fill the value (as
`sizeof(VALUE)/sizeof(TYPE)':
     (gdb) p/x (short[])0x12345678
     $2 = {0x1234, 0x5678}

   Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent--for example, if you are interested in the values
of pointers in an array.  One useful work-around in this situation is
to use a convenience variable (*note Convenience variables: Convenience
Vars.) as a counter in an expression that prints the first interesting
value, and then repeat that expression via <RET>.  For instance,
suppose you have an array `dtab' of pointers to structures, and you are
interested in the values of a field `fv' in each structure.  Here is an
example of what you might type:

     set $i = 0
     p dtab[$i++]->fv
     <RET>
     <RET>
     ...


File: gdb.info,  Node: Output Formats,  Next: Memory,  Prev: Arrays,  Up: Data

Output formats
==============

By default, GDB prints a value according to its data type.  Sometimes
this is not what you want.  For example, you might want to print a
number in hex, or a pointer in decimal.  Or you might want to view data
in memory at a certain address as a character string or as an
instruction.  To do these things, specify an "output format" when you
print a value.

   The simplest use of output formats is to say how to print a value
already computed.  This is done by starting the arguments of the
`print' command with a slash and a format letter.  The format letters
supported are:

`x'
     Regard the bits of the value as an integer, and print the integer
     in hexadecimal.

`d'
     Print as integer in signed decimal.

`u'
     Print as integer in unsigned decimal.

`o'
     Print as integer in octal.

`t'
     Print as integer in binary.  The letter `t' stands for "two".  (1)

`a'
     Print as an address, both absolute in hexadecimal and as an offset
     from the nearest preceding symbol.  You can use this format used
     to discover where (in what function) an unknown address is located:

          (gdb) p/a 0x54320
          $3 = 0x54320 <_initialize_vx+396>

     The command `info symbol 0x54320' yields similar results.  *Note
     info symbol: Symbols.

`c'
     Regard as an integer and print it as a character constant.

`f'
     Regard the bits of the value as a floating point number and print
     using typical floating point syntax.

   For example, to print the program counter in hex (*note
Registers::), type

     p/x $pc

Note that no space is required before the slash; this is because command
names in GDB cannot contain a slash.

   To reprint the last value in the value history with a different
format, you can use the `print' command with just a format and no
expression.  For example, `p/x' reprints the last value in hex.

   ---------- Footnotes ----------

   (1) `b' cannot be used because these format letters are also used
with the `x' command, where `b' stands for "byte"; see *Note Examining
memory: Memory.


File: gdb.info,  Node: Memory,  Next: Auto Display,  Prev: Output Formats,  Up: Data

Examining memory
================

You can use the command `x' (for "examine") to examine memory in any of
several formats, independently of your program's data types.

`x/NFU ADDR'
`x ADDR'
`x'
     Use the `x' command to examine memory.

   N, F, and U are all optional parameters that specify how much memory
to display and how to format it; ADDR is an expression giving the
address where you want to start displaying memory.  If you use defaults
for NFU, you need not type the slash `/'.  Several commands set
convenient defaults for ADDR.

N, the repeat count
     The repeat count is a decimal integer; the default is 1.  It
     specifies how much memory (counting by units U) to display.

F, the display format
     The display format is one of the formats used by `print', `s'
     (null-terminated string), or `i' (machine instruction).  The
     default is `x' (hexadecimal) initially.  The default changes each
     time you use either `x' or `print'.

U, the unit size
     The unit size is any of

    `b'
          Bytes.

    `h'
          Halfwords (two bytes).

    `w'
          Words (four bytes).  This is the initial default.

    `g'
          Giant words (eight bytes).

     Each time you specify a unit size with `x', that size becomes the
     default unit the next time you use `x'.  (For the `s' and `i'
     formats, the unit size is ignored and is normally not written.)

ADDR, starting display address
     ADDR is the address where you want GDB to begin displaying memory.
     The expression need not have a pointer value (though it may); it
     is always interpreted as an integer address of a byte of memory.
     *Note Expressions: Expressions, for more information on
     expressions.  The default for ADDR is usually just after the last
     address examined--but several other commands also set the default
     address: `info breakpoints' (to the address of the last breakpoint
     listed), `info line' (to the starting address of a line), and
     `print' (if you use it to display a value from memory).

   For example, `x/3uh 0x54320' is a request to display three halfwords
(`h') of memory, formatted as unsigned decimal integers (`u'), starting
at address `0x54320'.  `x/4xw $sp' prints the four words (`w') of
memory above the stack pointer (here, `$sp'; *note Registers:
Registers.) in hexadecimal (`x').

   Since the letters indicating unit sizes are all distinct from the
letters specifying output formats, you do not have to remember whether
unit size or format comes first; either order works.  The output
specifications `4xw' and `4wx' mean exactly the same thing.  (However,
the count N must come first; `wx4' does not work.)

   Even though the unit size U is ignored for the formats `s' and `i',
you might still want to use a count N; for example, `3i' specifies that
you want to see three machine instructions, including any operands.
The command `disassemble' gives an alternative way of inspecting
machine instructions; see *Note Source and machine code: Machine Code.

   All the defaults for the arguments to `x' are designed to make it
easy to continue scanning memory with minimal specifications each time
you use `x'.  For example, after you have inspected three machine
instructions with `x/3i ADDR', you can inspect the next seven with just
`x/7'.  If you use <RET> to repeat the `x' command, the repeat count N
is used again; the other arguments default as for successive uses of
`x'.

   The addresses and contents printed by the `x' command are not saved
in the value history because there is often too much of them and they
would get in the way.  Instead, GDB makes these values available for
subsequent use in expressions as values of the convenience variables
`$_' and `$__'.  After an `x' command, the last address examined is
available for use in expressions in the convenience variable `$_'.  The
contents of that address, as examined, are available in the convenience
variable `$__'.

   If the `x' command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of
output.


File: gdb.info,  Node: Auto Display,  Next: Print Settings,  Prev: Memory,  Up: Data

Automatic display
=================

If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the "automatic
display list" so that GDB prints its value each time your program stops.
Each expression added to the list is given a number to identify it; to
remove an expression from the list, you specify that number.  The
automatic display looks like this:

     2: foo = 38
     3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values.
As with displays you request manually using `x' or `print', you can
specify the output format you prefer; in fact, `display' decides
whether to use `print' or `x' depending on how elaborate your format
specification is--it uses `x' if you specify a unit size, or one of the
two formats (`i' and `s') that are only supported by `x'; otherwise it
uses `print'.

`display EXPR'
     Add the expression EXPR to the list of expressions to display each
     time your program stops.  *Note Expressions: Expressions.

     `display' does not repeat if you press <RET> again after using it.

`display/FMT EXPR'
     For FMT specifying only a display format and not a size or count,
     add the expression EXPR to the auto-display list but arrange to
     display it each time in the specified format FMT.  *Note Output
     formats: Output Formats.

`display/FMT ADDR'
     For FMT `i' or `s', or including a unit-size or a number of units,
     add the expression ADDR as a memory address to be examined each
     time your program stops.  Examining means in effect doing `x/FMT
     ADDR'.  *Note Examining memory: Memory.

   For example, `display/i $pc' can be helpful, to see the machine
instruction about to be executed each time execution stops (`$pc' is a
common name for the program counter; *note Registers: Registers.).

`undisplay DNUMS...'
`delete display DNUMS...'
     Remove item numbers DNUMS from the list of expressions to display.

     `undisplay' does not repeat if you press <RET> after using it.
     (Otherwise you would just get the error `No display number ...'.)

`disable display DNUMS...'
     Disable the display of item numbers DNUMS.  A disabled display
     item is not printed automatically, but is not forgotten.  It may be
     enabled again later.

`enable display DNUMS...'
     Enable display of item numbers DNUMS.  It becomes effective once
     again in auto display of its expression, until you specify
     otherwise.

`display'
     Display the current values of the expressions on the list, just as
     is done when your program stops.

`info display'
     Print the list of expressions previously set up to display
     automatically, each one with its item number, but without showing
     the values.  This includes disabled expressions, which are marked
     as such.  It also includes expressions which would not be
     displayed right now because they refer to automatic variables not
     currently available.

   If a display expression refers to local variables, then it does not
make sense outside the lexical context for which it was set up.  Such an
expression is disabled when execution enters a context where one of its
variables is not defined.  For example, if you give the command
`display last_char' while inside a function with an argument
`last_char', GDB displays this argument while your program continues to
stop inside that function.  When it stops elsewhere--where there is no
variable `last_char'--the display is disabled automatically.  The next
time your program stops where `last_char' is meaningful, you can enable
the display expression once again.


File: gdb.info,  Node: Print Settings,  Next: Value History,  Prev: Auto Display,  Up: Data

Print settings
==============

GDB provides the following ways to control how arrays, structures, and
symbols are printed.

These settings are useful for debugging programs in any language:

`set print address'
`set print address on'
     GDB prints memory addresses showing the location of stack traces,
     structure values, pointer values, breakpoints, and so forth, even
     when it also displays the contents of those addresses.  The default
     is `on'.  For example, this is what a stack frame display looks
     like with `set print address on':

          (gdb) f
          #0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
              at input.c:530
          530         if (lquote != def_lquote)

`set print address off'
     Do not print addresses when displaying their contents.  For
     example, this is the same stack frame displayed with `set print
     address off':

          (gdb) set print addr off
          (gdb) f
          #0  set_quotes (lq="<<", rq=">>") at input.c:530
          530         if (lquote != def_lquote)

     You can use `set print address off' to eliminate all machine
     dependent displays from the GDB interface.  For example, with
     `print address off', you should get the same text for backtraces on
     all machines--whether or not they involve pointer arguments.

`show print address'
     Show whether or not addresses are to be printed.

   When GDB prints a symbolic address, it normally prints the closest
earlier symbol plus an offset.  If that symbol does not uniquely
identify the address (for example, it is a name whose scope is a single
source file), you may need to clarify.  One way to do this is with
`info line', for example `info line *0x4537'.  Alternately, you can set
GDB to print the source file and line number when it prints a symbolic
address:

`set print symbol-filename on'
     Tell GDB to print the source file name and line number of a symbol
     in the symbolic form of an address.

`set print symbol-filename off'
     Do not print source file name and line number of a symbol.  This
     is the default.

`show print symbol-filename'
     Show whether or not GDB will print the source file name and line
     number of a symbol in the symbolic form of an address.

   Another situation where it is helpful to show symbol filenames and
line numbers is when disassembling code; GDB shows you the line number
and source file that corresponds to each instruction.

   Also, you may wish to see the symbolic form only if the address being
printed is reasonably close to the closest earlier symbol:

`set print max-symbolic-offset MAX-OFFSET'
     Tell GDB to only display the symbolic form of an address if the
     offset between the closest earlier symbol and the address is less
     than MAX-OFFSET.  The default is 0, which tells GDB to always
     print the symbolic form of an address if any symbol precedes it.

`show print max-symbolic-offset'
     Ask how large the maximum offset is that GDB prints in a symbolic
     address.

   If you have a pointer and you are not sure where it points, try `set
print symbol-filename on'.  Then you can determine the name and source
file location of the variable where it points, using `p/a POINTER'.
This interprets the address in symbolic form.  For example, here GDB
shows that a variable `ptt' points at another variable `t', defined in
`hi2.c':

     (gdb) set print symbol-filename on
     (gdb) p/a ptt
     $4 = 0xe008 <t in hi2.c>

     _Warning:_ For pointers that point to a local variable, `p/a' does
     not show the symbol name and filename of the referent, even with
     the appropriate `set print' options turned on.

   Other settings control how different kinds of objects are printed:

`set print array'
`set print array on'
     Pretty print arrays.  This format is more convenient to read, but
     uses more space.  The default is off.

`set print array off'
     Return to compressed format for arrays.

`show print array'
     Show whether compressed or pretty format is selected for displaying
     arrays.

`set print elements NUMBER-OF-ELEMENTS'
     Set a limit on how many elements of an array GDB will print.  If
     GDB is printing a large array, it stops printing after it has
     printed the number of elements set by the `set print elements'
     command.  This limit also applies to the display of strings.  When
     GDB starts, this limit is set to 200.  Setting  NUMBER-OF-ELEMENTS
     to zero means that the printing is unlimited.

`show print elements'
     Display the number of elements of a large array that GDB will
     print.  If the number is 0, then the printing is unlimited.

`set print null-stop'
     Cause GDB to stop printing the characters of an array when the
     first NULL is encountered.  This is useful when large arrays
     actually contain only short strings.  The default is off.

`set print pretty on'
     Cause GDB to print structures in an indented format with one member
     per line, like this:

          $1 = {
            next = 0x0,
            flags = {
              sweet = 1,
              sour = 1
            },
            meat = 0x54 "Pork"
          }

`set print pretty off'
     Cause GDB to print structures in a compact format, like this:

          $1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
          meat = 0x54 "Pork"}

     This is the default format.

`show print pretty'
     Show which format GDB is using to print structures.

`set print sevenbit-strings on'
     Print using only seven-bit characters; if this option is set, GDB
     displays any eight-bit characters (in strings or character values)
     using the notation `\'NNN.  This setting is best if you are
     working in English (ASCII) and you use the high-order bit of
     characters as a marker or "meta" bit.

`set print sevenbit-strings off'
     Print full eight-bit characters.  This allows the use of more
     international character sets, and is the default.

`show print sevenbit-strings'
     Show whether or not GDB is printing only seven-bit characters.

`set print union on'
     Tell GDB to print unions which are contained in structures.  This
     is the default setting.

`set print union off'
     Tell GDB not to print unions which are contained in structures.

`show print union'
     Ask GDB whether or not it will print unions which are contained in
     structures.

     For example, given the declarations

          typedef enum {Tree, Bug} Species;
          typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
          typedef enum {Caterpillar, Cocoon, Butterfly}
                        Bug_forms;
          
          struct thing {
            Species it;
            union {
              Tree_forms tree;
              Bug_forms bug;
            } form;
          };
          
          struct thing foo = {Tree, {Acorn}};

     with `set print union on' in effect `p foo' would print

          $1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

     and with `set print union off' in effect it would print

          $1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

`set print demangle'
`set print demangle on'
     Print C++ names in their source form rather than in the encoded
     ("mangled") form passed to the assembler and linker for type-safe
     linkage.  The default is on.

`show print demangle'
     Show whether C++ names are printed in mangled or demangled form.

`set print asm-demangle'
`set print asm-demangle on'
     Print C++ names in their source form rather than their mangled
     form, even in assembler code printouts such as instruction
     disassemblies.  The default is off.

`show print asm-demangle'
     Show whether C++ names in assembly listings are printed in mangled
     or demangled form.

`set demangle-style STYLE'
     Choose among several encoding schemes used by different compilers
     to represent C++ names.  The choices for STYLE are currently:

    `auto'
          Allow GDB to choose a decoding style by inspecting your
          program.

    `gnu'
          Decode based on the GNU C++ compiler (`g++') encoding
          algorithm.  This is the default.

    `hp'
          Decode based on the HP ANSI C++ (`aCC') encoding algorithm.

    `lucid'
          Decode based on the Lucid C++ compiler (`lcc') encoding
          algorithm.

    `arm'
          Decode using the algorithm in the `C++ Annotated Reference
          Manual'.  *Warning:* this setting alone is not sufficient to
          allow debugging `cfront'-generated executables.  GDB would
          require further enhancement to permit that.

     If you omit STYLE, you will see a list of possible formats.

`show demangle-style'
     Display the encoding style currently in use for decoding C++
     symbols.

`set print object'
`set print object on'
     When displaying a pointer to an object, identify the _actual_
     (derived) type of the object rather than the _declared_ type, using
     the virtual function table.

`set print object off'
     Display only the declared type of objects, without reference to the
     virtual function table.  This is the default setting.

`show print object'
     Show whether actual, or declared, object types are displayed.

`set print static-members'
`set print static-members on'
     Print static members when displaying a C++ object.  The default is
     on.

`set print static-members off'
     Do not print static members when displaying a C++ object.

`show print static-members'
     Show whether C++ static members are printed, or not.

`set print vtbl'
`set print vtbl on'
     Pretty print C++ virtual function tables.  The default is off.
     (The `vtbl' commands do not work on programs compiled with the HP
     ANSI C++ compiler (`aCC').)

`set print vtbl off'
     Do not pretty print C++ virtual function tables.

`show print vtbl'
     Show whether C++ virtual function tables are pretty printed, or
     not.


File: gdb.info,  Node: Value History,  Next: Convenience Vars,  Prev: Print Settings,  Up: Data

Value history
=============

Values printed by the `print' command are saved in the GDB "value
history".  This allows you to refer to them in other expressions.
Values are kept until the symbol table is re-read or discarded (for
example with the `file' or `symbol-file' commands).  When the symbol
table changes, the value history is discarded, since the values may
contain pointers back to the types defined in the symbol table.

   The values printed are given "history numbers" by which you can
refer to them.  These are successive integers starting with one.
`print' shows you the history number assigned to a value by printing
`$NUM = ' before the value; here NUM is the history number.

   To refer to any previous value, use `$' followed by the value's
history number.  The way `print' labels its output is designed to
remind you of this.  Just `$' refers to the most recent value in the
history, and `$$' refers to the value before that.  `$$N' refers to the
Nth value from the end; `$$2' is the value just prior to `$$', `$$1' is
equivalent to `$$', and `$$0' is equivalent to `$'.

   For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure.  It suffices to type

     p *$

   If you have a chain of structures where the component `next' points
to the next one, you can print the contents of the next one with this:

     p *$.next

You can print successive links in the chain by repeating this
command--which you can do by just typing <RET>.

   Note that the history records values, not expressions.  If the value
of `x' is 4 and you type these commands:

     print x
     set x=5

then the value recorded in the value history by the `print' command
remains 4 even though the value of `x' has changed.

`show values'
     Print the last ten values in the value history, with their item
     numbers.  This is like `p $$9' repeated ten times, except that
     `show values' does not change the history.

`show values N'
     Print ten history values centered on history item number N.

`show values +'
     Print ten history values just after the values last printed.  If
     no more values are available, `show values +' produces no display.

   Pressing <RET> to repeat `show values N' has exactly the same effect
as `show values +'.


File: gdb.info,  Node: Convenience Vars,  Next: Registers,  Prev: Value History,  Up: Data

Convenience variables
=====================

GDB provides "convenience variables" that you can use within GDB to
hold on to a value and refer to it later.  These variables exist
entirely within GDB; they are not part of your program, and setting a
convenience variable has no direct effect on further execution of your
program.  That is why you can use them freely.

   Convenience variables are prefixed with `$'.  Any name preceded by
`$' can be used for a convenience variable, unless it is one of the
predefined machine-specific register names (*note Registers:
Registers.).  (Value history references, in contrast, are _numbers_
preceded by `$'.  *Note Value history: Value History.)

   You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program.  For
example:

     set $foo = *object_ptr

would save in `$foo' the value contained in the object pointed to by
`object_ptr'.

   Using a convenience variable for the first time creates it, but its
value is `void' until you assign a new value.  You can alter the value
with another assignment at any time.

   Convenience variables have no fixed types.  You can assign a
convenience variable any type of value, including structures and
arrays, even if that variable already has a value of a different type.
The convenience variable, when used as an expression, has the type of
its current value.

`show convenience'
     Print a list of convenience variables used so far, and their
     values.  Abbreviated `show conv'.

   One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced.  For example, to print a field
from successive elements of an array of structures:

     set $i = 0
     print bar[$i++]->contents

Repeat that command by typing <RET>.

   Some convenience variables are created automatically by GDB and given
values likely to be useful.

`$_'
     The variable `$_' is automatically set by the `x' command to the
     last address examined (*note Examining memory: Memory.).  Other
     commands which provide a default address for `x' to examine also
     set `$_' to that address; these commands include `info line' and
     `info breakpoint'.  The type of `$_' is `void *' except when set
     by the `x' command, in which case it is a pointer to the type of
     `$__'.

`$__'
     The variable `$__' is automatically set by the `x' command to the
     value found in the last address examined.  Its type is chosen to
     match the format in which the data was printed.

`$_exitcode'
     The variable `$_exitcode' is automatically set to the exit code
     when the program being debugged terminates.

   On HP-UX systems, if you refer to a function or variable name that
begins with a dollar sign, GDB searches for a user or system name
first, before it searches for a convenience variable.


File: gdb.info,  Node: Registers,  Next: Floating Point Hardware,  Prev: Convenience Vars,  Up: Data

Registers
=========

You can refer to machine register contents, in expressions, as variables
with names starting with `$'.  The names of registers are different for
each machine; use `info registers' to see the names used on your
machine.

`info registers'
     Print the names and values of all registers except floating-point
     and vector registers (in the selected stack frame).

`info all-registers'
     Print the names and values of all registers, including
     floating-point and vector registers (in the selected stack frame).

`info registers REGNAME ...'
     Print the "relativized" value of each specified register REGNAME.
     As discussed in detail below, register values are normally
     relative to the selected stack frame.  REGNAME may be any register
     name valid on the machine you are using, with or without the
     initial `$'.

   GDB has four "standard" register names that are available (in
expressions) on most machines--whenever they do not conflict with an
architecture's canonical mnemonics for registers.  The register names
`$pc' and `$sp' are used for the program counter register and the stack
pointer.  `$fp' is used for a register that contains a pointer to the
current stack frame, and `$ps' is used for a register that contains the
processor status.  For example, you could print the program counter in
hex with

     p/x $pc

or print the instruction to be executed next with

     x/i $pc

or add four to the stack pointer(1) with

     set $sp += 4

   Whenever possible, these four standard register names are available
on your machine even though the machine has different canonical
mnemonics, so long as there is no conflict.  The `info registers'
command shows the canonical names.  For example, on the SPARC, `info
registers' displays the processor status register as `$psr' but you can
also refer to it as `$ps'; and on x86-based machines `$ps' is an alias
for the EFLAGS register.

   GDB always considers the contents of an ordinary register as an
integer when the register is examined in this way.  Some machines have
special registers which can hold nothing but floating point; these
registers are considered to have floating point values.  There is no way
to refer to the contents of an ordinary register as floating point value
(although you can _print_ it as a floating point value with `print/f
$REGNAME').

   Some registers have distinct "raw" and "virtual" data formats.  This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees.  For example, the registers of the 68881 floating point
coprocessor are always saved in "extended" (raw) format, but all C
programs expect to work with "double" (virtual) format.  In such cases,
GDB normally works with the virtual format only (the format that makes
sense for your program), but the `info registers' command prints the
data in both formats.

   Normally, register values are relative to the selected stack frame
(*note Selecting a frame: Selection.).  This means that you get the
value that the register would contain if all stack frames farther in
were exited and their saved registers restored.  In order to see the
true contents of hardware registers, you must select the innermost
frame (with `frame 0').

   However, GDB must deduce where registers are saved, from the machine
code generated by your compiler.  If some registers are not saved, or if
GDB is unable to locate the saved registers, the selected stack frame
makes no difference.

   ---------- Footnotes ----------

   (1) This is a way of removing one word from the stack, on machines
where stacks grow downward in memory (most machines, nowadays).  This
assumes that the innermost stack frame is selected; setting `$sp' is
not allowed when other stack frames are selected.  To pop entire frames
off the stack, regardless of machine architecture, use `return'; see
*Note Returning from a function: Returning.


File: gdb.info,  Node: Floating Point Hardware,  Next: Vector Unit,  Prev: Registers,  Up: Data

Floating point hardware
=======================

Depending on the configuration, GDB may be able to give you more
information about the status of the floating point hardware.

`info float'
     Display hardware-dependent information about the floating point
     unit.  The exact contents and layout vary depending on the
     floating point chip.  Currently, `info float' is supported on the
     ARM and x86 machines.


File: gdb.info,  Node: Vector Unit,  Next: Auxiliary Vector,  Prev: Floating Point Hardware,  Up: Data

Vector Unit
===========

Depending on the configuration, GDB may be able to give you more
information about the status of the vector unit.

`info vector'
     Display information about the vector unit.  The exact contents and
     layout vary depending on the hardware.


File: gdb.info,  Node: Auxiliary Vector,  Next: Memory Region Attributes,  Prev: Vector Unit,  Up: Data

Operating system auxiliary vector
=================================

Some operating systems supply an "auxiliary vector" to programs at
startup.  This is akin to the arguments and environment that you
specify for a program, but contains a system-dependent variety of
binary values that tell system libraries important details about the
hardware, operating system, and process.  Each value's purpose is
identified by an integer tag; the meanings are well-known but
system-specific.  Depending on the configuration and operating system
facilities, GDB may be able to show you this information.

`info auxv'
     Display the auxiliary vector of the inferior, which can be either a
     live process or a core dump file.  GDB prints each tag value
     numerically, and also shows names and text descriptions for
     recognized tags.  Some values in the vector are numbers, some bit
     masks, and some pointers to strings or other data.  GDB displays
     each value in the most appropriate form for a recognized tag, and
     in hexadecimal for an unrecognized tag.


File: gdb.info,  Node: Memory Region Attributes,  Next: Dump/Restore Files,  Prev: Auxiliary Vector,  Up: Data

Memory region attributes
========================

"Memory region attributes" allow you to describe special handling
required by regions of your target's memory.  GDB uses attributes to
determine whether to allow certain types of memory accesses; whether to
use specific width accesses; and whether to cache target memory.

   Defined memory regions can be individually enabled and disabled.
When a memory region is disabled, GDB uses the default attributes when
accessing memory in that region.  Similarly, if no memory regions have
been defined, GDB uses the default attributes when accessing all memory.

   When a memory region is defined, it is given a number to identify it;
to enable, disable, or remove a memory region, you specify that number.

`mem LOWER UPPER ATTRIBUTES...'
     Define memory region bounded by LOWER and UPPER with attributes
     ATTRIBUTES....  Note that UPPER == 0 is a special case: it is
     treated as the the target's maximum memory address.  (0xffff on 16
     bit targets, 0xffffffff on 32 bit targets, etc.)

`delete mem NUMS...'
     Remove memory regions NUMS....

`disable mem NUMS...'
     Disable memory regions NUMS....  A disabled memory region is not
     forgotten.  It may be enabled again later.

`enable mem NUMS...'
     Enable memory regions NUMS....

`info mem'
     Print a table of all defined memory regions, with the following
     columns for each region.

    _Memory Region Number_

    _Enabled or Disabled._
          Enabled memory regions are marked with `y'.  Disabled memory
          regions are marked with `n'.

    _Lo Address_
          The address defining the inclusive lower bound of the memory
          region.

    _Hi Address_
          The address defining the exclusive upper bound of the memory
          region.

    _Attributes_
          The list of attributes set for this memory region.

Attributes
----------

Memory Access Mode
..................

The access mode attributes set whether GDB may make read or write
accesses to a memory region.

   While these attributes prevent GDB from performing invalid memory
accesses, they do nothing to prevent the target system, I/O DMA, etc.
from accessing memory.

`ro'
     Memory is read only.

`wo'
     Memory is write only.

`rw'
     Memory is read/write.  This is the default.

Memory Access Size
..................

The acccess size attributes tells GDB to use specific sized accesses in
the memory region.  Often memory mapped device registers require
specific sized accesses.  If no access size attribute is specified, GDB
may use accesses of any size.

`8'
     Use 8 bit memory accesses.

`16'
     Use 16 bit memory accesses.

`32'
     Use 32 bit memory accesses.

`64'
     Use 64 bit memory accesses.

Data Cache
..........

The data cache attributes set whether GDB will cache target memory.
While this generally improves performance by reducing debug protocol
overhead, it can lead to incorrect results because GDB does not know
about volatile variables or memory mapped device registers.

`cache'
     Enable GDB to cache target memory.

`nocache'
     Disable GDB from caching target memory.  This is the default.


File: gdb.info,  Node: Dump/Restore Files,  Next: Character Sets,  Prev: Memory Region Attributes,  Up: Data

Copy between memory and a file
==============================

You can use the commands `dump', `append', and `restore' to copy data
between target memory and a file.  The `dump' and `append' commands
write data to a file, and the `restore' command reads data from a file
back into the inferior's memory.  Files may be in binary, Motorola
S-record, Intel hex, or Tektronix Hex format; however, GDB can only
append to binary files.

`dump [FORMAT] memory FILENAME START_ADDR END_ADDR'
`dump [FORMAT] value FILENAME EXPR'
     Dump the contents of memory from START_ADDR to END_ADDR, or the
     value of EXPR, to FILENAME in the given format.

     The FORMAT parameter may be any one of:
    `binary'
          Raw binary form.

    `ihex'
          Intel hex format.

    `srec'
          Motorola S-record format.

    `tekhex'
          Tektronix Hex format.

     GDB uses the same definitions of these formats as the GNU binary
     utilities, like `objdump' and `objcopy'.  If FORMAT is omitted,
     GDB dumps the data in raw binary form.

`append [binary] memory FILENAME START_ADDR END_ADDR'
`append [binary] value FILENAME EXPR'
     Append the contents of memory from START_ADDR to END_ADDR, or the
     value of EXPR, to FILENAME, in raw binary form.  (GDB can only
     append data to files in raw binary form.)

`restore FILENAME [binary] BIAS START END'
     Restore the contents of file FILENAME into memory.  The `restore'
     command can automatically recognize any known BFD file format,
     except for raw binary.  To restore a raw binary file you must
     specify the optional keyword `binary' after the filename.

     If BIAS is non-zero, its value will be added to the addresses
     contained in the file.  Binary files always start at address zero,
     so they will be restored at address BIAS.  Other bfd files have a
     built-in location; they will be restored at offset BIAS from that
     location.

     If START and/or END are non-zero, then only data between file
     offset START and file offset END will be restored.  These offsets
     are relative to the addresses in the file, before the BIAS
     argument is applied.



File: gdb.info,  Node: Character Sets,  Prev: Dump/Restore Files,  Up: Data

Character Sets
==============

If the program you are debugging uses a different character set to
represent characters and strings than the one GDB uses itself, GDB can
automatically translate between the character sets for you.  The
character set GDB uses we call the "host character set"; the one the
inferior program uses we call the "target character set".

   For example, if you are running GDB on a GNU/Linux system, which
uses the ISO Latin 1 character set, but you are using GDB's remote
protocol (*note Remote Debugging: Remote.) to debug a program running
on an IBM mainframe, which uses the EBCDIC character set, then the host
character set is Latin-1, and the target character set is EBCDIC.  If
you give GDB the command `set target-charset EBCDIC-US', then GDB
translates between EBCDIC and Latin 1 as you print character or string
values, or use character and string literals in expressions.

   GDB has no way to automatically recognize which character set the
inferior program uses; you must tell it, using the `set target-charset'
command, described below.

   Here are the commands for controlling GDB's character set support:

`set target-charset CHARSET'
     Set the current target character set to CHARSET.  We list the
     character set names GDB recognizes below, but if you type `set
     target-charset' followed by <TAB><TAB>, GDB will list the target
     character sets it supports.

`set host-charset CHARSET'
     Set the current host character set to CHARSET.

     By default, GDB uses a host character set appropriate to the
     system it is running on; you can override that default using the
     `set host-charset' command.

     GDB can only use certain character sets as its host character set.
     We list the character set names GDB recognizes below, and
     indicate which can be host character sets, but if you type `set
     target-charset' followed by <TAB><TAB>, GDB will list the host
     character sets it supports.

`set charset CHARSET'
     Set the current host and target character sets to CHARSET.  As
     above, if you type `set charset' followed by <TAB><TAB>, GDB will
     list the name of the character sets that can be used for both host
     and target.

`show charset'
     Show the names of the current host and target charsets.

`show host-charset'
     Show the name of the current host charset.

`show target-charset'
     Show the name of the current target charset.


   GDB currently includes support for the following character sets:

`ASCII'
     Seven-bit U.S. ASCII.  GDB can use this as its host character set.

`ISO-8859-1'
     The ISO Latin 1 character set.  This extends ASCII with accented
     characters needed for French, German, and Spanish.  GDB can use
     this as its host character set.

`EBCDIC-US'
`IBM1047'
     Variants of the EBCDIC character set, used on some of IBM's
     mainframe operating systems.  (GNU/Linux on the S/390 uses U.S.
     ASCII.)  GDB cannot use these as its host character set.


   Note that these are all single-byte character sets.  More work inside
GDB is needed to support multi-byte or variable-width character
encodings, like the UTF-8 and UCS-2 encodings of Unicode.

   Here is an example of GDB's character set support in action.  Assume
that the following source code has been placed in the file
`charset-test.c':

     #include <stdio.h>
     
     char ascii_hello[]
       = {72, 101, 108, 108, 111, 44, 32, 119,
          111, 114, 108, 100, 33, 10, 0};
     char ibm1047_hello[]
       = {200, 133, 147, 147, 150, 107, 64, 166,
          150, 153, 147, 132, 90, 37, 0};
     
     main ()
     {
       printf ("Hello, world!\n");
     }

   In this program, `ascii_hello' and `ibm1047_hello' are arrays
containing the string `Hello, world!' followed by a newline, encoded in
the ASCII and IBM1047 character sets.

   We compile the program, and invoke the debugger on it:

     $ gcc -g charset-test.c -o charset-test
     $ gdb -nw charset-test
     GNU gdb 2001-12-19-cvs
     Copyright 2001 Free Software Foundation, Inc.
     ...
     (gdb)

   We can use the `show charset' command to see what character sets GDB
is currently using to interpret and display characters and strings:

     (gdb) show charset
     The current host and target character set is `ISO-8859-1'.
     (gdb)

   For the sake of printing this manual, let's use ASCII as our initial
character set:
     (gdb) set charset ASCII
     (gdb) show charset
     The current host and target character set is `ASCII'.
     (gdb)

   Let's assume that ASCII is indeed the correct character set for our
host system -- in other words, let's assume that if GDB prints
characters using the ASCII character set, our terminal will display
them properly.  Since our current target character set is also ASCII,
the contents of `ascii_hello' print legibly:

     (gdb) print ascii_hello
     $1 = 0x401698 "Hello, world!\n"
     (gdb) print ascii_hello[0]
     $2 = 72 'H'
     (gdb)

   GDB uses the target character set for character and string literals
you use in expressions:

     (gdb) print '+'
     $3 = 43 '+'
     (gdb)

   The ASCII character set uses the number 43 to encode the `+'
character.

   GDB relies on the user to tell it which character set the target
program uses.  If we print `ibm1047_hello' while our target character
set is still ASCII, we get jibberish:

     (gdb) print ibm1047_hello
     $4 = 0x4016a8 "\310\205\223\223\226k@\246\226\231\223\204Z%"
     (gdb) print ibm1047_hello[0]
     $5 = 200 '\310'
     (gdb)

   If we invoke the `set target-charset' followed by <TAB><TAB>, GDB
tells us the character sets it supports:

     (gdb) set target-charset
     ASCII       EBCDIC-US   IBM1047     ISO-8859-1
     (gdb) set target-charset

   We can select IBM1047 as our target character set, and examine the
program's strings again.  Now the ASCII string is wrong, but GDB
translates the contents of `ibm1047_hello' from the target character
set, IBM1047, to the host character set, ASCII, and they display
correctly:

     (gdb) set target-charset IBM1047
     (gdb) show charset
     The current host character set is `ASCII'.
     The current target character set is `IBM1047'.
     (gdb) print ascii_hello
     $6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
     (gdb) print ascii_hello[0]
     $7 = 72 '\110'
     (gdb) print ibm1047_hello
     $8 = 0x4016a8 "Hello, world!\n"
     (gdb) print ibm1047_hello[0]
     $9 = 200 'H'
     (gdb)

   As above, GDB uses the target character set for character and string
literals you use in expressions:

     (gdb) print '+'
     $10 = 78 '+'
     (gdb)

   The IBM1047 character set uses the number 78 to encode the `+'
character.


File: gdb.info,  Node: Macros,  Next: Tracepoints,  Prev: Data,  Up: Top

C Preprocessor Macros
*********************

Some languages, such as C and C++, provide a way to define and invoke
"preprocessor macros" which expand into strings of tokens.  GDB can
evaluate expressions containing macro invocations, show the result of
macro expansion, and show a macro's definition, including where it was
defined.

   You may need to compile your program specially to provide GDB with
information about preprocessor macros.  Most compilers do not include
macros in their debugging information, even when you compile with the
`-g' flag.  *Note Compilation::.

   A program may define a macro at one point, remove that definition
later, and then provide a different definition after that.  Thus, at
different points in the program, a macro may have different
definitions, or have no definition at all.  If there is a current stack
frame, GDB uses the macros in scope at that frame's source code line.
Otherwise, GDB uses the macros in scope at the current listing location;
see *Note List::.

   At the moment, GDB does not support the `##' token-splicing
operator, the `#' stringification operator, or variable-arity macros.

   Whenever GDB evaluates an expression, it always expands any macro
invocations present in the expression.  GDB also provides the following
commands for working with macros explicitly.

`macro expand EXPRESSION'
`macro exp EXPRESSION'
     Show the results of expanding all preprocessor macro invocations in
     EXPRESSION.  Since GDB simply expands macros, but does not parse
     the result, EXPRESSION need not be a valid expression; it can be
     any string of tokens.

`macro expand-once EXPRESSION'
`macro exp1 EXPRESSION'
     (This command is not yet implemented.)  Show the results of
     expanding those preprocessor macro invocations that appear
     explicitly in EXPRESSION.  Macro invocations appearing in that
     expansion are left unchanged.  This command allows you to see the
     effect of a particular macro more clearly, without being confused
     by further expansions.  Since GDB simply expands macros, but does
     not parse the result, EXPRESSION need not be a valid expression; it
     can be any string of tokens.

`info macro MACRO'
     Show the definition of the macro named MACRO, and describe the
     source location where that definition was established.

`macro define MACRO REPLACEMENT-LIST'
`macro define MACRO(ARGLIST) REPLACEMENT-LIST'
     (This command is not yet implemented.)  Introduce a definition for
     a preprocessor macro named MACRO, invocations of which are replaced
     by the tokens given in REPLACEMENT-LIST.  The first form of this
     command defines an "object-like" macro, which takes no arguments;
     the second form defines a "function-like" macro, which takes the
     arguments given in ARGLIST.

     A definition introduced by this command is in scope in every
     expression evaluated in GDB, until it is removed with the `macro
     undef' command, described below.  The definition overrides all
     definitions for MACRO present in the program being debugged, as
     well as any previous user-supplied definition.

`macro undef MACRO'
     (This command is not yet implemented.)  Remove any user-supplied
     definition for the macro named MACRO.  This command only affects
     definitions provided with the `macro define' command, described
     above; it cannot remove definitions present in the program being
     debugged.


   Here is a transcript showing the above commands in action.  First, we
show our source files:

     $ cat sample.c
     #include <stdio.h>
     #include "sample.h"
     
     #define M 42
     #define ADD(x) (M + x)
     
     main ()
     {
     #define N 28
       printf ("Hello, world!\n");
     #undef N
       printf ("We're so creative.\n");
     #define N 1729
       printf ("Goodbye, world!\n");
     }
     $ cat sample.h
     #define Q <
     $

   Now, we compile the program using the GNU C compiler, GCC.  We pass
the `-gdwarf-2' and `-g3' flags to ensure the compiler includes
information about preprocessor macros in the debugging information.

     $ gcc -gdwarf-2 -g3 sample.c -o sample
     $

   Now, we start GDB on our sample program:

     $ gdb -nw sample
     GNU gdb 2002-05-06-cvs
     Copyright 2002 Free Software Foundation, Inc.
     GDB is free software, ...
     (gdb)

   We can expand macros and examine their definitions, even when the
program is not running.  GDB uses the current listing position to
decide which macro definitions are in scope:

     (gdb) list main
     3
     4       #define M 42
     5       #define ADD(x) (M + x)
     6
     7       main ()
     8       {
     9       #define N 28
     10        printf ("Hello, world!\n");
     11      #undef N
     12        printf ("We're so creative.\n");
     (gdb) info macro ADD
     Defined at /home/jimb/gdb/macros/play/sample.c:5
     #define ADD(x) (M + x)
     (gdb) info macro Q
     Defined at /home/jimb/gdb/macros/play/sample.h:1
       included at /home/jimb/gdb/macros/play/sample.c:2
     #define Q <
     (gdb) macro expand ADD(1)
     expands to: (42 + 1)
     (gdb) macro expand-once ADD(1)
     expands to: once (M + 1)
     (gdb)

   In the example above, note that `macro expand-once' expands only the
macro invocation explicit in the original text -- the invocation of
`ADD' -- but does not expand the invocation of the macro `M', which was
introduced by `ADD'.

   Once the program is running, GDB uses the macro definitions in force
at the source line of the current stack frame:

     (gdb) break main
     Breakpoint 1 at 0x8048370: file sample.c, line 10.
     (gdb) run
     Starting program: /home/jimb/gdb/macros/play/sample
     
     Breakpoint 1, main () at sample.c:10
     10        printf ("Hello, world!\n");
     (gdb)

   At line 10, the definition of the macro `N' at line 9 is in force:

     (gdb) info macro N
     Defined at /home/jimb/gdb/macros/play/sample.c:9
     #define N 28
     (gdb) macro expand N Q M
     expands to: 28 < 42
     (gdb) print N Q M
     $1 = 1
     (gdb)

   As we step over directives that remove `N''s definition, and then
give it a new definition, GDB finds the definition (or lack thereof) in
force at each point:

     (gdb) next
     Hello, world!
     12        printf ("We're so creative.\n");
     (gdb) info macro N
     The symbol `N' has no definition as a C/C++ preprocessor macro
     at /home/jimb/gdb/macros/play/sample.c:12
     (gdb) next
     We're so creative.
     14        printf ("Goodbye, world!\n");
     (gdb) info macro N
     Defined at /home/jimb/gdb/macros/play/sample.c:13
     #define N 1729
     (gdb) macro expand N Q M
     expands to: 1729 < 42
     (gdb) print N Q M
     $2 = 0
     (gdb)


File: gdb.info,  Node: Tracepoints,  Next: Overlays,  Prev: Macros,  Up: Top

Tracepoints
***********

In some applications, it is not feasible for the debugger to interrupt
the program's execution long enough for the developer to learn anything
helpful about its behavior.  If the program's correctness depends on
its real-time behavior, delays introduced by a debugger might cause the
program to change its behavior drastically, or perhaps fail, even when
the code itself is correct.  It is useful to be able to observe the
program's behavior without interrupting it.

   Using GDB's `trace' and `collect' commands, you can specify
locations in the program, called "tracepoints", and arbitrary
expressions to evaluate when those tracepoints are reached.  Later,
using the `tfind' command, you can examine the values those expressions
had when the program hit the tracepoints.  The expressions may also
denote objects in memory--structures or arrays, for example--whose
values GDB should record; while visiting a particular tracepoint, you
may inspect those objects as if they were in memory at that moment.
However, because GDB records these values without interacting with you,
it can do so quickly and unobtrusively, hopefully not disturbing the
program's behavior.

   The tracepoint facility is currently available only for remote
targets.  *Note Targets::.  In addition, your remote target must know
how to collect trace data.  This functionality is implemented in the
remote stub; however, none of the stubs distributed with GDB support
tracepoints as of this writing.

   This chapter describes the tracepoint commands and features.

* Menu:

* Set Tracepoints::
* Analyze Collected Data::
* Tracepoint Variables::


File: gdb.info,  Node: Set Tracepoints,  Next: Analyze Collected Data,  Up: Tracepoints

Commands to Set Tracepoints
===========================

Before running such a "trace experiment", an arbitrary number of
tracepoints can be set.  Like a breakpoint (*note Set Breaks::), a
tracepoint has a number assigned to it by GDB.  Like with breakpoints,
tracepoint numbers are successive integers starting from one.  Many of
the commands associated with tracepoints take the tracepoint number as
their argument, to identify which tracepoint to work on.

   For each tracepoint, you can specify, in advance, some arbitrary set
of data that you want the target to collect in the trace buffer when it
hits that tracepoint.  The collected data can include registers, local
variables, or global data.  Later, you can use GDB commands to examine
the values these data had at the time the tracepoint was hit.

   This section describes commands to set tracepoints and associated
conditions and actions.

* Menu:

* Create and Delete Tracepoints::
* Enable and Disable Tracepoints::
* Tracepoint Passcounts::
* Tracepoint Actions::
* Listing Tracepoints::
* Starting and Stopping Trace Experiment::


File: gdb.info,  Node: Create and Delete Tracepoints,  Next: Enable and Disable Tracepoints,  Up: Set Tracepoints

Create and Delete Tracepoints
-----------------------------

`trace'
     The `trace' command is very similar to the `break' command.  Its
     argument can be a source line, a function name, or an address in
     the target program.  *Note Set Breaks::.  The `trace' command
     defines a tracepoint, which is a point in the target program where
     the debugger will briefly stop, collect some data, and then allow
     the program to continue.  Setting a tracepoint or changing its
     commands doesn't take effect until the next `tstart' command;
     thus, you cannot change the tracepoint attributes once a trace
     experiment is running.

     Here are some examples of using the `trace' command:

          (gdb) trace foo.c:121    // a source file and line number
          
          (gdb) trace +2           // 2 lines forward
          
          (gdb) trace my_function  // first source line of function
          
          (gdb) trace *my_function // EXACT start address of function
          
          (gdb) trace *0x2117c4    // an address

     You can abbreviate `trace' as `tr'.

     The convenience variable `$tpnum' records the tracepoint number of
     the most recently set tracepoint.

`delete tracepoint [NUM]'
     Permanently delete one or more tracepoints.  With no argument, the
     default is to delete all tracepoints.

     Examples:

          (gdb) delete trace 1 2 3 // remove three tracepoints
          
          (gdb) delete trace       // remove all tracepoints

     You can abbreviate this command as `del tr'.


File: gdb.info,  Node: Enable and Disable Tracepoints,  Next: Tracepoint Passcounts,  Prev: Create and Delete Tracepoints,  Up: Set Tracepoints

Enable and Disable Tracepoints
------------------------------

`disable tracepoint [NUM]'
     Disable tracepoint NUM, or all tracepoints if no argument NUM is
     given.  A disabled tracepoint will have no effect during the next
     trace experiment, but it is not forgotten.  You can re-enable a
     disabled tracepoint using the `enable tracepoint' command.

`enable tracepoint [NUM]'
     Enable tracepoint NUM, or all tracepoints.  The enabled
     tracepoints will become effective the next time a trace experiment
     is run.


File: gdb.info,  Node: Tracepoint Passcounts,  Next: Tracepoint Actions,  Prev: Enable and Disable Tracepoints,  Up: Set Tracepoints

Tracepoint Passcounts
---------------------

`passcount [N [NUM]]'
     Set the "passcount" of a tracepoint.  The passcount is a way to
     automatically stop a trace experiment.  If a tracepoint's
     passcount is N, then the trace experiment will be automatically
     stopped on the N'th time that tracepoint is hit.  If the
     tracepoint number NUM is not specified, the `passcount' command
     sets the passcount of the most recently defined tracepoint.  If no
     passcount is given, the trace experiment will run until stopped
     explicitly by the user.

     Examples:

          (gdb) passcount 5 2 // Stop on the 5th execution of
                                        `// tracepoint 2'
          
          (gdb) passcount 12  // Stop on the 12th execution of the
                                        `// most recently defined tracepoint.'
          (gdb) trace foo
          (gdb) pass 3
          (gdb) trace bar
          (gdb) pass 2
          (gdb) trace baz
          (gdb) pass 1        // Stop tracing when foo has been
                                         `// executed 3 times OR when bar has'
                                         `// been executed 2 times'
                                         `// OR when baz has been executed 1 time.'



File: gdb.info,  Node: Tracepoint Actions,  Next: Listing Tracepoints,  Prev: Tracepoint Passcounts,  Up: Set Tracepoints

Tracepoint Action Lists
-----------------------

`actions [NUM]'
     This command will prompt for a list of actions to be taken when the
     tracepoint is hit.  If the tracepoint number NUM is not specified,
     this command sets the actions for the one that was most recently
     defined (so that you can define a tracepoint and then say
     `actions' without bothering about its number).  You specify the
     actions themselves on the following lines, one action at a time,
     and terminate the actions list with a line containing just `end'.
     So far, the only defined actions are `collect' and
     `while-stepping'.

     To remove all actions from a tracepoint, type `actions NUM' and
     follow it immediately with `end'.

          (gdb) collect DATA // collect some data
          
          (gdb) while-stepping 5 // single-step 5 times, collect data
          
          (gdb) end              // signals the end of actions.

     In the following example, the action list begins with `collect'
     commands indicating the things to be collected when the tracepoint
     is hit.  Then, in order to single-step and collect additional data
     following the tracepoint, a `while-stepping' command is used,
     followed by the list of things to be collected while stepping.  The
     `while-stepping' command is terminated by its own separate `end'
     command.  Lastly, the action list is terminated by an `end'
     command.

          (gdb) trace foo
          (gdb) actions
          Enter actions for tracepoint 1, one per line:
          > collect bar,baz
          > collect $regs
          > while-stepping 12
            > collect $fp, $sp
            > end
          end

`collect EXPR1, EXPR2, ...'
     Collect values of the given expressions when the tracepoint is hit.
     This command accepts a comma-separated list of any valid
     expressions.  In addition to global, static, or local variables,
     the following special arguments are supported:

    `$regs'
          collect all registers

    `$args'
          collect all function arguments

    `$locals'
          collect all local variables.

     You can give several consecutive `collect' commands, each one with
     a single argument, or one `collect' command with several arguments
     separated by commas: the effect is the same.

     The command `info scope' (*note info scope: Symbols.) is
     particularly useful for figuring out what data to collect.

`while-stepping N'
     Perform N single-step traces after the tracepoint, collecting new
     data at each step.  The `while-stepping' command is followed by
     the list of what to collect while stepping (followed by its own
     `end' command):

          > while-stepping 12
            > collect $regs, myglobal
            > end
          >

     You may abbreviate `while-stepping' as `ws' or `stepping'.


File: gdb.info,  Node: Listing Tracepoints,  Next: Starting and Stopping Trace Experiment,  Prev: Tracepoint Actions,  Up: Set Tracepoints

Listing Tracepoints
-------------------

`info tracepoints [NUM]'
     Display information about the tracepoint NUM.  If you don't specify
     a tracepoint number, displays information about all the tracepoints
     defined so far.  For each tracepoint, the following information is
     shown:

        * its number

        * whether it is enabled or disabled

        * its address

        * its passcount as given by the `passcount N' command

        * its step count as given by the `while-stepping N' command

        * where in the source files is the tracepoint set

        * its action list as given by the `actions' command

          (gdb) info trace
          Num Enb Address    PassC StepC What
          1   y   0x002117c4 0     0     <gdb_asm>
          2   y   0x0020dc64 0     0     in g_test at g_test.c:1375
          3   y   0x0020b1f4 0     0     in get_data at ../foo.c:41
          (gdb)

     This command can be abbreviated `info tp'.


File: gdb.info,  Node: Starting and Stopping Trace Experiment,  Prev: Listing Tracepoints,  Up: Set Tracepoints

Starting and Stopping Trace Experiment
--------------------------------------

`tstart'
     This command takes no arguments.  It starts the trace experiment,
     and begins collecting data.  This has the side effect of
     discarding all the data collected in the trace buffer during the
     previous trace experiment.

`tstop'
     This command takes no arguments.  It ends the trace experiment, and
     stops collecting data.

     *Note:* a trace experiment and data collection may stop
     automatically if any tracepoint's passcount is reached (*note
     Tracepoint Passcounts::), or if the trace buffer becomes full.

`tstatus'
     This command displays the status of the current trace data
     collection.

   Here is an example of the commands we described so far:

     (gdb) trace gdb_c_test
     (gdb) actions
     Enter actions for tracepoint #1, one per line.
     > collect $regs,$locals,$args
     > while-stepping 11
       > collect $regs
       > end
     > end
     (gdb) tstart
     	[time passes ...]
     (gdb) tstop


File: gdb.info,  Node: Analyze Collected Data,  Next: Tracepoint Variables,  Prev: Set Tracepoints,  Up: Tracepoints

Using the collected data
========================

After the tracepoint experiment ends, you use GDB commands for
examining the trace data.  The basic idea is that each tracepoint
collects a trace "snapshot" every time it is hit and another snapshot
every time it single-steps.  All these snapshots are consecutively
numbered from zero and go into a buffer, and you can examine them
later.  The way you examine them is to "focus" on a specific trace
snapshot.  When the remote stub is focused on a trace snapshot, it will
respond to all GDB requests for memory and registers by reading from
the buffer which belongs to that snapshot, rather than from _real_
memory or registers of the program being debugged.  This means that
*all* GDB commands (`print', `info registers', `backtrace', etc.) will
behave as if we were currently debugging the program state as it was
when the tracepoint occurred.  Any requests for data that are not in
the buffer will fail.

* Menu:

* tfind::                       How to select a trace snapshot
* tdump::                       How to display all data for a snapshot
* save-tracepoints::            How to save tracepoints for a future run


File: gdb.info,  Node: tfind,  Next: tdump,  Up: Analyze Collected Data

`tfind N'
---------

The basic command for selecting a trace snapshot from the buffer is
`tfind N', which finds trace snapshot number N, counting from zero.  If
no argument N is given, the next snapshot is selected.

   Here are the various forms of using the `tfind' command.

`tfind start'
     Find the first snapshot in the buffer.  This is a synonym for
     `tfind 0' (since 0 is the number of the first snapshot).

`tfind none'
     Stop debugging trace snapshots, resume _live_ debugging.

`tfind end'
     Same as `tfind none'.

`tfind'
     No argument means find the next trace snapshot.

`tfind -'
     Find the previous trace snapshot before the current one.  This
     permits retracing earlier steps.

`tfind tracepoint NUM'
     Find the next snapshot associated with tracepoint NUM.  Search
     proceeds forward from the last examined trace snapshot.  If no
     argument NUM is given, it means find the next snapshot collected
     for the same tracepoint as the current snapshot.

`tfind pc ADDR'
     Find the next snapshot associated with the value ADDR of the
     program counter.  Search proceeds forward from the last examined
     trace snapshot.  If no argument ADDR is given, it means find the
     next snapshot with the same value of PC as the current snapshot.

`tfind outside ADDR1, ADDR2'
     Find the next snapshot whose PC is outside the given range of
     addresses.

`tfind range ADDR1, ADDR2'
     Find the next snapshot whose PC is between ADDR1 and ADDR2.

`tfind line [FILE:]N'
     Find the next snapshot associated with the source line N.  If the
     optional argument FILE is given, refer to line N in that source
     file.  Search proceeds forward from the last examined trace
     snapshot.  If no argument N is given, it means find the next line
     other than the one currently being examined; thus saying `tfind
     line' repeatedly can appear to have the same effect as stepping
     from line to line in a _live_ debugging session.

   The default arguments for the `tfind' commands are specifically
designed to make it easy to scan through the trace buffer.  For
instance, `tfind' with no argument selects the next trace snapshot, and
`tfind -' with no argument selects the previous trace snapshot.  So, by
giving one `tfind' command, and then simply hitting <RET> repeatedly
you can examine all the trace snapshots in order.  Or, by saying `tfind
-' and then hitting <RET> repeatedly you can examine the snapshots in
reverse order.  The `tfind line' command with no argument selects the
snapshot for the next source line executed.  The `tfind pc' command with
no argument selects the next snapshot with the same program counter
(PC) as the current frame.  The `tfind tracepoint' command with no
argument selects the next trace snapshot collected by the same
tracepoint as the current one.

   In addition to letting you scan through the trace buffer manually,
these commands make it easy to construct GDB scripts that scan through
the trace buffer and print out whatever collected data you are
interested in.  Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

     (gdb) tfind start
     (gdb) while ($trace_frame != -1)
     > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
               $trace_frame, $pc, $sp, $fp
     > tfind
     > end
     
     Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
     Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
     Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
     Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
     Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
     Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
     Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
     Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
     Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
     Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
     Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14

   Or, if we want to examine the variable `X' at each source line in
the buffer:

     (gdb) tfind start
     (gdb) while ($trace_frame != -1)
     > printf "Frame %d, X == %d\n", $trace_frame, X
     > tfind line
     > end
     
     Frame 0, X = 1
     Frame 7, X = 2
     Frame 13, X = 255


File: gdb.info,  Node: tdump,  Next: save-tracepoints,  Prev: tfind,  Up: Analyze Collected Data

`tdump'
-------

This command takes no arguments.  It prints all the data collected at
the current trace snapshot.

     (gdb) trace 444
     (gdb) actions
     Enter actions for tracepoint #2, one per line:
     > collect $regs, $locals, $args, gdb_long_test
     > end
     
     (gdb) tstart
     
     (gdb) tfind line 444
     #0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
     at gdb_test.c:444
     444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
     
     (gdb) tdump
     Data collected at tracepoint 2, trace frame 1:
     d0             0xc4aa0085       -995491707
     d1             0x18     24
     d2             0x80     128
     d3             0x33     51
     d4             0x71aea3d        119204413
     d5             0x22     34
     d6             0xe0     224
     d7             0x380035 3670069
     a0             0x19e24a 1696330
     a1             0x3000668        50333288
     a2             0x100    256
     a3             0x322000 3284992
     a4             0x3000698        50333336
     a5             0x1ad3cc 1758156
     fp             0x30bf3c 0x30bf3c
     sp             0x30bf34 0x30bf34
     ps             0x0      0
     pc             0x20b2c8 0x20b2c8
     fpcontrol      0x0      0
     fpstatus       0x0      0
     fpiaddr        0x0      0
     p = 0x20e5b4 "gdb-test"
     p1 = (void *) 0x11
     p2 = (void *) 0x22
     p3 = (void *) 0x33
     p4 = (void *) 0x44
     p5 = (void *) 0x55
     p6 = (void *) 0x66
     gdb_long_test = 17 '\021'
     
     (gdb)


File: gdb.info,  Node: save-tracepoints,  Prev: tdump,  Up: Analyze Collected Data

`save-tracepoints FILENAME'
---------------------------

This command saves all current tracepoint definitions together with
their actions and passcounts, into a file `FILENAME' suitable for use
in a later debugging session.  To read the saved tracepoint
definitions, use the `source' command (*note Command Files::).


File: gdb.info,  Node: Tracepoint Variables,  Prev: Analyze Collected Data,  Up: Tracepoints

Convenience Variables for Tracepoints
=====================================

`(int) $trace_frame'
     The current trace snapshot (a.k.a. "frame") number, or -1 if no
     snapshot is selected.

`(int) $tracepoint'
     The tracepoint for the current trace snapshot.

`(int) $trace_line'
     The line number for the current trace snapshot.

`(char []) $trace_file'
     The source file for the current trace snapshot.

`(char []) $trace_func'
     The name of the function containing `$tracepoint'.

   Note: `$trace_file' is not suitable for use in `printf', use
`output' instead.

   Here's a simple example of using these convenience variables for
stepping through all the trace snapshots and printing some of their
data.

     (gdb) tfind start
     
     (gdb) while $trace_frame != -1
     > output $trace_file
     > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
     > tfind
     > end


File: gdb.info,  Node: Overlays,  Next: Languages,  Prev: Tracepoints,  Up: Top

Debugging Programs That Use Overlays
************************************

If your program is too large to fit completely in your target system's
memory, you can sometimes use "overlays" to work around this problem.
GDB provides some support for debugging programs that use overlays.

* Menu:

* How Overlays Work::              A general explanation of overlays.
* Overlay Commands::               Managing overlays in GDB.
* Automatic Overlay Debugging::    GDB can find out which overlays are
                                   mapped by asking the inferior.
* Overlay Sample Program::         A sample program using overlays.


File: gdb.info,  Node: How Overlays Work,  Next: Overlay Commands,  Up: Overlays

How Overlays Work
=================

Suppose you have a computer whose instruction address space is only 64
kilobytes long, but which has much more memory which can be accessed by
other means: special instructions, segment registers, or memory
management hardware, for example.  Suppose further that you want to
adapt a program which is larger than 64 kilobytes to run on this system.

   One solution is to identify modules of your program which are
relatively independent, and need not call each other directly; call
these modules "overlays".  Separate the overlays from the main program,
and place their machine code in the larger memory.  Place your main
program in instruction memory, but leave at least enough space there to
hold the largest overlay as well.

   Now, to call a function located in an overlay, you must first copy
that overlay's machine code from the large memory into the space set
aside for it in the instruction memory, and then jump to its entry point
there.

         Data             Instruction            Larger
     Address Space       Address Space        Address Space
     +-----------+       +-----------+        +-----------+
     |           |       |           |        |           |
     +-----------+       +-----------+        +-----------+<-- overlay 1
     | program   |       |   main    |   .----| overlay 1 | load address
     | variables |       |  program  |   |    +-----------+
     | and heap  |       |           |   |    |           |
     +-----------+       |           |   |    +-----------+<-- overlay 2
     |           |       +-----------+   |    |           | load address
     +-----------+       |           |   |  .-| overlay 2 |
                         |           |   |  | |           |
              mapped --->+-----------+   |  | +-----------+
              address    |           |   |  | |           |
                         |  overlay  | <-'  | |           |
                         |   area    |  <---' +-----------+<-- overlay 3
                         |           | <---.  |           | load address
                         +-----------+     `--| overlay 3 |
                         |           |        |           |
                         +-----------+        |           |
                                              +-----------+
                                              |           |
                                              +-----------+
     
                         A code overlay

   The diagram (*note A code overlay::) shows a system with separate
data and instruction address spaces.  To map an overlay, the program
copies its code from the larger address space to the instruction
address space.  Since the overlays shown here all use the same mapped
address, only one may be mapped at a time.  For a system with a single
address space for data and instructions, the diagram would be similar,
except that the program variables and heap would share an address space
with the main program and the overlay area.

   An overlay loaded into instruction memory and ready for use is
called a "mapped" overlay; its "mapped address" is its address in the
instruction memory.  An overlay not present (or only partially present)
in instruction memory is called "unmapped"; its "load address" is its
address in the larger memory.  The mapped address is also called the
"virtual memory address", or "VMA"; the load address is also called the
"load memory address", or "LMA".

   Unfortunately, overlays are not a completely transparent way to
adapt a program to limited instruction memory.  They introduce a new
set of global constraints you must keep in mind as you design your
program:

   * Before calling or returning to a function in an overlay, your
     program must make sure that overlay is actually mapped.
     Otherwise, the call or return will transfer control to the right
     address, but in the wrong overlay, and your program will probably
     crash.

   * If the process of mapping an overlay is expensive on your system,
     you will need to choose your overlays carefully to minimize their
     effect on your program's performance.

   * The executable file you load onto your system must contain each
     overlay's instructions, appearing at the overlay's load address,
     not its mapped address.  However, each overlay's instructions must
     be relocated and its symbols defined as if the overlay were at its
     mapped address.  You can use GNU linker scripts to specify
     different load and relocation addresses for pieces of your
     program; see *Note Overlay Description: (ld.info)Overlay
     Description.

   * The procedure for loading executable files onto your system must
     be able to load their contents into the larger address space as
     well as the instruction and data spaces.


   The overlay system described above is rather simple, and could be
improved in many ways:

   * If your system has suitable bank switch registers or memory
     management hardware, you could use those facilities to make an
     overlay's load area contents simply appear at their mapped address
     in instruction space.  This would probably be faster than copying
     the overlay to its mapped area in the usual way.

   * If your overlays are small enough, you could set aside more than
     one overlay area, and have more than one overlay mapped at a time.

   * You can use overlays to manage data, as well as instructions.  In
     general, data overlays are even less transparent to your design
     than code overlays: whereas code overlays only require care when
     you call or return to functions, data overlays require care every
     time you access the data.  Also, if you change the contents of a
     data overlay, you must copy its contents back out to its load
     address before you can copy a different data overlay into the same
     mapped area.



File: gdb.info,  Node: Overlay Commands,  Next: Automatic Overlay Debugging,  Prev: How Overlays Work,  Up: Overlays

Overlay Commands
================

To use GDB's overlay support, each overlay in your program must
correspond to a separate section of the executable file.  The section's
virtual memory address and load memory address must be the overlay's
mapped and load addresses.  Identifying overlays with sections allows
GDB to determine the appropriate address of a function or variable,
depending on whether the overlay is mapped or not.

   GDB's overlay commands all start with the word `overlay'; you can
abbreviate this as `ov' or `ovly'.  The commands are:

`overlay off'
     Disable GDB's overlay support.  When overlay support is disabled,
     GDB assumes that all functions and variables are always present at
     their mapped addresses.  By default, GDB's overlay support is
     disabled.

`overlay manual'
     Enable "manual" overlay debugging.  In this mode, GDB relies on
     you to tell it which overlays are mapped, and which are not, using
     the `overlay map-overlay' and `overlay unmap-overlay' commands
     described below.

`overlay map-overlay OVERLAY'
`overlay map OVERLAY'
     Tell GDB that OVERLAY is now mapped; OVERLAY must be the name of
     the object file section containing the overlay.  When an overlay
     is mapped, GDB assumes it can find the overlay's functions and
     variables at their mapped addresses.  GDB assumes that any other
     overlays whose mapped ranges overlap that of OVERLAY are now
     unmapped.

`overlay unmap-overlay OVERLAY'
`overlay unmap OVERLAY'
     Tell GDB that OVERLAY is no longer mapped; OVERLAY must be the
     name of the object file section containing the overlay.  When an
     overlay is unmapped, GDB assumes it can find the overlay's
     functions and variables at their load addresses.

`overlay auto'
     Enable "automatic" overlay debugging.  In this mode, GDB consults
     a data structure the overlay manager maintains in the inferior to
     see which overlays are mapped.  For details, see *Note Automatic
     Overlay Debugging::.

`overlay load-target'
`overlay load'
     Re-read the overlay table from the inferior.  Normally, GDB
     re-reads the table GDB automatically each time the inferior stops,
     so this command should only be necessary if you have changed the
     overlay mapping yourself using GDB.  This command is only useful
     when using automatic overlay debugging.

`overlay list-overlays'
`overlay list'
     Display a list of the overlays currently mapped, along with their
     mapped addresses, load addresses, and sizes.


   Normally, when GDB prints a code address, it includes the name of
the function the address falls in:

     (gdb) print main
     $3 = {int ()} 0x11a0 <main>

When overlay debugging is enabled, GDB recognizes code in unmapped
overlays, and prints the names of unmapped functions with asterisks
around them.  For example, if `foo' is a function in an unmapped
overlay, GDB prints it this way:

     (gdb) overlay list
     No sections are mapped.
     (gdb) print foo
     $5 = {int (int)} 0x100000 <*foo*>

When `foo''s overlay is mapped, GDB prints the function's name normally:

     (gdb) overlay list
     Section .ov.foo.text, loaded at 0x100000 - 0x100034,
             mapped at 0x1016 - 0x104a
     (gdb) print foo
     $6 = {int (int)} 0x1016 <foo>

   When overlay debugging is enabled, GDB can find the correct address
for functions and variables in an overlay, whether or not the overlay
is mapped.  This allows most GDB commands, like `break' and
`disassemble', to work normally, even on unmapped code.  However, GDB's
breakpoint support has some limitations:

   * You can set breakpoints in functions in unmapped overlays, as long
     as GDB can write to the overlay at its load address.

   * GDB can not set hardware or simulator-based breakpoints in
     unmapped overlays.  However, if you set a breakpoint at the end of
     your overlay manager (and tell GDB which overlays are now mapped,
     if you are using manual overlay management), GDB will re-set its
     breakpoints properly.


File: gdb.info,  Node: Automatic Overlay Debugging,  Next: Overlay Sample Program,  Prev: Overlay Commands,  Up: Overlays

Automatic Overlay Debugging
===========================

GDB can automatically track which overlays are mapped and which are
not, given some simple co-operation from the overlay manager in the
inferior.  If you enable automatic overlay debugging with the `overlay
auto' command (*note Overlay Commands::), GDB looks in the inferior's
memory for certain variables describing the current state of the
overlays.

   Here are the variables your overlay manager must define to support
GDB's automatic overlay debugging:

`_ovly_table':
     This variable must be an array of the following structures:

          struct
          {
            /* The overlay's mapped address.  */
            unsigned long vma;
          
            /* The size of the overlay, in bytes.  */
            unsigned long size;
          
            /* The overlay's load address.  */
            unsigned long lma;
          
            /* Non-zero if the overlay is currently mapped;
               zero otherwise.  */
            unsigned long mapped;
          }

`_novlys':
     This variable must be a four-byte signed integer, holding the total
     number of elements in `_ovly_table'.


   To decide whether a particular overlay is mapped or not, GDB looks
for an entry in `_ovly_table' whose `vma' and `lma' members equal the
VMA and LMA of the overlay's section in the executable file.  When GDB
finds a matching entry, it consults the entry's `mapped' member to
determine whether the overlay is currently mapped.

   In addition, your overlay manager may define a function called
`_ovly_debug_event'.  If this function is defined, GDB will silently
set a breakpoint there.  If the overlay manager then calls this
function whenever it has changed the overlay table, this will enable
GDB to accurately keep track of which overlays are in program memory,
and update any breakpoints that may be set in overlays.  This will
allow breakpoints to work even if the overlays are kept in ROM or other
non-writable memory while they are not being executed.


File: gdb.info,  Node: Overlay Sample Program,  Prev: Automatic Overlay Debugging,  Up: Overlays

Overlay Sample Program
======================

When linking a program which uses overlays, you must place the overlays
at their load addresses, while relocating them to run at their mapped
addresses.  To do this, you must write a linker script (*note Overlay
Description: (ld.info)Overlay Description.).  Unfortunately, since
linker scripts are specific to a particular host system, target
architecture, and target memory layout, this manual cannot provide
portable sample code demonstrating GDB's overlay support.

   However, the GDB source distribution does contain an overlaid
program, with linker scripts for a few systems, as part of its test
suite.  The program consists of the following files from
`gdb/testsuite/gdb.base':

`overlays.c'
     The main program file.

`ovlymgr.c'
     A simple overlay manager, used by `overlays.c'.

`foo.c'
`bar.c'
`baz.c'
`grbx.c'
     Overlay modules, loaded and used by `overlays.c'.

`d10v.ld'
`m32r.ld'
     Linker scripts for linking the test program on the `d10v-elf' and
     `m32r-elf' targets.

   You can build the test program using the `d10v-elf' GCC
cross-compiler like this:

     $ d10v-elf-gcc -g -c overlays.c
     $ d10v-elf-gcc -g -c ovlymgr.c
     $ d10v-elf-gcc -g -c foo.c
     $ d10v-elf-gcc -g -c bar.c
     $ d10v-elf-gcc -g -c baz.c
     $ d10v-elf-gcc -g -c grbx.c
     $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
                       baz.o grbx.o -Wl,-Td10v.ld -o overlays

   The build process is identical for any other architecture, except
that you must substitute the appropriate compiler and linker script for
the target system for `d10v-elf-gcc' and `d10v.ld'.


File: gdb.info,  Node: Languages,  Next: Symbols,  Prev: Overlays,  Up: Top

Using GDB with Different Languages
**********************************

Although programming languages generally have common aspects, they are
rarely expressed in the same manner.  For instance, in ANSI C,
dereferencing a pointer `p' is accomplished by `*p', but in Modula-2,
it is accomplished by `p^'.  Values can also be represented (and
displayed) differently.  Hex numbers in C appear as `0x1ae', while in
Modula-2 they appear as `1AEH'.

   Language-specific information is built into GDB for some languages,
allowing you to express operations like the above in your program's
native language, and allowing GDB to output values in a manner
consistent with the syntax of your program's native language.  The
language you use to build expressions is called the "working language".

* Menu:

* Setting::                     Switching between source languages
* Show::                        Displaying the language
* Checks::                      Type and range checks
* Support::                     Supported languages
* Unsupported languages::       Unsupported languages


File: gdb.info,  Node: Setting,  Next: Show,  Up: Languages

Switching between source languages
==================================

There are two ways to control the working language--either have GDB set
it automatically, or select it manually yourself.  You can use the `set
language' command for either purpose.  On startup, GDB defaults to
setting the language automatically.  The working language is used to
determine how expressions you type are interpreted, how values are
printed, etc.

   In addition to the working language, every source file that GDB
knows about has its own working language.  For some object file
formats, the compiler might indicate which language a particular source
file is in.  However, most of the time GDB infers the language from the
name of the file.  The language of a source file controls whether C++
names are demangled--this way `backtrace' can show each frame
appropriately for its own language.  There is no way to set the
language of a source file from within GDB, but you can set the language
associated with a filename extension.  *Note Displaying the language:
Show.

   This is most commonly a problem when you use a program, such as
`cfront' or `f2c', that generates C but is written in another language.
In that case, make the program use `#line' directives in its C output;
that way GDB will know the correct language of the source code of the
original program, and will display that source code, not the generated
C code.

* Menu:

* Filenames::                   Filename extensions and languages.
* Manually::                    Setting the working language manually
* Automatically::               Having GDB infer the source language


File: gdb.info,  Node: Filenames,  Next: Manually,  Up: Setting

List of filename extensions and languages
-----------------------------------------

If a source file name ends in one of the following extensions, then GDB
infers that its language is the one indicated.

`.c'
     C source file

`.C'
`.cc'
`.cp'
`.cpp'
`.cxx'
`.c++'
     C++ source file

`.m'
     Objective-C source file

`.f'
`.F'
     Fortran source file

`.mod'
     Modula-2 source file

`.s'
`.S'
     Assembler source file.  This actually behaves almost like C, but
     GDB does not skip over function prologues when stepping.

   In addition, you may set the language associated with a filename
extension.  *Note Displaying the language: Show.


File: gdb.info,  Node: Manually,  Next: Automatically,  Prev: Filenames,  Up: Setting

Setting the working language
----------------------------

If you allow GDB to set the language automatically, expressions are
interpreted the same way in your debugging session and your program.

   If you wish, you may set the language manually.  To do this, issue
the command `set language LANG', where LANG is the name of a language,
such as `c' or `modula-2'.  For a list of the supported languages, type
`set language'.

   Setting the language manually prevents GDB from updating the working
language automatically.  This can lead to confusion if you try to debug
a program when the working language is not the same as the source
language, when an expression is acceptable to both languages--but means
different things.  For instance, if the current source file were
written in C, and GDB was parsing Modula-2, a command such as:

     print a = b + c

might not have the effect you intended.  In C, this means to add `b'
and `c' and place the result in `a'.  The result printed would be the
value of `a'.  In Modula-2, this means to compare `a' to the result of
`b+c', yielding a `BOOLEAN' value.


File: gdb.info,  Node: Automatically,  Prev: Manually,  Up: Setting

Having GDB infer the source language
------------------------------------

To have GDB set the working language automatically, use `set language
local' or `set language auto'.  GDB then infers the working language.
That is, when your program stops in a frame (usually by encountering a
breakpoint), GDB sets the working language to the language recorded for
the function in that frame.  If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was
defined in a source file that does not have a recognized extension),
the current working language is not changed, and GDB issues a warning.

   This may not seem necessary for most programs, which are written
entirely in one source language.  However, program modules and libraries
written in one source language can be used by a main program written in
a different source language.  Using `set language auto' in this case
frees you from having to set the working language manually.


File: gdb.info,  Node: Show,  Next: Checks,  Prev: Setting,  Up: Languages

Displaying the language
=======================

The following commands help you find out which language is the working
language, and also what language source files were written in.

`show language'
     Display the current working language.  This is the language you
     can use with commands such as `print' to build and compute
     expressions that may involve variables in your program.

`info frame'
     Display the source language for this frame.  This language becomes
     the working language if you use an identifier from this frame.
     *Note Information about a frame: Frame Info, to identify the other
     information listed here.

`info source'
     Display the source language of this source file.  *Note Examining
     the Symbol Table: Symbols, to identify the other information
     listed here.

   In unusual circumstances, you may have source files with extensions
not in the standard list.  You can then set the extension associated
with a language explicitly:

`set extension-language .EXT LANGUAGE'
     Set source files with extension .EXT to be assumed to be in the
     source language LANGUAGE.

`info extensions'
     List all the filename extensions and the associated languages.


File: gdb.info,  Node: Checks,  Next: Support,  Prev: Show,  Up: Languages

Type and range checking
=======================

     _Warning:_ In this release, the GDB commands for type and range
     checking are included, but they do not yet have any effect.  This
     section documents the intended facilities.

   Some languages are designed to guard you against making seemingly
common errors through a series of compile- and run-time checks.  These
include checking the type of arguments to functions and operators, and
making sure mathematical overflows are caught at run time.  Checks such
as these help to ensure a program's correctness once it has been
compiled by eliminating type mismatches, and providing active checks
for range errors when your program is running.

   GDB can check for conditions like the above if you wish.  Although
GDB does not check the statements in your program, it can check
expressions entered directly into GDB for evaluation via the `print'
command, for example.  As with the working language, GDB can also
decide whether or not to check automatically based on your program's
source language.  *Note Supported languages: Support, for the default
settings of supported languages.

* Menu:

* Type Checking::               An overview of type checking
* Range Checking::              An overview of range checking


File: gdb.info,  Node: Type Checking,  Next: Range Checking,  Up: Checks

An overview of type checking
----------------------------

Some languages, such as Modula-2, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type,
otherwise an error occurs.  These checks prevent type mismatch errors
from ever causing any run-time problems.  For example,

     1 + 2 => 3
but
     error--> 1 + 2.3

   The second example fails because the `CARDINAL' 1 is not
type-compatible with the `REAL' 2.3.

   For the expressions you use in GDB commands, you can tell the GDB
type checker to skip checking; to treat any mismatches as errors and
abandon the expression; or to only issue warnings when type mismatches
occur, but evaluate the expression anyway.  When you choose the last of
these, GDB evaluates expressions like the second example above, but
also issues a warning.

   Even if you turn type checking off, there may be other reasons
related to type that prevent GDB from evaluating an expression.  For
instance, GDB does not know how to add an `int' and a `struct foo'.
These particular type errors have nothing to do with the language in
use, and usually arise from expressions, such as the one described
above, which make little sense to evaluate anyway.

   Each language defines to what degree it is strict about type.  For
instance, both Modula-2 and C require the arguments to arithmetical
operators to be numbers.  In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathematical
operators.  *Note Supported languages: Support, for further details on
specific languages.

   GDB provides some additional commands for controlling the type
checker:

`set check type auto'
     Set type checking on or off based on the current working language.
     *Note Supported languages: Support, for the default settings for
     each language.

`set check type on'
`set check type off'
     Set type checking on or off, overriding the default setting for the
     current working language.  Issue a warning if the setting does not
     match the language default.  If any type mismatches occur in
     evaluating an expression while type checking is on, GDB prints a
     message and aborts evaluation of the expression.

`set check type warn'
     Cause the type checker to issue warnings, but to always attempt to
     evaluate the expression.  Evaluating the expression may still be
     impossible for other reasons.  For example, GDB cannot add numbers
     and structures.

`show type'
     Show the current setting of the type checker, and whether or not
     GDB is setting it automatically.


File: gdb.info,  Node: Range Checking,  Prev: Type Checking,  Up: Checks

An overview of range checking
-----------------------------

In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks.  Such range
checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do
not exceed the bounds of the array.

   For expressions you use in GDB commands, you can tell GDB to treat
range errors in one of three ways: ignore them, always treat them as
errors and abandon the expression, or issue warnings but evaluate the
expression anyway.

   A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member of
any type.  Some languages, however, do not treat overflows as an error.
In many implementations of C, mathematical overflow causes the result
to "wrap around" to lower values--for example, if M is the largest
integer value, and S is the smallest, then

     M + 1 => S

   This, too, is specific to individual languages, and in some cases
specific to individual compilers or machines.  *Note Supported
languages: Support, for further details on specific languages.

   GDB provides some additional commands for controlling the range
checker:

`set check range auto'
     Set range checking on or off based on the current working language.
     *Note Supported languages: Support, for the default settings for
     each language.

`set check range on'
`set check range off'
     Set range checking on or off, overriding the default setting for
     the current working language.  A warning is issued if the setting
     does not match the language default.  If a range error occurs and
     range checking is on, then a message is printed and evaluation of
     the expression is aborted.

`set check range warn'
     Output messages when the GDB range checker detects a range error,
     but attempt to evaluate the expression anyway.  Evaluating the
     expression may still be impossible for other reasons, such as
     accessing memory that the process does not own (a typical example
     from many Unix systems).

`show range'
     Show the current setting of the range checker, and whether or not
     it is being set automatically by GDB.


File: gdb.info,  Node: Support,  Next: Unsupported languages,  Prev: Checks,  Up: Languages

Supported languages
===================

GDB supports C, C++, Objective-C, Fortran, Java, assembly, and Modula-2.
Some GDB features may be used in expressions regardless of the language
you use: the GDB `@' and `::' operators, and the `{type}addr' construct
(*note Expressions: Expressions.) can be used with the constructs of
any supported language.

   The following sections detail to what degree each source language is
supported by GDB.  These sections are not meant to be language
tutorials or references, but serve only as a reference guide to what the
GDB expression parser accepts, and what input and output formats should
look like for different languages.  There are many good books written
on each of these languages; please look to these for a language
reference or tutorial.

* Menu:

* C::                           C and C++
* Objective-C::                 Objective-C
* Modula-2::                    Modula-2


File: gdb.info,  Node: C,  Next: Objective-C,  Up: Support

C and C++
---------

Since C and C++ are so closely related, many features of GDB apply to
both languages.  Whenever this is the case, we discuss those languages
together.

   The C++ debugging facilities are jointly implemented by the C++
compiler and GDB.  Therefore, to debug your C++ code effectively, you
must compile your C++ programs with a supported C++ compiler, such as
GNU `g++', or the HP ANSI C++ compiler (`aCC').

   For best results when using GNU C++, use the DWARF 2 debugging
format; if it doesn't work on your system, try the stabs+ debugging
format.  You can select those formats explicitly with the `g++'
command-line options `-gdwarf-2' and `-gstabs+'.  *Note Options for
Debugging Your Program or GNU CC: (gcc.info)Debugging Options.

* Menu:

* C Operators::                 C and C++ operators
* C Constants::                 C and C++ constants
* C plus plus expressions::     C++ expressions
* C Defaults::                  Default settings for C and C++
* C Checks::                    C and C++ type and range checks
* Debugging C::                 GDB and C
* Debugging C plus plus::       GDB features for C++


File: gdb.info,  Node: C Operators,  Next: C Constants,  Up: C

C and C++ operators
...................

Operators must be defined on values of specific types.  For instance,
`+' is defined on numbers, but not on structures.  Operators are often
defined on groups of types.

   For the purposes of C and C++, the following definitions hold:

   * _Integral types_ include `int' with any of its storage-class
     specifiers; `char'; `enum'; and, for C++, `bool'.

   * _Floating-point types_ include `float', `double', and `long
     double' (if supported by the target platform).

   * _Pointer types_ include all types defined as `(TYPE *)'.

   * _Scalar types_ include all of the above.


The following operators are supported.  They are listed here in order
of increasing precedence:

`,'
     The comma or sequencing operator.  Expressions in a
     comma-separated list are evaluated from left to right, with the
     result of the entire expression being the last expression
     evaluated.

`='
     Assignment.  The value of an assignment expression is the value
     assigned.  Defined on scalar types.

`OP='
     Used in an expression of the form `A OP= B', and translated to
     `A = A OP B'.  `OP=' and `=' have the same precedence.  OP is any
     one of the operators `|', `^', `&', `<<', `>>', `+', `-', `*',
     `/', `%'.

`?:'
     The ternary operator.  `A ? B : C' can be thought of as:  if A
     then B else C.  A should be of an integral type.

`||'
     Logical OR.  Defined on integral types.

`&&'
     Logical AND.  Defined on integral types.

`|'
     Bitwise OR.  Defined on integral types.

`^'
     Bitwise exclusive-OR.  Defined on integral types.

`&'
     Bitwise AND.  Defined on integral types.

`==, !='
     Equality and inequality.  Defined on scalar types.  The value of
     these expressions is 0 for false and non-zero for true.

`<, >, <=, >='
     Less than, greater than, less than or equal, greater than or equal.
     Defined on scalar types.  The value of these expressions is 0 for
     false and non-zero for true.

`<<, >>'
     left shift, and right shift.  Defined on integral types.

`@'
     The GDB "artificial array" operator (*note Expressions:
     Expressions.).

`+, -'
     Addition and subtraction.  Defined on integral types,
     floating-point types and pointer types.

`*, /, %'
     Multiplication, division, and modulus.  Multiplication and
     division are defined on integral and floating-point types.
     Modulus is defined on integral types.

`++, --'
     Increment and decrement.  When appearing before a variable, the
     operation is performed before the variable is used in an
     expression; when appearing after it, the variable's value is used
     before the operation takes place.

`*'
     Pointer dereferencing.  Defined on pointer types.  Same precedence
     as `++'.

`&'
     Address operator.  Defined on variables.  Same precedence as `++'.

     For debugging C++, GDB implements a use of `&' beyond what is
     allowed in the C++ language itself: you can use `&(&REF)' (or, if
     you prefer, simply `&&REF') to examine the address where a C++
     reference variable (declared with `&REF') is stored.

`-'
     Negative.  Defined on integral and floating-point types.  Same
     precedence as `++'.

`!'
     Logical negation.  Defined on integral types.  Same precedence as
     `++'.

`~'
     Bitwise complement operator.  Defined on integral types.  Same
     precedence as `++'.

`., ->'
     Structure member, and pointer-to-structure member.  For
     convenience, GDB regards the two as equivalent, choosing whether
     to dereference a pointer based on the stored type information.
     Defined on `struct' and `union' data.

`.*, ->*'
     Dereferences of pointers to members.

`[]'
     Array indexing.  `A[I]' is defined as `*(A+I)'.  Same precedence
     as `->'.

`()'
     Function parameter list.  Same precedence as `->'.

`::'
     C++ scope resolution operator.  Defined on `struct', `union', and
     `class' types.

`::'
     Doubled colons also represent the GDB scope operator (*note
     Expressions: Expressions.).  Same precedence as `::', above.

   If an operator is redefined in the user code, GDB usually attempts
to invoke the redefined version instead of using the operator's
predefined meaning.

* Menu:

* C Constants::


File: gdb.info,  Node: C Constants,  Next: C plus plus expressions,  Prev: C Operators,  Up: C

C and C++ constants
...................

GDB allows you to express the constants of C and C++ in the following
ways:

   * Integer constants are a sequence of digits.  Octal constants are
     specified by a leading `0' (i.e. zero), and hexadecimal constants
     by a leading `0x' or `0X'.  Constants may also end with a letter
     `l', specifying that the constant should be treated as a `long'
     value.

   * Floating point constants are a sequence of digits, followed by a
     decimal point, followed by a sequence of digits, and optionally
     followed by an exponent.  An exponent is of the form:
     `e[[+]|-]NNN', where NNN is another sequence of digits.  The `+'
     is optional for positive exponents.  A floating-point constant may
     also end with a letter `f' or `F', specifying that the constant
     should be treated as being of the `float' (as opposed to the
     default `double') type; or with a letter `l' or `L', which
     specifies a `long double' constant.

   * Enumerated constants consist of enumerated identifiers, or their
     integral equivalents.

   * Character constants are a single character surrounded by single
     quotes (`''), or a number--the ordinal value of the corresponding
     character (usually its ASCII value).  Within quotes, the single
     character may be represented by a letter or by "escape sequences",
     which are of the form `\NNN', where NNN is the octal representation
     of the character's ordinal value; or of the form `\X', where `X'
     is a predefined special character--for example, `\n' for newline.

   * String constants are a sequence of character constants surrounded
     by double quotes (`"').  Any valid character constant (as described
     above) may appear.  Double quotes within the string must be
     preceded by a backslash, so for instance `"a\"b'c"' is a string of
     five characters.

   * Pointer constants are an integral value.  You can also write
     pointers to constants using the C operator `&'.

   * Array constants are comma-separated lists surrounded by braces `{'
     and `}'; for example, `{1,2,3}' is a three-element array of
     integers, `{{1,2}, {3,4}, {5,6}}' is a three-by-two array, and
     `{&"hi", &"there", &"fred"}' is a three-element array of pointers.

* Menu:

* C plus plus expressions::
* C Defaults::
* C Checks::

* Debugging C::


File: gdb.info,  Node: C plus plus expressions,  Next: C Defaults,  Prev: C Constants,  Up: C

C++ expressions
...............

GDB expression handling can interpret most C++ expressions.

     _Warning:_ GDB can only debug C++ code if you use the proper
     compiler and the proper debug format.  Currently, GDB works best
     when debugging C++ code that is compiled with GCC 2.95.3 or with
     GCC 3.1 or newer, using the options `-gdwarf-2' or `-gstabs+'.
     DWARF 2 is preferred over stabs+.  Most configurations of GCC emit
     either DWARF 2 or stabs+ as their default debug format, so you
     usually don't need to specify a debug format explicitly.  Other
     compilers and/or debug formats are likely to work badly or not at
     all when using GDB to debug C++ code.

  1. Member function calls are allowed; you can use expressions like

          count = aml->GetOriginal(x, y)

  2. While a member function is active (in the selected stack frame),
     your expressions have the same namespace available as the member
     function; that is, GDB allows implicit references to the class
     instance pointer `this' following the same rules as C++.

  3. You can call overloaded functions; GDB resolves the function call
     to the right definition, with some restrictions.  GDB does not
     perform overload resolution involving user-defined type
     conversions, calls to constructors, or instantiations of templates
     that do not exist in the program.  It also cannot handle ellipsis
     argument lists or default arguments.

     It does perform integral conversions and promotions, floating-point
     promotions, arithmetic conversions, pointer conversions,
     conversions of class objects to base classes, and standard
     conversions such as those of functions or arrays to pointers; it
     requires an exact match on the number of function arguments.

     Overload resolution is always performed, unless you have specified
     `set overload-resolution off'.  *Note GDB features for C++:
     Debugging C plus plus.

     You must specify `set overload-resolution off' in order to use an
     explicit function signature to call an overloaded function, as in
          p 'foo(char,int)'('x', 13)

     The GDB command-completion facility can simplify this; see *Note
     Command completion: Completion.

  4. GDB understands variables declared as C++ references; you can use
     them in expressions just as you do in C++ source--they are
     automatically dereferenced.

     In the parameter list shown when GDB displays a frame, the values
     of reference variables are not displayed (unlike other variables);
     this avoids clutter, since references are often used for large
     structures.  The _address_ of a reference variable is always
     shown, unless you have specified `set print address off'.

  5. GDB supports the C++ name resolution operator `::'--your
     expressions can use it just as expressions in your program do.
     Since one scope may be defined in another, you can use `::'
     repeatedly if necessary, for example in an expression like
     `SCOPE1::SCOPE2::NAME'.  GDB also allows resolving name scope by
     reference to source files, in both C and C++ debugging (*note
     Program variables: Variables.).

   In addition, when used with HP's C++ compiler, GDB supports calling
virtual functions correctly, printing out virtual bases of objects,
calling functions in a base subobject, casting objects, and invoking
user-defined operators.


File: gdb.info,  Node: C Defaults,  Next: C Checks,  Prev: C plus plus expressions,  Up: C

C and C++ defaults
..................

If you allow GDB to set type and range checking automatically, they
both default to `off' whenever the working language changes to C or
C++.  This happens regardless of whether you or GDB selects the working
language.

   If you allow GDB to set the language automatically, it recognizes
source files whose names end with `.c', `.C', or `.cc', etc, and when
GDB enters code compiled from one of these files, it sets the working
language to C or C++.  *Note Having GDB infer the source language:
Automatically, for further details.


File: gdb.info,  Node: C Checks,  Next: Debugging C,  Prev: C Defaults,  Up: C

C and C++ type and range checks
...............................

By default, when GDB parses C or C++ expressions, type checking is not
used.  However, if you turn type checking on, GDB considers two
variables type equivalent if:

   * The two variables are structured and have the same structure,
     union, or enumerated tag.

   * The two variables have the same type name, or types that have been
     declared equivalent through `typedef'.


   Range checking, if turned on, is done on mathematical operations.
Array indices are not checked, since they are often used to index a
pointer that is not itself an array.


File: gdb.info,  Node: Debugging C,  Next: Debugging C plus plus,  Prev: C Checks,  Up: C

GDB and C
.........

The `set print union' and `show print union' commands apply to the
`union' type.  When set to `on', any `union' that is inside a `struct'
or `class' is also printed.  Otherwise, it appears as `{...}'.

   The `@' operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function.  *Note Expressions:
Expressions.

* Menu:

* Debugging C plus plus::


File: gdb.info,  Node: Debugging C plus plus,  Prev: Debugging C,  Up: C

GDB features for C++
....................

Some GDB commands are particularly useful with C++, and some are
designed specifically for use with C++.  Here is a summary:

`breakpoint menus'
     When you want a breakpoint in a function whose name is overloaded,
     GDB breakpoint menus help you specify which function definition
     you want.  *Note Breakpoint menus: Breakpoint Menus.

`rbreak REGEX'
     Setting breakpoints using regular expressions is helpful for
     setting breakpoints on overloaded functions that are not members
     of any special classes.  *Note Setting breakpoints: Set Breaks.

`catch throw'
`catch catch'
     Debug C++ exception handling using these commands.  *Note Setting
     catchpoints: Set Catchpoints.

`ptype TYPENAME'
     Print inheritance relationships as well as other information for
     type TYPENAME.  *Note Examining the Symbol Table: Symbols.

`set print demangle'
`show print demangle'
`set print asm-demangle'
`show print asm-demangle'
     Control whether C++ symbols display in their source form, both when
     displaying code as C++ source and when displaying disassemblies.
     *Note Print settings: Print Settings.

`set print object'
`show print object'
     Choose whether to print derived (actual) or declared types of
     objects.  *Note Print settings: Print Settings.

`set print vtbl'
`show print vtbl'
     Control the format for printing virtual function tables.  *Note
     Print settings: Print Settings.  (The `vtbl' commands do not work
     on programs compiled with the HP ANSI C++ compiler (`aCC').)

`set overload-resolution on'
     Enable overload resolution for C++ expression evaluation.  The
     default is on.  For overloaded functions, GDB evaluates the
     arguments and searches for a function whose signature matches the
     argument types, using the standard C++ conversion rules (see *Note
     C++ expressions: C plus plus expressions, for details).  If it
     cannot find a match, it emits a message.

`set overload-resolution off'
     Disable overload resolution for C++ expression evaluation.  For
     overloaded functions that are not class member functions, GDB
     chooses the first function of the specified name that it finds in
     the symbol table, whether or not its arguments are of the correct
     type.  For overloaded functions that are class member functions,
     GDB searches for a function whose signature _exactly_ matches the
     argument types.

`Overloaded symbol names'
     You can specify a particular definition of an overloaded symbol,
     using the same notation that is used to declare such symbols in
     C++: type `SYMBOL(TYPES)' rather than just SYMBOL.  You can also
     use the GDB command-line word completion facilities to list the
     available choices, or to finish the type list for you.  *Note
     Command completion: Completion, for details on how to do this.


File: gdb.info,  Node: Objective-C,  Next: Modula-2,  Prev: C,  Up: Support

Objective-C
-----------

This section provides information about some commands and command
options that are useful for debugging Objective-C code.

* Menu:

* Method Names in Commands::
* The Print Command with Objective-C::


File: gdb.info,  Node: Method Names in Commands,  Next: The Print Command with Objective-C,  Prev: Objective-C,  Up: Objective-C

Method Names in Commands
........................

The following commands have been extended to accept Objective-C method
names as line specifications:

   * `clear'

   * `break'

   * `info line'

   * `jump'

   * `list'

   A fully qualified Objective-C method name is specified as

     -[CLASS METHODNAME]

   where the minus sign is used to indicate an instance method and a
plus sign (not shown) is used to indicate a class method.  The class
name CLASS and method name METHODNAME are enclosed in brackets, similar
to the way messages are specified in Objective-C source code.  For
example, to set a breakpoint at the `create' instance method of class
`Fruit' in the program currently being debugged, enter:

     break -[Fruit create]

   To list ten program lines around the `initialize' class method,
enter:

     list +[NSText initialize]

   In the current version of GDB, the plus or minus sign is required.
In future versions of GDB, the plus or minus sign will be optional, but
you can use it to narrow the search.  It is also possible to specify
just a method name:

     break create

   You must specify the complete method name, including any colons.  If
your program's source files contain more than one `create' method,
you'll be presented with a numbered list of classes that implement that
method.  Indicate your choice by number, or type `0' to exit if none
apply.

   As another example, to clear a breakpoint established at the
`makeKeyAndOrderFront:' method of the `NSWindow' class, enter:

     clear -[NSWindow makeKeyAndOrderFront:]


File: gdb.info,  Node: The Print Command with Objective-C,  Prev: Method Names in Commands,  Up: Objective-C

The Print Command With Objective-C
..................................

The print command has also been extended to accept methods.  For
example:

     print -[OBJECT hash]

will tell GDB to send the `hash' message to OBJECT and print the
result.  Also, an additional command has been added, `print-object' or
`po' for short, which is meant to print the description of an object.
However, this command may only work with certain Objective-C libraries
that have a particular hook function, `_NSPrintForDebugger', defined.


File: gdb.info,  Node: Modula-2,  Prev: Objective-C,  Up: Support

Modula-2
--------

The extensions made to GDB to support Modula-2 only support output from
the GNU Modula-2 compiler (which is currently being developed).  Other
Modula-2 compilers are not currently supported, and attempting to debug
executables produced by them is most likely to give an error as GDB
reads in the executable's symbol table.

* Menu:

* M2 Operators::                Built-in operators
* Built-In Func/Proc::          Built-in functions and procedures
* M2 Constants::                Modula-2 constants
* M2 Defaults::                 Default settings for Modula-2
* Deviations::                  Deviations from standard Modula-2
* M2 Checks::                   Modula-2 type and range checks
* M2 Scope::                    The scope operators `::' and `.'
* GDB/M2::                      GDB and Modula-2


File: gdb.info,  Node: M2 Operators,  Next: Built-In Func/Proc,  Up: Modula-2

Operators
.........

Operators must be defined on values of specific types.  For instance,
`+' is defined on numbers, but not on structures.  Operators are often
defined on groups of types.  For the purposes of Modula-2, the
following definitions hold:

   * _Integral types_ consist of `INTEGER', `CARDINAL', and their
     subranges.

   * _Character types_ consist of `CHAR' and its subranges.

   * _Floating-point types_ consist of `REAL'.

   * _Pointer types_ consist of anything declared as `POINTER TO TYPE'.

   * _Scalar types_ consist of all of the above.

   * _Set types_ consist of `SET' and `BITSET' types.

   * _Boolean types_ consist of `BOOLEAN'.

The following operators are supported, and appear in order of
increasing precedence:

`,'
     Function argument or array index separator.

`:='
     Assignment.  The value of VAR `:=' VALUE is VALUE.

`<, >'
     Less than, greater than on integral, floating-point, or enumerated
     types.

`<=, >='
     Less than or equal to, greater than or equal to on integral,
     floating-point and enumerated types, or set inclusion on set
     types.  Same precedence as `<'.

`=, <>, #'
     Equality and two ways of expressing inequality, valid on scalar
     types.  Same precedence as `<'.  In GDB scripts, only `<>' is
     available for inequality, since `#' conflicts with the script
     comment character.

`IN'
     Set membership.  Defined on set types and the types of their
     members.  Same precedence as `<'.

`OR'
     Boolean disjunction.  Defined on boolean types.

`AND, &'
     Boolean conjunction.  Defined on boolean types.

`@'
     The GDB "artificial array" operator (*note Expressions:
     Expressions.).

`+, -'
     Addition and subtraction on integral and floating-point types, or
     union and difference on set types.

`*'
     Multiplication on integral and floating-point types, or set
     intersection on set types.

`/'
     Division on floating-point types, or symmetric set difference on
     set types.  Same precedence as `*'.

`DIV, MOD'
     Integer division and remainder.  Defined on integral types.  Same
     precedence as `*'.

`-'
     Negative. Defined on `INTEGER' and `REAL' data.

`^'
     Pointer dereferencing.  Defined on pointer types.

`NOT'
     Boolean negation.  Defined on boolean types.  Same precedence as
     `^'.

`.'
     `RECORD' field selector.  Defined on `RECORD' data.  Same
     precedence as `^'.

`[]'
     Array indexing.  Defined on `ARRAY' data.  Same precedence as `^'.

`()'
     Procedure argument list.  Defined on `PROCEDURE' objects.  Same
     precedence as `^'.

`::, .'
     GDB and Modula-2 scope operators.

     _Warning:_ Sets and their operations are not yet supported, so GDB
     treats the use of the operator `IN', or the use of operators `+',
     `-', `*', `/', `=', , `<>', `#', `<=', and `>=' on sets as an
     error.


File: gdb.info,  Node: Built-In Func/Proc,  Next: M2 Constants,  Prev: M2 Operators,  Up: Modula-2

Built-in functions and procedures
.................................

Modula-2 also makes available several built-in procedures and functions.
In describing these, the following metavariables are used:

A
     represents an `ARRAY' variable.

C
     represents a `CHAR' constant or variable.

I
     represents a variable or constant of integral type.

M
     represents an identifier that belongs to a set.  Generally used in
     the same function with the metavariable S.  The type of S should
     be `SET OF MTYPE' (where MTYPE is the type of M).

N
     represents a variable or constant of integral or floating-point
     type.

R
     represents a variable or constant of floating-point type.

T
     represents a type.

V
     represents a variable.

X
     represents a variable or constant of one of many types.  See the
     explanation of the function for details.

   All Modula-2 built-in procedures also return a result, described
below.

`ABS(N)'
     Returns the absolute value of N.

`CAP(C)'
     If C is a lower case letter, it returns its upper case equivalent,
     otherwise it returns its argument.

`CHR(I)'
     Returns the character whose ordinal value is I.

`DEC(V)'
     Decrements the value in the variable V by one.  Returns the new
     value.

`DEC(V,I)'
     Decrements the value in the variable V by I.  Returns the new
     value.

`EXCL(M,S)'
     Removes the element M from the set S.  Returns the new set.

`FLOAT(I)'
     Returns the floating point equivalent of the integer I.

`HIGH(A)'
     Returns the index of the last member of A.

`INC(V)'
     Increments the value in the variable V by one.  Returns the new
     value.

`INC(V,I)'
     Increments the value in the variable V by I.  Returns the new
     value.

`INCL(M,S)'
     Adds the element M to the set S if it is not already there.
     Returns the new set.

`MAX(T)'
     Returns the maximum value of the type T.

`MIN(T)'
     Returns the minimum value of the type T.

`ODD(I)'
     Returns boolean TRUE if I is an odd number.

`ORD(X)'
     Returns the ordinal value of its argument.  For example, the
     ordinal value of a character is its ASCII value (on machines
     supporting the ASCII character set).  X must be of an ordered
     type, which include integral, character and enumerated types.

`SIZE(X)'
     Returns the size of its argument.  X can be a variable or a type.

`TRUNC(R)'
     Returns the integral part of R.

`VAL(T,I)'
     Returns the member of the type T whose ordinal value is I.

     _Warning:_  Sets and their operations are not yet supported, so
     GDB treats the use of procedures `INCL' and `EXCL' as an error.


Man Man