Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/Decl.h |
//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Decl subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECL_H #define LLVM_CLANG_AST_DECL_H #include "clang/AST/APValue.h" #include "clang/AST/DeclBase.h" #include "clang/AST/Redeclarable.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/ExternalASTSource.h" #include "clang/Basic/Linkage.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/Compiler.h" namespace clang { class CXXTemporary; class Expr; class FunctionTemplateDecl; class Stmt; class CompoundStmt; class StringLiteral; class NestedNameSpecifier; class TemplateParameterList; class TemplateArgumentList; struct ASTTemplateArgumentListInfo; class MemberSpecializationInfo; class FunctionTemplateSpecializationInfo; class DependentFunctionTemplateSpecializationInfo; class TypeLoc; class UnresolvedSetImpl; class LabelStmt; class Module; /// \brief A container of type source information. /// /// A client can read the relevant info using TypeLoc wrappers, e.g: /// @code /// TypeLoc TL = TypeSourceInfo->getTypeLoc(); /// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL)) /// PL->getStarLoc().print(OS, SrcMgr); /// @endcode /// class TypeSourceInfo { QualType Ty; // Contains a memory block after the class, used for type source information, // allocated by ASTContext. friend class ASTContext; TypeSourceInfo(QualType ty) : Ty(ty) { } public: /// \brief Return the type wrapped by this type source info. QualType getType() const { return Ty; } /// \brief Return the TypeLoc wrapper for the type source info. TypeLoc getTypeLoc() const; // implemented in TypeLoc.h }; /// TranslationUnitDecl - The top declaration context. class TranslationUnitDecl : public Decl, public DeclContext { virtual void anchor(); ASTContext &Ctx; /// The (most recently entered) anonymous namespace for this /// translation unit, if one has been created. NamespaceDecl *AnonymousNamespace; explicit TranslationUnitDecl(ASTContext &ctx) : Decl(TranslationUnit, 0, SourceLocation()), DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(0) {} public: ASTContext &getASTContext() const { return Ctx; } NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; } void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; } static TranslationUnitDecl *Create(ASTContext &C); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const TranslationUnitDecl *D) { return true; } static bool classofKind(Kind K) { return K == TranslationUnit; } static DeclContext *castToDeclContext(const TranslationUnitDecl *D) { return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D)); } static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) { return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC)); } }; /// NamedDecl - This represents a decl with a name. Many decls have names such /// as ObjCMethodDecl, but not @class, etc. class NamedDecl : public Decl { virtual void anchor(); /// Name - The name of this declaration, which is typically a normal /// identifier but may also be a special kind of name (C++ /// constructor, Objective-C selector, etc.) DeclarationName Name; private: NamedDecl *getUnderlyingDeclImpl(); protected: NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N) : Decl(DK, DC, L), Name(N) { } public: /// getIdentifier - Get the identifier that names this declaration, /// if there is one. This will return NULL if this declaration has /// no name (e.g., for an unnamed class) or if the name is a special /// name (C++ constructor, Objective-C selector, etc.). IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); } /// getName - Get the name of identifier for this declaration as a StringRef. /// This requires that the declaration have a name and that it be a simple /// identifier. StringRef getName() const { assert(Name.isIdentifier() && "Name is not a simple identifier"); return getIdentifier() ? getIdentifier()->getName() : ""; } /// getNameAsString - Get a human-readable name for the declaration, even if /// it is one of the special kinds of names (C++ constructor, Objective-C /// selector, etc). Creating this name requires expensive string /// manipulation, so it should be called only when performance doesn't matter. /// For simple declarations, getNameAsCString() should suffice. // // FIXME: This function should be renamed to indicate that it is not just an // alternate form of getName(), and clients should move as appropriate. // // FIXME: Deprecated, move clients to getName(). std::string getNameAsString() const { return Name.getAsString(); } void printName(raw_ostream &os) const { return Name.printName(os); } /// getDeclName - Get the actual, stored name of the declaration, /// which may be a special name. DeclarationName getDeclName() const { return Name; } /// \brief Set the name of this declaration. void setDeclName(DeclarationName N) { Name = N; } /// getQualifiedNameAsString - Returns human-readable qualified name for /// declaration, like A::B::i, for i being member of namespace A::B. /// If declaration is not member of context which can be named (record, /// namespace), it will return same result as getNameAsString(). /// Creating this name is expensive, so it should be called only when /// performance doesn't matter. std::string getQualifiedNameAsString() const; std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const; /// getNameForDiagnostic - Appends a human-readable name for this /// declaration into the given string. /// /// This is the method invoked by Sema when displaying a NamedDecl /// in a diagnostic. It does not necessarily produce the same /// result as getNameAsString(); for example, class template /// specializations are printed with their template arguments. /// /// TODO: use an API that doesn't require so many temporary strings virtual void getNameForDiagnostic(std::string &S, const PrintingPolicy &Policy, bool Qualified) const { if (Qualified) S += getQualifiedNameAsString(Policy); else S += getNameAsString(); } /// declarationReplaces - Determine whether this declaration, if /// known to be well-formed within its context, will replace the /// declaration OldD if introduced into scope. A declaration will /// replace another declaration if, for example, it is a /// redeclaration of the same variable or function, but not if it is /// a declaration of a different kind (function vs. class) or an /// overloaded function. bool declarationReplaces(NamedDecl *OldD) const; /// \brief Determine whether this declaration has linkage. bool hasLinkage() const; using Decl::isModulePrivate; using Decl::setModulePrivate; /// \brief Determine whether this declaration is hidden from name lookup. bool isHidden() const { return Hidden; } /// \brief Determine whether this declaration is a C++ class member. bool isCXXClassMember() const { const DeclContext *DC = getDeclContext(); // C++0x [class.mem]p1: // The enumerators of an unscoped enumeration defined in // the class are members of the class. // FIXME: support C++0x scoped enumerations. if (isa<EnumDecl>(DC)) DC = DC->getParent(); return DC->isRecord(); } /// \brief Determine whether the given declaration is an instance member of /// a C++ class. bool isCXXInstanceMember() const; class LinkageInfo { Linkage linkage_; Visibility visibility_; bool explicit_; public: LinkageInfo() : linkage_(ExternalLinkage), visibility_(DefaultVisibility), explicit_(false) {} LinkageInfo(Linkage L, Visibility V, bool E) : linkage_(L), visibility_(V), explicit_(E) {} static LinkageInfo external() { return LinkageInfo(); } static LinkageInfo internal() { return LinkageInfo(InternalLinkage, DefaultVisibility, false); } static LinkageInfo uniqueExternal() { return LinkageInfo(UniqueExternalLinkage, DefaultVisibility, false); } static LinkageInfo none() { return LinkageInfo(NoLinkage, DefaultVisibility, false); } Linkage linkage() const { return linkage_; } Visibility visibility() const { return visibility_; } bool visibilityExplicit() const { return explicit_; } void setLinkage(Linkage L) { linkage_ = L; } void setVisibility(Visibility V, bool E) { visibility_ = V; explicit_ = E; } void mergeLinkage(Linkage L) { setLinkage(minLinkage(linkage(), L)); } void mergeLinkage(LinkageInfo Other) { mergeLinkage(Other.linkage()); } // Merge the visibility V giving preference to explicit ones. // This is used, for example, when merging the visibility of a class // down to one of its members. If the member has no explicit visibility, // the class visibility wins. void mergeVisibility(Visibility V, bool E = false) { // If one has explicit visibility and the other doesn't, keep the // explicit one. if (visibilityExplicit() && !E) return; if (!visibilityExplicit() && E) setVisibility(V, E); // If both are explicit or both are implicit, keep the minimum. setVisibility(minVisibility(visibility(), V), visibilityExplicit() || E); } // Merge the visibility V, keeping the most restrictive one. // This is used for cases like merging the visibility of a template // argument to an instantiation. If we already have a hidden class, // no argument should give it default visibility. void mergeVisibilityWithMin(Visibility V, bool E = false) { // Never increase the visibility if (visibility() < V) return; // If this visibility is explicit, keep it. if (visibilityExplicit() && !E) return; setVisibility(V, E); } void mergeVisibility(LinkageInfo Other) { mergeVisibility(Other.visibility(), Other.visibilityExplicit()); } void mergeVisibilityWithMin(LinkageInfo Other) { mergeVisibilityWithMin(Other.visibility(), Other.visibilityExplicit()); } void merge(LinkageInfo Other) { mergeLinkage(Other); mergeVisibility(Other); } void mergeWithMin(LinkageInfo Other) { mergeLinkage(Other); mergeVisibilityWithMin(Other); } friend LinkageInfo merge(LinkageInfo L, LinkageInfo R) { L.merge(R); return L; } }; /// \brief Determine what kind of linkage this entity has. Linkage getLinkage() const; /// \brief Determines the visibility of this entity. Visibility getVisibility() const { return getLinkageAndVisibility().visibility(); } /// \brief Determines the linkage and visibility of this entity. LinkageInfo getLinkageAndVisibility() const; /// \brief If visibility was explicitly specified for this /// declaration, return that visibility. llvm::Optional<Visibility> getExplicitVisibility() const; /// \brief Clear the linkage cache in response to a change /// to the declaration. void ClearLinkageCache(); /// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for /// the underlying named decl. NamedDecl *getUnderlyingDecl() { // Fast-path the common case. if (this->getKind() != UsingShadow && this->getKind() != ObjCCompatibleAlias) return this; return getUnderlyingDeclImpl(); } const NamedDecl *getUnderlyingDecl() const { return const_cast<NamedDecl*>(this)->getUnderlyingDecl(); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const NamedDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; } }; inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) { ND.printName(OS); return OS; } /// LabelDecl - Represents the declaration of a label. Labels also have a /// corresponding LabelStmt, which indicates the position that the label was /// defined at. For normal labels, the location of the decl is the same as the /// location of the statement. For GNU local labels (__label__), the decl /// location is where the __label__ is. class LabelDecl : public NamedDecl { virtual void anchor(); LabelStmt *TheStmt; /// LocStart - For normal labels, this is the same as the main declaration /// label, i.e., the location of the identifier; for GNU local labels, /// this is the location of the __label__ keyword. SourceLocation LocStart; LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II, LabelStmt *S, SourceLocation StartL) : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {} public: static LabelDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II); static LabelDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II, SourceLocation GnuLabelL); static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID); LabelStmt *getStmt() const { return TheStmt; } void setStmt(LabelStmt *T) { TheStmt = T; } bool isGnuLocal() const { return LocStart != getLocation(); } void setLocStart(SourceLocation L) { LocStart = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LocStart, getLocation()); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const LabelDecl *D) { return true; } static bool classofKind(Kind K) { return K == Label; } }; /// NamespaceDecl - Represent a C++ namespace. class NamespaceDecl : public NamedDecl, public DeclContext, public Redeclarable<NamespaceDecl> { virtual void anchor(); /// LocStart - The starting location of the source range, pointing /// to either the namespace or the inline keyword. SourceLocation LocStart; /// RBraceLoc - The ending location of the source range. SourceLocation RBraceLoc; /// \brief A pointer to either the anonymous namespace that lives just inside /// this namespace or to the first namespace in the chain (the latter case /// only when this is not the first in the chain), along with a /// boolean value indicating whether this is an inline namespace. llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline; NamespaceDecl(DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl); typedef Redeclarable<NamespaceDecl> redeclarable_base; virtual NamespaceDecl *getNextRedeclaration() { return RedeclLink.getNext(); } virtual NamespaceDecl *getPreviousDeclImpl() { return getPreviousDecl(); } virtual NamespaceDecl *getMostRecentDeclImpl() { return getMostRecentDecl(); } public: static NamespaceDecl *Create(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl); static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID); typedef redeclarable_base::redecl_iterator redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; /// \brief Returns true if this is an anonymous namespace declaration. /// /// For example: /// \code /// namespace { /// ... /// }; /// \endcode /// q.v. C++ [namespace.unnamed] bool isAnonymousNamespace() const { return !getIdentifier(); } /// \brief Returns true if this is an inline namespace declaration. bool isInline() const { return AnonOrFirstNamespaceAndInline.getInt(); } /// \brief Set whether this is an inline namespace declaration. void setInline(bool Inline) { AnonOrFirstNamespaceAndInline.setInt(Inline); } /// \brief Get the original (first) namespace declaration. NamespaceDecl *getOriginalNamespace() { if (isFirstDeclaration()) return this; return AnonOrFirstNamespaceAndInline.getPointer(); } /// \brief Get the original (first) namespace declaration. const NamespaceDecl *getOriginalNamespace() const { if (isFirstDeclaration()) return this; return AnonOrFirstNamespaceAndInline.getPointer(); } /// \brief Return true if this declaration is an original (first) declaration /// of the namespace. This is false for non-original (subsequent) namespace /// declarations and anonymous namespaces. bool isOriginalNamespace() const { return isFirstDeclaration(); } /// \brief Retrieve the anonymous namespace nested inside this namespace, /// if any. NamespaceDecl *getAnonymousNamespace() const { return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer(); } void setAnonymousNamespace(NamespaceDecl *D) { getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D); } /// Retrieves the canonical declaration of this namespace. NamespaceDecl *getCanonicalDecl() { return getOriginalNamespace(); } const NamespaceDecl *getCanonicalDecl() const { return getOriginalNamespace(); } virtual SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LocStart, RBraceLoc); } SourceLocation getLocStart() const LLVM_READONLY { return LocStart; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setLocStart(SourceLocation L) { LocStart = L; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const NamespaceDecl *D) { return true; } static bool classofKind(Kind K) { return K == Namespace; } static DeclContext *castToDeclContext(const NamespaceDecl *D) { return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D)); } static NamespaceDecl *castFromDeclContext(const DeclContext *DC) { return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC)); } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// ValueDecl - Represent the declaration of a variable (in which case it is /// an lvalue) a function (in which case it is a function designator) or /// an enum constant. class ValueDecl : public NamedDecl { virtual void anchor(); QualType DeclType; protected: ValueDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T) : NamedDecl(DK, DC, L, N), DeclType(T) {} public: QualType getType() const { return DeclType; } void setType(QualType newType) { DeclType = newType; } /// \brief Determine whether this symbol is weakly-imported, /// or declared with the weak or weak-ref attr. bool isWeak() const { return hasAttr<WeakAttr>() || hasAttr<WeakRefAttr>() || isWeakImported(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const ValueDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; } }; /// QualifierInfo - A struct with extended info about a syntactic /// name qualifier, to be used for the case of out-of-line declarations. struct QualifierInfo { NestedNameSpecifierLoc QualifierLoc; /// NumTemplParamLists - The number of "outer" template parameter lists. /// The count includes all of the template parameter lists that were matched /// against the template-ids occurring into the NNS and possibly (in the /// case of an explicit specialization) a final "template <>". unsigned NumTemplParamLists; /// TemplParamLists - A new-allocated array of size NumTemplParamLists, /// containing pointers to the "outer" template parameter lists. /// It includes all of the template parameter lists that were matched /// against the template-ids occurring into the NNS and possibly (in the /// case of an explicit specialization) a final "template <>". TemplateParameterList** TemplParamLists; /// Default constructor. QualifierInfo() : QualifierLoc(), NumTemplParamLists(0), TemplParamLists(0) {} /// setTemplateParameterListsInfo - Sets info about "outer" template /// parameter lists. void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists, TemplateParameterList **TPLists); private: // Copy constructor and copy assignment are disabled. QualifierInfo(const QualifierInfo&); QualifierInfo& operator=(const QualifierInfo&); }; /// \brief Represents a ValueDecl that came out of a declarator. /// Contains type source information through TypeSourceInfo. class DeclaratorDecl : public ValueDecl { // A struct representing both a TInfo and a syntactic qualifier, // to be used for the (uncommon) case of out-of-line declarations. struct ExtInfo : public QualifierInfo { TypeSourceInfo *TInfo; }; llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo; /// InnerLocStart - The start of the source range for this declaration, /// ignoring outer template declarations. SourceLocation InnerLocStart; bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); } ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); } const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); } protected: DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL) : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) { } public: TypeSourceInfo *getTypeSourceInfo() const { return hasExtInfo() ? getExtInfo()->TInfo : DeclInfo.get<TypeSourceInfo*>(); } void setTypeSourceInfo(TypeSourceInfo *TI) { if (hasExtInfo()) getExtInfo()->TInfo = TI; else DeclInfo = TI; } /// getInnerLocStart - Return SourceLocation representing start of source /// range ignoring outer template declarations. SourceLocation getInnerLocStart() const { return InnerLocStart; } void setInnerLocStart(SourceLocation L) { InnerLocStart = L; } /// getOuterLocStart - Return SourceLocation representing start of source /// range taking into account any outer template declarations. SourceLocation getOuterLocStart() const; virtual SourceRange getSourceRange() const LLVM_READONLY; SourceLocation getLocStart() const LLVM_READONLY { return getOuterLocStart(); } /// \brief Retrieve the nested-name-specifier that qualifies the name of this /// declaration, if it was present in the source. NestedNameSpecifier *getQualifier() const { return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier() : 0; } /// \brief Retrieve the nested-name-specifier (with source-location /// information) that qualifies the name of this declaration, if it was /// present in the source. NestedNameSpecifierLoc getQualifierLoc() const { return hasExtInfo() ? getExtInfo()->QualifierLoc : NestedNameSpecifierLoc(); } void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc); unsigned getNumTemplateParameterLists() const { return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0; } TemplateParameterList *getTemplateParameterList(unsigned index) const { assert(index < getNumTemplateParameterLists()); return getExtInfo()->TemplParamLists[index]; } void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists, TemplateParameterList **TPLists); SourceLocation getTypeSpecStartLoc() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const DeclaratorDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstDeclarator && K <= lastDeclarator; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Structure used to store a statement, the constant value to /// which it was evaluated (if any), and whether or not the statement /// is an integral constant expression (if known). struct EvaluatedStmt { EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false), CheckingICE(false), IsICE(false) { } /// \brief Whether this statement was already evaluated. bool WasEvaluated : 1; /// \brief Whether this statement is being evaluated. bool IsEvaluating : 1; /// \brief Whether we already checked whether this statement was an /// integral constant expression. bool CheckedICE : 1; /// \brief Whether we are checking whether this statement is an /// integral constant expression. bool CheckingICE : 1; /// \brief Whether this statement is an integral constant expression, /// or in C++11, whether the statement is a constant expression. Only /// valid if CheckedICE is true. bool IsICE : 1; Stmt *Value; APValue Evaluated; }; /// VarDecl - An instance of this class is created to represent a variable /// declaration or definition. class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> { public: typedef clang::StorageClass StorageClass; /// getStorageClassSpecifierString - Return the string used to /// specify the storage class \arg SC. /// /// It is illegal to call this function with SC == None. static const char *getStorageClassSpecifierString(StorageClass SC); /// \brief Initialization styles. enum InitializationStyle { CInit, ///< C-style initialization with assignment CallInit, ///< Call-style initialization (C++98) ListInit ///< Direct list-initialization (C++11) }; protected: /// \brief Placeholder type used in Init to denote an unparsed C++ default /// argument. struct UnparsedDefaultArgument; /// \brief Placeholder type used in Init to denote an uninstantiated C++ /// default argument. struct UninstantiatedDefaultArgument; typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *, UnparsedDefaultArgument *, UninstantiatedDefaultArgument *> InitType; /// \brief The initializer for this variable or, for a ParmVarDecl, the /// C++ default argument. mutable InitType Init; private: class VarDeclBitfields { friend class VarDecl; friend class ASTDeclReader; unsigned SClass : 3; unsigned SClassAsWritten : 3; unsigned ThreadSpecified : 1; unsigned InitStyle : 2; /// \brief Whether this variable is the exception variable in a C++ catch /// or an Objective-C @catch statement. unsigned ExceptionVar : 1; /// \brief Whether this local variable could be allocated in the return /// slot of its function, enabling the named return value optimization /// (NRVO). unsigned NRVOVariable : 1; /// \brief Whether this variable is the for-range-declaration in a C++0x /// for-range statement. unsigned CXXForRangeDecl : 1; /// \brief Whether this variable is an ARC pseudo-__strong /// variable; see isARCPseudoStrong() for details. unsigned ARCPseudoStrong : 1; /// \brief Whether this variable is (C++0x) constexpr. unsigned IsConstexpr : 1; }; enum { NumVarDeclBits = 14 }; friend class ASTDeclReader; friend class StmtIteratorBase; protected: enum { NumParameterIndexBits = 8 }; class ParmVarDeclBitfields { friend class ParmVarDecl; friend class ASTDeclReader; unsigned : NumVarDeclBits; /// Whether this parameter inherits a default argument from a /// prior declaration. unsigned HasInheritedDefaultArg : 1; /// Whether this parameter undergoes K&R argument promotion. unsigned IsKNRPromoted : 1; /// Whether this parameter is an ObjC method parameter or not. unsigned IsObjCMethodParam : 1; /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier. /// Otherwise, the number of function parameter scopes enclosing /// the function parameter scope in which this parameter was /// declared. unsigned ScopeDepthOrObjCQuals : 7; /// The number of parameters preceding this parameter in the /// function parameter scope in which it was declared. unsigned ParameterIndex : NumParameterIndexBits; }; union { unsigned AllBits; VarDeclBitfields VarDeclBits; ParmVarDeclBitfields ParmVarDeclBits; }; VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass SC, StorageClass SCAsWritten) : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() { assert(sizeof(VarDeclBitfields) <= sizeof(unsigned)); assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned)); AllBits = 0; VarDeclBits.SClass = SC; VarDeclBits.SClassAsWritten = SCAsWritten; // Everything else is implicitly initialized to false. } typedef Redeclarable<VarDecl> redeclarable_base; virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); } virtual VarDecl *getPreviousDeclImpl() { return getPreviousDecl(); } virtual VarDecl *getMostRecentDeclImpl() { return getMostRecentDecl(); } public: typedef redeclarable_base::redecl_iterator redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; static VarDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, StorageClass SCAsWritten); static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID); virtual SourceRange getSourceRange() const LLVM_READONLY; StorageClass getStorageClass() const { return (StorageClass) VarDeclBits.SClass; } StorageClass getStorageClassAsWritten() const { return (StorageClass) VarDeclBits.SClassAsWritten; } void setStorageClass(StorageClass SC); void setStorageClassAsWritten(StorageClass SC) { assert(isLegalForVariable(SC)); VarDeclBits.SClassAsWritten = SC; } void setThreadSpecified(bool T) { VarDeclBits.ThreadSpecified = T; } bool isThreadSpecified() const { return VarDeclBits.ThreadSpecified; } /// hasLocalStorage - Returns true if a variable with function scope /// is a non-static local variable. bool hasLocalStorage() const { if (getStorageClass() == SC_None) return !isFileVarDecl(); // Return true for: Auto, Register. // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal. return getStorageClass() >= SC_Auto; } /// isStaticLocal - Returns true if a variable with function scope is a /// static local variable. bool isStaticLocal() const { return getStorageClass() == SC_Static && !isFileVarDecl(); } /// hasExternStorage - Returns true if a variable has extern or /// __private_extern__ storage. bool hasExternalStorage() const { return getStorageClass() == SC_Extern || getStorageClass() == SC_PrivateExtern; } /// hasGlobalStorage - Returns true for all variables that do not /// have local storage. This includs all global variables as well /// as static variables declared within a function. bool hasGlobalStorage() const { return !hasLocalStorage(); } /// \brief Determines whether this variable is a variable with /// external, C linkage. bool isExternC() const; /// isLocalVarDecl - Returns true for local variable declarations /// other than parameters. Note that this includes static variables /// inside of functions. It also includes variables inside blocks. /// /// void foo() { int x; static int y; extern int z; } /// bool isLocalVarDecl() const { if (getKind() != Decl::Var) return false; if (const DeclContext *DC = getDeclContext()) return DC->getRedeclContext()->isFunctionOrMethod(); return false; } /// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but /// excludes variables declared in blocks. bool isFunctionOrMethodVarDecl() const { if (getKind() != Decl::Var) return false; const DeclContext *DC = getDeclContext()->getRedeclContext(); return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block; } /// \brief Determines whether this is a static data member. /// /// This will only be true in C++, and applies to, e.g., the /// variable 'x' in: /// \code /// struct S { /// static int x; /// }; /// \endcode bool isStaticDataMember() const { // If it wasn't static, it would be a FieldDecl. return getKind() != Decl::ParmVar && getDeclContext()->isRecord(); } virtual VarDecl *getCanonicalDecl(); const VarDecl *getCanonicalDecl() const { return const_cast<VarDecl*>(this)->getCanonicalDecl(); } enum DefinitionKind { DeclarationOnly, ///< This declaration is only a declaration. TentativeDefinition, ///< This declaration is a tentative definition. Definition ///< This declaration is definitely a definition. }; /// \brief Check whether this declaration is a definition. If this could be /// a tentative definition (in C), don't check whether there's an overriding /// definition. DefinitionKind isThisDeclarationADefinition(ASTContext &) const; DefinitionKind isThisDeclarationADefinition() const { return isThisDeclarationADefinition(getASTContext()); } /// \brief Check whether this variable is defined in this /// translation unit. DefinitionKind hasDefinition(ASTContext &) const; DefinitionKind hasDefinition() const { return hasDefinition(getASTContext()); } /// \brief Get the tentative definition that acts as the real definition in /// a TU. Returns null if there is a proper definition available. VarDecl *getActingDefinition(); const VarDecl *getActingDefinition() const { return const_cast<VarDecl*>(this)->getActingDefinition(); } /// \brief Determine whether this is a tentative definition of a /// variable in C. bool isTentativeDefinitionNow() const; /// \brief Get the real (not just tentative) definition for this declaration. VarDecl *getDefinition(ASTContext &); const VarDecl *getDefinition(ASTContext &C) const { return const_cast<VarDecl*>(this)->getDefinition(C); } VarDecl *getDefinition() { return getDefinition(getASTContext()); } const VarDecl *getDefinition() const { return const_cast<VarDecl*>(this)->getDefinition(); } /// \brief Determine whether this is or was instantiated from an out-of-line /// definition of a static data member. virtual bool isOutOfLine() const; /// \brief If this is a static data member, find its out-of-line definition. VarDecl *getOutOfLineDefinition(); /// isFileVarDecl - Returns true for file scoped variable declaration. bool isFileVarDecl() const { if (getKind() != Decl::Var) return false; if (getDeclContext()->getRedeclContext()->isFileContext()) return true; if (isStaticDataMember()) return true; return false; } /// getAnyInitializer - Get the initializer for this variable, no matter which /// declaration it is attached to. const Expr *getAnyInitializer() const { const VarDecl *D; return getAnyInitializer(D); } /// getAnyInitializer - Get the initializer for this variable, no matter which /// declaration it is attached to. Also get that declaration. const Expr *getAnyInitializer(const VarDecl *&D) const; bool hasInit() const { return !Init.isNull() && (Init.is<Stmt *>() || Init.is<EvaluatedStmt *>()); } const Expr *getInit() const { if (Init.isNull()) return 0; const Stmt *S = Init.dyn_cast<Stmt *>(); if (!S) { if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>()) S = ES->Value; } return (const Expr*) S; } Expr *getInit() { if (Init.isNull()) return 0; Stmt *S = Init.dyn_cast<Stmt *>(); if (!S) { if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>()) S = ES->Value; } return (Expr*) S; } /// \brief Retrieve the address of the initializer expression. Stmt **getInitAddress() { if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>()) return &ES->Value; // This union hack tip-toes around strict-aliasing rules. union { InitType *InitPtr; Stmt **StmtPtr; }; InitPtr = &Init; return StmtPtr; } void setInit(Expr *I); /// \brief Determine whether this variable is a reference that /// extends the lifetime of its temporary initializer. /// /// A reference extends the lifetime of its temporary initializer if /// it's initializer is an rvalue that would normally go out of scope /// at the end of the initializer (a full expression). In such cases, /// the reference itself takes ownership of the temporary, which will /// be destroyed when the reference goes out of scope. For example: /// /// \code /// const int &r = 1.0; // creates a temporary of type 'int' /// \endcode bool extendsLifetimeOfTemporary() const; /// \brief Determine whether this variable's value can be used in a /// constant expression, according to the relevant language standard. /// This only checks properties of the declaration, and does not check /// whether the initializer is in fact a constant expression. bool isUsableInConstantExpressions(ASTContext &C) const; EvaluatedStmt *ensureEvaluatedStmt() const; /// \brief Attempt to evaluate the value of the initializer attached to this /// declaration, and produce notes explaining why it cannot be evaluated or is /// not a constant expression. Returns a pointer to the value if evaluation /// succeeded, 0 otherwise. APValue *evaluateValue() const; APValue *evaluateValue( llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const; /// \brief Return the already-evaluated value of this variable's /// initializer, or NULL if the value is not yet known. Returns pointer /// to untyped APValue if the value could not be evaluated. APValue *getEvaluatedValue() const { if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) if (Eval->WasEvaluated) return &Eval->Evaluated; return 0; } /// \brief Determines whether it is already known whether the /// initializer is an integral constant expression or not. bool isInitKnownICE() const { if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) return Eval->CheckedICE; return false; } /// \brief Determines whether the initializer is an integral constant /// expression, or in C++11, whether the initializer is a constant /// expression. /// /// \pre isInitKnownICE() bool isInitICE() const { assert(isInitKnownICE() && "Check whether we already know that the initializer is an ICE"); return Init.get<EvaluatedStmt *>()->IsICE; } /// \brief Determine whether the value of the initializer attached to this /// declaration is an integral constant expression. bool checkInitIsICE() const; void setInitStyle(InitializationStyle Style) { VarDeclBits.InitStyle = Style; } /// \brief The style of initialization for this declaration. /// /// C-style initialization is "int x = 1;". Call-style initialization is /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be /// the expression inside the parens or a "ClassType(a,b,c)" class constructor /// expression for class types. List-style initialization is C++11 syntax, /// e.g. "int x{1};". Clients can distinguish between different forms of /// initialization by checking this value. In particular, "int x = {1};" is /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the /// Init expression in all three cases is an InitListExpr. InitializationStyle getInitStyle() const { return static_cast<InitializationStyle>(VarDeclBits.InitStyle); } /// \brief Whether the initializer is a direct-initializer (list or call). bool isDirectInit() const { return getInitStyle() != CInit; } /// \brief Determine whether this variable is the exception variable in a /// C++ catch statememt or an Objective-C @catch statement. bool isExceptionVariable() const { return VarDeclBits.ExceptionVar; } void setExceptionVariable(bool EV) { VarDeclBits.ExceptionVar = EV; } /// \brief Determine whether this local variable can be used with the named /// return value optimization (NRVO). /// /// The named return value optimization (NRVO) works by marking certain /// non-volatile local variables of class type as NRVO objects. These /// locals can be allocated within the return slot of their containing /// function, in which case there is no need to copy the object to the /// return slot when returning from the function. Within the function body, /// each return that returns the NRVO object will have this variable as its /// NRVO candidate. bool isNRVOVariable() const { return VarDeclBits.NRVOVariable; } void setNRVOVariable(bool NRVO) { VarDeclBits.NRVOVariable = NRVO; } /// \brief Determine whether this variable is the for-range-declaration in /// a C++0x for-range statement. bool isCXXForRangeDecl() const { return VarDeclBits.CXXForRangeDecl; } void setCXXForRangeDecl(bool FRD) { VarDeclBits.CXXForRangeDecl = FRD; } /// \brief Determine whether this variable is an ARC pseudo-__strong /// variable. A pseudo-__strong variable has a __strong-qualified /// type but does not actually retain the object written into it. /// Generally such variables are also 'const' for safety. bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; } void setARCPseudoStrong(bool ps) { VarDeclBits.ARCPseudoStrong = ps; } /// Whether this variable is (C++0x) constexpr. bool isConstexpr() const { return VarDeclBits.IsConstexpr; } void setConstexpr(bool IC) { VarDeclBits.IsConstexpr = IC; } /// \brief If this variable is an instantiated static data member of a /// class template specialization, returns the templated static data member /// from which it was instantiated. VarDecl *getInstantiatedFromStaticDataMember() const; /// \brief If this variable is a static data member, determine what kind of /// template specialization or instantiation this is. TemplateSpecializationKind getTemplateSpecializationKind() const; /// \brief If this variable is an instantiation of a static data member of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// \brief For a static data member that was instantiated from a static /// data member of a class template, set the template specialiation kind. void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation = SourceLocation()); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const VarDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; } }; class ImplicitParamDecl : public VarDecl { virtual void anchor(); public: static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T); static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID); ImplicitParamDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType Type) : VarDecl(ImplicitParam, DC, IdLoc, IdLoc, Id, Type, /*tinfo*/ 0, SC_None, SC_None) { setImplicit(); } // Implement isa/cast/dyncast/etc. static bool classof(const ImplicitParamDecl *D) { return true; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == ImplicitParam; } }; /// ParmVarDecl - Represents a parameter to a function. class ParmVarDecl : public VarDecl { public: enum { MaxFunctionScopeDepth = 255 }; enum { MaxFunctionScopeIndex = 255 }; protected: ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, StorageClass SCAsWritten, Expr *DefArg) : VarDecl(DK, DC, StartLoc, IdLoc, Id, T, TInfo, S, SCAsWritten) { assert(ParmVarDeclBits.HasInheritedDefaultArg == false); assert(ParmVarDeclBits.IsKNRPromoted == false); assert(ParmVarDeclBits.IsObjCMethodParam == false); setDefaultArg(DefArg); } public: static ParmVarDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, StorageClass SCAsWritten, Expr *DefArg); static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID); virtual SourceRange getSourceRange() const LLVM_READONLY; void setObjCMethodScopeInfo(unsigned parameterIndex) { ParmVarDeclBits.IsObjCMethodParam = true; setParameterIndex(parameterIndex); } void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) { assert(!ParmVarDeclBits.IsObjCMethodParam); ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth; assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && "truncation!"); setParameterIndex(parameterIndex); } bool isObjCMethodParameter() const { return ParmVarDeclBits.IsObjCMethodParam; } unsigned getFunctionScopeDepth() const { if (ParmVarDeclBits.IsObjCMethodParam) return 0; return ParmVarDeclBits.ScopeDepthOrObjCQuals; } /// Returns the index of this parameter in its prototype or method scope. unsigned getFunctionScopeIndex() const { return getParameterIndex(); } ObjCDeclQualifier getObjCDeclQualifier() const { if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None; return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals); } void setObjCDeclQualifier(ObjCDeclQualifier QTVal) { assert(ParmVarDeclBits.IsObjCMethodParam); ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal; } /// True if the value passed to this parameter must undergo /// K&R-style default argument promotion: /// /// C99 6.5.2.2. /// If the expression that denotes the called function has a type /// that does not include a prototype, the integer promotions are /// performed on each argument, and arguments that have type float /// are promoted to double. bool isKNRPromoted() const { return ParmVarDeclBits.IsKNRPromoted; } void setKNRPromoted(bool promoted) { ParmVarDeclBits.IsKNRPromoted = promoted; } Expr *getDefaultArg(); const Expr *getDefaultArg() const { return const_cast<ParmVarDecl *>(this)->getDefaultArg(); } void setDefaultArg(Expr *defarg) { Init = reinterpret_cast<Stmt *>(defarg); } /// \brief Retrieve the source range that covers the entire default /// argument. SourceRange getDefaultArgRange() const; void setUninstantiatedDefaultArg(Expr *arg) { Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg); } Expr *getUninstantiatedDefaultArg() { return (Expr *)Init.get<UninstantiatedDefaultArgument *>(); } const Expr *getUninstantiatedDefaultArg() const { return (const Expr *)Init.get<UninstantiatedDefaultArgument *>(); } /// hasDefaultArg - Determines whether this parameter has a default argument, /// either parsed or not. bool hasDefaultArg() const { return getInit() || hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg(); } /// hasUnparsedDefaultArg - Determines whether this parameter has a /// default argument that has not yet been parsed. This will occur /// during the processing of a C++ class whose member functions have /// default arguments, e.g., /// @code /// class X { /// public: /// void f(int x = 17); // x has an unparsed default argument now /// }; // x has a regular default argument now /// @endcode bool hasUnparsedDefaultArg() const { return Init.is<UnparsedDefaultArgument*>(); } bool hasUninstantiatedDefaultArg() const { return Init.is<UninstantiatedDefaultArgument*>(); } /// setUnparsedDefaultArg - Specify that this parameter has an /// unparsed default argument. The argument will be replaced with a /// real default argument via setDefaultArg when the class /// definition enclosing the function declaration that owns this /// default argument is completed. void setUnparsedDefaultArg() { Init = (UnparsedDefaultArgument *)0; } bool hasInheritedDefaultArg() const { return ParmVarDeclBits.HasInheritedDefaultArg; } void setHasInheritedDefaultArg(bool I = true) { ParmVarDeclBits.HasInheritedDefaultArg = I; } QualType getOriginalType() const { if (getTypeSourceInfo()) return getTypeSourceInfo()->getType(); return getType(); } /// \brief Determine whether this parameter is actually a function /// parameter pack. bool isParameterPack() const; /// setOwningFunction - Sets the function declaration that owns this /// ParmVarDecl. Since ParmVarDecls are often created before the /// FunctionDecls that own them, this routine is required to update /// the DeclContext appropriately. void setOwningFunction(DeclContext *FD) { setDeclContext(FD); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const ParmVarDecl *D) { return true; } static bool classofKind(Kind K) { return K == ParmVar; } private: enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 }; void setParameterIndex(unsigned parameterIndex) { if (parameterIndex >= ParameterIndexSentinel) { setParameterIndexLarge(parameterIndex); return; } ParmVarDeclBits.ParameterIndex = parameterIndex; assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!"); } unsigned getParameterIndex() const { unsigned d = ParmVarDeclBits.ParameterIndex; return d == ParameterIndexSentinel ? getParameterIndexLarge() : d; } void setParameterIndexLarge(unsigned parameterIndex); unsigned getParameterIndexLarge() const; }; /// FunctionDecl - An instance of this class is created to represent a /// function declaration or definition. /// /// Since a given function can be declared several times in a program, /// there may be several FunctionDecls that correspond to that /// function. Only one of those FunctionDecls will be found when /// traversing the list of declarations in the context of the /// FunctionDecl (e.g., the translation unit); this FunctionDecl /// contains all of the information known about the function. Other, /// previous declarations of the function are available via the /// getPreviousDecl() chain. class FunctionDecl : public DeclaratorDecl, public DeclContext, public Redeclarable<FunctionDecl> { public: typedef clang::StorageClass StorageClass; /// \brief The kind of templated function a FunctionDecl can be. enum TemplatedKind { TK_NonTemplate, TK_FunctionTemplate, TK_MemberSpecialization, TK_FunctionTemplateSpecialization, TK_DependentFunctionTemplateSpecialization }; private: /// ParamInfo - new[]'d array of pointers to VarDecls for the formal /// parameters of this function. This is null if a prototype or if there are /// no formals. ParmVarDecl **ParamInfo; /// DeclsInPrototypeScope - Array of pointers to NamedDecls for /// decls defined in the function prototype that are not parameters. E.g. /// 'enum Y' in 'void f(enum Y {AA} x) {}'. llvm::ArrayRef<NamedDecl*> DeclsInPrototypeScope; LazyDeclStmtPtr Body; // FIXME: This can be packed into the bitfields in Decl. // NOTE: VC++ treats enums as signed, avoid using the StorageClass enum unsigned SClass : 2; unsigned SClassAsWritten : 2; bool IsInline : 1; bool IsInlineSpecified : 1; bool IsVirtualAsWritten : 1; bool IsPure : 1; bool HasInheritedPrototype : 1; bool HasWrittenPrototype : 1; bool IsDeleted : 1; bool IsTrivial : 1; // sunk from CXXMethodDecl bool IsDefaulted : 1; // sunk from CXXMethoDecl bool IsExplicitlyDefaulted : 1; //sunk from CXXMethodDecl bool HasImplicitReturnZero : 1; bool IsLateTemplateParsed : 1; bool IsConstexpr : 1; /// \brief End part of this FunctionDecl's source range. /// /// We could compute the full range in getSourceRange(). However, when we're /// dealing with a function definition deserialized from a PCH/AST file, /// we can only compute the full range once the function body has been /// de-serialized, so it's far better to have the (sometimes-redundant) /// EndRangeLoc. SourceLocation EndRangeLoc; /// \brief The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates, this value will be NULL. For function /// declarations that describe a function template, this will be a /// pointer to a FunctionTemplateDecl. For member functions /// of class template specializations, this will be a MemberSpecializationInfo /// pointer containing information about the specialization. /// For function template specializations, this will be a /// FunctionTemplateSpecializationInfo, which contains information about /// the template being specialized and the template arguments involved in /// that specialization. llvm::PointerUnion4<FunctionTemplateDecl *, MemberSpecializationInfo *, FunctionTemplateSpecializationInfo *, DependentFunctionTemplateSpecializationInfo *> TemplateOrSpecialization; /// DNLoc - Provides source/type location info for the /// declaration name embedded in the DeclaratorDecl base class. DeclarationNameLoc DNLoc; /// \brief Specify that this function declaration is actually a function /// template specialization. /// /// \param C the ASTContext. /// /// \param Template the function template that this function template /// specialization specializes. /// /// \param TemplateArgs the template arguments that produced this /// function template specialization from the template. /// /// \param InsertPos If non-NULL, the position in the function template /// specialization set where the function template specialization data will /// be inserted. /// /// \param TSK the kind of template specialization this is. /// /// \param TemplateArgsAsWritten location info of template arguments. /// /// \param PointOfInstantiation point at which the function template /// specialization was first instantiated. void setFunctionTemplateSpecialization(ASTContext &C, FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation PointOfInstantiation); /// \brief Specify that this record is an instantiation of the /// member function FD. void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD, TemplateSpecializationKind TSK); void setParams(ASTContext &C, llvm::ArrayRef<ParmVarDecl *> NewParamInfo); protected: FunctionDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, StorageClass SCAsWritten, bool isInlineSpecified, bool isConstexprSpecified) : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, StartLoc), DeclContext(DK), ParamInfo(0), Body(), SClass(S), SClassAsWritten(SCAsWritten), IsInline(isInlineSpecified), IsInlineSpecified(isInlineSpecified), IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false), HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false), IsDefaulted(false), IsExplicitlyDefaulted(false), HasImplicitReturnZero(false), IsLateTemplateParsed(false), IsConstexpr(isConstexprSpecified), EndRangeLoc(NameInfo.getEndLoc()), TemplateOrSpecialization(), DNLoc(NameInfo.getInfo()) {} typedef Redeclarable<FunctionDecl> redeclarable_base; virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); } virtual FunctionDecl *getPreviousDeclImpl() { return getPreviousDecl(); } virtual FunctionDecl *getMostRecentDeclImpl() { return getMostRecentDecl(); } public: typedef redeclarable_base::redecl_iterator redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC = SC_None, StorageClass SCAsWritten = SC_None, bool isInlineSpecified = false, bool hasWrittenPrototype = true, bool isConstexprSpecified = false) { DeclarationNameInfo NameInfo(N, NLoc); return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC, SCAsWritten, isInlineSpecified, hasWrittenPrototype, isConstexprSpecified); } static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC = SC_None, StorageClass SCAsWritten = SC_None, bool isInlineSpecified = false, bool hasWrittenPrototype = true, bool isConstexprSpecified = false); static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID); DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } virtual void getNameForDiagnostic(std::string &S, const PrintingPolicy &Policy, bool Qualified) const; void setRangeEnd(SourceLocation E) { EndRangeLoc = E; } virtual SourceRange getSourceRange() const LLVM_READONLY; /// \brief Returns true if the function has a body (definition). The /// function body might be in any of the (re-)declarations of this /// function. The variant that accepts a FunctionDecl pointer will /// set that function declaration to the actual declaration /// containing the body (if there is one). bool hasBody(const FunctionDecl *&Definition) const; virtual bool hasBody() const { const FunctionDecl* Definition; return hasBody(Definition); } /// hasTrivialBody - Returns whether the function has a trivial body that does /// not require any specific codegen. bool hasTrivialBody() const; /// isDefined - Returns true if the function is defined at all, including /// a deleted definition. Except for the behavior when the function is /// deleted, behaves like hasBody. bool isDefined(const FunctionDecl *&Definition) const; virtual bool isDefined() const { const FunctionDecl* Definition; return isDefined(Definition); } /// getBody - Retrieve the body (definition) of the function. The /// function body might be in any of the (re-)declarations of this /// function. The variant that accepts a FunctionDecl pointer will /// set that function declaration to the actual declaration /// containing the body (if there is one). /// NOTE: For checking if there is a body, use hasBody() instead, to avoid /// unnecessary AST de-serialization of the body. Stmt *getBody(const FunctionDecl *&Definition) const; virtual Stmt *getBody() const { const FunctionDecl* Definition; return getBody(Definition); } /// isThisDeclarationADefinition - Returns whether this specific /// declaration of the function is also a definition. This does not /// determine whether the function has been defined (e.g., in a /// previous definition); for that information, use isDefined. Note /// that this returns false for a defaulted function unless that function /// has been implicitly defined (possibly as deleted). bool isThisDeclarationADefinition() const { return IsDeleted || Body || IsLateTemplateParsed; } /// doesThisDeclarationHaveABody - Returns whether this specific /// declaration of the function has a body - that is, if it is a non- /// deleted definition. bool doesThisDeclarationHaveABody() const { return Body || IsLateTemplateParsed; } void setBody(Stmt *B); void setLazyBody(uint64_t Offset) { Body = Offset; } /// Whether this function is variadic. bool isVariadic() const; /// Whether this function is marked as virtual explicitly. bool isVirtualAsWritten() const { return IsVirtualAsWritten; } void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; } /// Whether this virtual function is pure, i.e. makes the containing class /// abstract. bool isPure() const { return IsPure; } void setPure(bool P = true); /// Whether this templated function will be late parsed. bool isLateTemplateParsed() const { return IsLateTemplateParsed; } void setLateTemplateParsed(bool ILT = true) { IsLateTemplateParsed = ILT; } /// Whether this function is "trivial" in some specialized C++ senses. /// Can only be true for default constructors, copy constructors, /// copy assignment operators, and destructors. Not meaningful until /// the class has been fully built by Sema. bool isTrivial() const { return IsTrivial; } void setTrivial(bool IT) { IsTrivial = IT; } /// Whether this function is defaulted per C++0x. Only valid for /// special member functions. bool isDefaulted() const { return IsDefaulted; } void setDefaulted(bool D = true) { IsDefaulted = D; } /// Whether this function is explicitly defaulted per C++0x. Only valid /// for special member functions. bool isExplicitlyDefaulted() const { return IsExplicitlyDefaulted; } void setExplicitlyDefaulted(bool ED = true) { IsExplicitlyDefaulted = ED; } /// Whether falling off this function implicitly returns null/zero. /// If a more specific implicit return value is required, front-ends /// should synthesize the appropriate return statements. bool hasImplicitReturnZero() const { return HasImplicitReturnZero; } void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; } /// \brief Whether this function has a prototype, either because one /// was explicitly written or because it was "inherited" by merging /// a declaration without a prototype with a declaration that has a /// prototype. bool hasPrototype() const { return HasWrittenPrototype || HasInheritedPrototype; } bool hasWrittenPrototype() const { return HasWrittenPrototype; } /// \brief Whether this function inherited its prototype from a /// previous declaration. bool hasInheritedPrototype() const { return HasInheritedPrototype; } void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; } /// Whether this is a (C++0x) constexpr function or constexpr constructor. bool isConstexpr() const { return IsConstexpr; } void setConstexpr(bool IC) { IsConstexpr = IC; } /// \brief Whether this function has been deleted. /// /// A function that is "deleted" (via the C++0x "= delete" syntax) /// acts like a normal function, except that it cannot actually be /// called or have its address taken. Deleted functions are /// typically used in C++ overload resolution to attract arguments /// whose type or lvalue/rvalue-ness would permit the use of a /// different overload that would behave incorrectly. For example, /// one might use deleted functions to ban implicit conversion from /// a floating-point number to an Integer type: /// /// @code /// struct Integer { /// Integer(long); // construct from a long /// Integer(double) = delete; // no construction from float or double /// Integer(long double) = delete; // no construction from long double /// }; /// @endcode // If a function is deleted, its first declaration must be. bool isDeleted() const { return getCanonicalDecl()->IsDeleted; } bool isDeletedAsWritten() const { return IsDeleted && !IsDefaulted; } void setDeletedAsWritten(bool D = true) { IsDeleted = D; } /// \brief Determines whether this function is "main", which is the /// entry point into an executable program. bool isMain() const; /// \brief Determines whether this operator new or delete is one /// of the reserved global placement operators: /// void *operator new(size_t, void *); /// void *operator new[](size_t, void *); /// void operator delete(void *, void *); /// void operator delete[](void *, void *); /// These functions have special behavior under [new.delete.placement]: /// These functions are reserved, a C++ program may not define /// functions that displace the versions in the Standard C++ library. /// The provisions of [basic.stc.dynamic] do not apply to these /// reserved placement forms of operator new and operator delete. /// /// This function must be an allocation or deallocation function. bool isReservedGlobalPlacementOperator() const; /// \brief Determines whether this function is a function with /// external, C linkage. bool isExternC() const; /// \brief Determines whether this is a global function. bool isGlobal() const; void setPreviousDeclaration(FunctionDecl * PrevDecl); virtual const FunctionDecl *getCanonicalDecl() const; virtual FunctionDecl *getCanonicalDecl(); unsigned getBuiltinID() const; // Iterator access to formal parameters. unsigned param_size() const { return getNumParams(); } typedef ParmVarDecl **param_iterator; typedef ParmVarDecl * const *param_const_iterator; param_iterator param_begin() { return ParamInfo; } param_iterator param_end() { return ParamInfo+param_size(); } param_const_iterator param_begin() const { return ParamInfo; } param_const_iterator param_end() const { return ParamInfo+param_size(); } /// getNumParams - Return the number of parameters this function must have /// based on its FunctionType. This is the length of the ParamInfo array /// after it has been created. unsigned getNumParams() const; const ParmVarDecl *getParamDecl(unsigned i) const { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } ParmVarDecl *getParamDecl(unsigned i) { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } void setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo) { setParams(getASTContext(), NewParamInfo); } const llvm::ArrayRef<NamedDecl*> &getDeclsInPrototypeScope() const { return DeclsInPrototypeScope; } void setDeclsInPrototypeScope(llvm::ArrayRef<NamedDecl *> NewDecls); /// getMinRequiredArguments - Returns the minimum number of arguments /// needed to call this function. This may be fewer than the number of /// function parameters, if some of the parameters have default /// arguments (in C++). unsigned getMinRequiredArguments() const; QualType getResultType() const { return getType()->getAs<FunctionType>()->getResultType(); } /// \brief Determine the type of an expression that calls this function. QualType getCallResultType() const { return getType()->getAs<FunctionType>()->getCallResultType(getASTContext()); } StorageClass getStorageClass() const { return StorageClass(SClass); } void setStorageClass(StorageClass SC); StorageClass getStorageClassAsWritten() const { return StorageClass(SClassAsWritten); } /// \brief Determine whether the "inline" keyword was specified for this /// function. bool isInlineSpecified() const { return IsInlineSpecified; } /// Set whether the "inline" keyword was specified for this function. void setInlineSpecified(bool I) { IsInlineSpecified = I; IsInline = I; } /// Flag that this function is implicitly inline. void setImplicitlyInline() { IsInline = true; } /// \brief Determine whether this function should be inlined, because it is /// either marked "inline" or "constexpr" or is a member function of a class /// that was defined in the class body. bool isInlined() const; bool isInlineDefinitionExternallyVisible() const; bool doesDeclarationForceExternallyVisibleDefinition() const; /// isOverloadedOperator - Whether this function declaration /// represents an C++ overloaded operator, e.g., "operator+". bool isOverloadedOperator() const { return getOverloadedOperator() != OO_None; } OverloadedOperatorKind getOverloadedOperator() const; const IdentifierInfo *getLiteralIdentifier() const; /// \brief If this function is an instantiation of a member function /// of a class template specialization, retrieves the function from /// which it was instantiated. /// /// This routine will return non-NULL for (non-templated) member /// functions of class templates and for instantiations of function /// templates. For example, given: /// /// \code /// template<typename T> /// struct X { /// void f(T); /// }; /// \endcode /// /// The declaration for X<int>::f is a (non-templated) FunctionDecl /// whose parent is the class template specialization X<int>. For /// this declaration, getInstantiatedFromFunction() will return /// the FunctionDecl X<T>::A. When a complete definition of /// X<int>::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberFunction(). FunctionDecl *getInstantiatedFromMemberFunction() const; /// \brief What kind of templated function this is. TemplatedKind getTemplatedKind() const; /// \brief If this function is an instantiation of a member function of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// \brief Specify that this record is an instantiation of the /// member function FD. void setInstantiationOfMemberFunction(FunctionDecl *FD, TemplateSpecializationKind TSK) { setInstantiationOfMemberFunction(getASTContext(), FD, TSK); } /// \brief Retrieves the function template that is described by this /// function declaration. /// /// Every function template is represented as a FunctionTemplateDecl /// and a FunctionDecl (or something derived from FunctionDecl). The /// former contains template properties (such as the template /// parameter lists) while the latter contains the actual /// description of the template's /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the /// FunctionDecl that describes the function template, /// getDescribedFunctionTemplate() retrieves the /// FunctionTemplateDecl from a FunctionDecl. FunctionTemplateDecl *getDescribedFunctionTemplate() const { return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>(); } void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { TemplateOrSpecialization = Template; } /// \brief Determine whether this function is a function template /// specialization. bool isFunctionTemplateSpecialization() const { return getPrimaryTemplate() != 0; } /// \brief Retrieve the class scope template pattern that this function /// template specialization is instantiated from. FunctionDecl *getClassScopeSpecializationPattern() const; /// \brief If this function is actually a function template specialization, /// retrieve information about this function template specialization. /// Otherwise, returns NULL. FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const { return TemplateOrSpecialization. dyn_cast<FunctionTemplateSpecializationInfo*>(); } /// \brief Determines whether this function is a function template /// specialization or a member of a class template specialization that can /// be implicitly instantiated. bool isImplicitlyInstantiable() const; /// \brief Determines if the given function was instantiated from a /// function template. bool isTemplateInstantiation() const; /// \brief Retrieve the function declaration from which this function could /// be instantiated, if it is an instantiation (rather than a non-template /// or a specialization, for example). FunctionDecl *getTemplateInstantiationPattern() const; /// \brief Retrieve the primary template that this function template /// specialization either specializes or was instantiated from. /// /// If this function declaration is not a function template specialization, /// returns NULL. FunctionTemplateDecl *getPrimaryTemplate() const; /// \brief Retrieve the template arguments used to produce this function /// template specialization from the primary template. /// /// If this function declaration is not a function template specialization, /// returns NULL. const TemplateArgumentList *getTemplateSpecializationArgs() const; /// \brief Retrieve the template argument list as written in the sources, /// if any. /// /// If this function declaration is not a function template specialization /// or if it had no explicit template argument list, returns NULL. /// Note that it an explicit template argument list may be written empty, /// e.g., template<> void foo<>(char* s); const ASTTemplateArgumentListInfo* getTemplateSpecializationArgsAsWritten() const; /// \brief Specify that this function declaration is actually a function /// template specialization. /// /// \param Template the function template that this function template /// specialization specializes. /// /// \param TemplateArgs the template arguments that produced this /// function template specialization from the template. /// /// \param InsertPos If non-NULL, the position in the function template /// specialization set where the function template specialization data will /// be inserted. /// /// \param TSK the kind of template specialization this is. /// /// \param TemplateArgsAsWritten location info of template arguments. /// /// \param PointOfInstantiation point at which the function template /// specialization was first instantiated. void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK = TSK_ImplicitInstantiation, const TemplateArgumentListInfo *TemplateArgsAsWritten = 0, SourceLocation PointOfInstantiation = SourceLocation()) { setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs, InsertPos, TSK, TemplateArgsAsWritten, PointOfInstantiation); } /// \brief Specifies that this function declaration is actually a /// dependent function template specialization. void setDependentTemplateSpecialization(ASTContext &Context, const UnresolvedSetImpl &Templates, const TemplateArgumentListInfo &TemplateArgs); DependentFunctionTemplateSpecializationInfo * getDependentSpecializationInfo() const { return TemplateOrSpecialization. dyn_cast<DependentFunctionTemplateSpecializationInfo*>(); } /// \brief Determine what kind of template instantiation this function /// represents. TemplateSpecializationKind getTemplateSpecializationKind() const; /// \brief Determine what kind of template instantiation this function /// represents. void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation = SourceLocation()); /// \brief Retrieve the (first) point of instantiation of a function template /// specialization or a member of a class template specialization. /// /// \returns the first point of instantiation, if this function was /// instantiated from a template; otherwise, returns an invalid source /// location. SourceLocation getPointOfInstantiation() const; /// \brief Determine whether this is or was instantiated from an out-of-line /// definition of a member function. virtual bool isOutOfLine() const; /// \brief Identify a memory copying or setting function. /// If the given function is a memory copy or setting function, returns /// the corresponding Builtin ID. If the function is not a memory function, /// returns 0. unsigned getMemoryFunctionKind() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const FunctionDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstFunction && K <= lastFunction; } static DeclContext *castToDeclContext(const FunctionDecl *D) { return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D)); } static FunctionDecl *castFromDeclContext(const DeclContext *DC) { return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC)); } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// FieldDecl - An instance of this class is created by Sema::ActOnField to /// represent a member of a struct/union/class. class FieldDecl : public DeclaratorDecl { // FIXME: This can be packed into the bitfields in Decl. bool Mutable : 1; mutable unsigned CachedFieldIndex : 31; /// \brief A pointer to either the in-class initializer for this field (if /// the boolean value is false), or the bit width expression for this bit /// field (if the boolean value is true). /// /// We can safely combine these two because in-class initializers are not /// permitted for bit-fields. /// /// If the boolean is false and the initializer is null, then this field has /// an in-class initializer which has not yet been parsed and attached. llvm::PointerIntPair<Expr *, 1, bool> InitializerOrBitWidth; protected: FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, bool HasInit) : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Mutable(Mutable), CachedFieldIndex(0), InitializerOrBitWidth(BW, !HasInit) { assert(!(BW && HasInit) && "got initializer for bitfield"); } public: static FieldDecl *Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, bool HasInit); static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// getFieldIndex - Returns the index of this field within its record, /// as appropriate for passing to ASTRecordLayout::getFieldOffset. unsigned getFieldIndex() const; /// isMutable - Determines whether this field is mutable (C++ only). bool isMutable() const { return Mutable; } /// \brief Set whether this field is mutable (C++ only). void setMutable(bool M) { Mutable = M; } /// isBitfield - Determines whether this field is a bitfield. bool isBitField() const { return InitializerOrBitWidth.getInt() && InitializerOrBitWidth.getPointer(); } /// @brief Determines whether this is an unnamed bitfield. bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); } /// isAnonymousStructOrUnion - Determines whether this field is a /// representative for an anonymous struct or union. Such fields are /// unnamed and are implicitly generated by the implementation to /// store the data for the anonymous union or struct. bool isAnonymousStructOrUnion() const; Expr *getBitWidth() const { return isBitField() ? InitializerOrBitWidth.getPointer() : 0; } unsigned getBitWidthValue(const ASTContext &Ctx) const; void setBitWidth(Expr *BW) { assert(!InitializerOrBitWidth.getPointer() && "bit width or initializer already set"); InitializerOrBitWidth.setPointer(BW); InitializerOrBitWidth.setInt(1); } /// removeBitWidth - Remove the bitfield width from this member. void removeBitWidth() { assert(isBitField() && "no bit width to remove"); InitializerOrBitWidth.setPointer(0); } /// hasInClassInitializer - Determine whether this member has a C++0x in-class /// initializer. bool hasInClassInitializer() const { return !InitializerOrBitWidth.getInt(); } /// getInClassInitializer - Get the C++0x in-class initializer for this /// member, or null if one has not been set. If a valid declaration has an /// in-class initializer, but this returns null, then we have not parsed and /// attached it yet. Expr *getInClassInitializer() const { return hasInClassInitializer() ? InitializerOrBitWidth.getPointer() : 0; } /// setInClassInitializer - Set the C++0x in-class initializer for this /// member. void setInClassInitializer(Expr *Init); /// removeInClassInitializer - Remove the C++0x in-class initializer from this /// member. void removeInClassInitializer() { assert(!InitializerOrBitWidth.getInt() && "no initializer to remove"); InitializerOrBitWidth.setPointer(0); InitializerOrBitWidth.setInt(1); } /// getParent - Returns the parent of this field declaration, which /// is the struct in which this method is defined. const RecordDecl *getParent() const { return cast<RecordDecl>(getDeclContext()); } RecordDecl *getParent() { return cast<RecordDecl>(getDeclContext()); } SourceRange getSourceRange() const LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const FieldDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstField && K <= lastField; } }; /// EnumConstantDecl - An instance of this object exists for each enum constant /// that is defined. For example, in "enum X {a,b}", each of a/b are /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a /// TagType for the X EnumDecl. class EnumConstantDecl : public ValueDecl { Stmt *Init; // an integer constant expression llvm::APSInt Val; // The value. protected: EnumConstantDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V) : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {} public: static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V); static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID); const Expr *getInitExpr() const { return (const Expr*) Init; } Expr *getInitExpr() { return (Expr*) Init; } const llvm::APSInt &getInitVal() const { return Val; } void setInitExpr(Expr *E) { Init = (Stmt*) E; } void setInitVal(const llvm::APSInt &V) { Val = V; } SourceRange getSourceRange() const LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const EnumConstantDecl *D) { return true; } static bool classofKind(Kind K) { return K == EnumConstant; } friend class StmtIteratorBase; }; /// IndirectFieldDecl - An instance of this class is created to represent a /// field injected from an anonymous union/struct into the parent scope. /// IndirectFieldDecl are always implicit. class IndirectFieldDecl : public ValueDecl { virtual void anchor(); NamedDecl **Chaining; unsigned ChainingSize; IndirectFieldDecl(DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, NamedDecl **CH, unsigned CHS) : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH), ChainingSize(CHS) {} public: static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, NamedDecl **CH, unsigned CHS); static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID); typedef NamedDecl * const *chain_iterator; chain_iterator chain_begin() const { return Chaining; } chain_iterator chain_end() const { return Chaining+ChainingSize; } unsigned getChainingSize() const { return ChainingSize; } FieldDecl *getAnonField() const { assert(ChainingSize >= 2); return cast<FieldDecl>(Chaining[ChainingSize - 1]); } VarDecl *getVarDecl() const { assert(ChainingSize >= 2); return dyn_cast<VarDecl>(*chain_begin()); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const IndirectFieldDecl *D) { return true; } static bool classofKind(Kind K) { return K == IndirectField; } friend class ASTDeclReader; }; /// TypeDecl - Represents a declaration of a type. /// class TypeDecl : public NamedDecl { virtual void anchor(); /// TypeForDecl - This indicates the Type object that represents /// this TypeDecl. It is a cache maintained by /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl. mutable const Type *TypeForDecl; /// LocStart - The start of the source range for this declaration. SourceLocation LocStart; friend class ASTContext; friend class DeclContext; friend class TagDecl; friend class TemplateTypeParmDecl; friend class TagType; friend class ASTReader; protected: TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, SourceLocation StartL = SourceLocation()) : NamedDecl(DK, DC, L, Id), TypeForDecl(0), LocStart(StartL) {} public: // Low-level accessor const Type *getTypeForDecl() const { return TypeForDecl; } void setTypeForDecl(const Type *TD) { TypeForDecl = TD; } SourceLocation getLocStart() const LLVM_READONLY { return LocStart; } void setLocStart(SourceLocation L) { LocStart = L; } virtual SourceRange getSourceRange() const LLVM_READONLY { if (LocStart.isValid()) return SourceRange(LocStart, getLocation()); else return SourceRange(getLocation()); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const TypeDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstType && K <= lastType; } }; /// Base class for declarations which introduce a typedef-name. class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> { virtual void anchor(); /// UnderlyingType - This is the type the typedef is set to. TypeSourceInfo *TInfo; protected: TypedefNameDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) : TypeDecl(DK, DC, IdLoc, Id, StartLoc), TInfo(TInfo) {} typedef Redeclarable<TypedefNameDecl> redeclarable_base; virtual TypedefNameDecl *getNextRedeclaration() { return RedeclLink.getNext(); } virtual TypedefNameDecl *getPreviousDeclImpl() { return getPreviousDecl(); } virtual TypedefNameDecl *getMostRecentDeclImpl() { return getMostRecentDecl(); } public: typedef redeclarable_base::redecl_iterator redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; TypeSourceInfo *getTypeSourceInfo() const { return TInfo; } /// Retrieves the canonical declaration of this typedef-name. TypedefNameDecl *getCanonicalDecl() { return getFirstDeclaration(); } const TypedefNameDecl *getCanonicalDecl() const { return getFirstDeclaration(); } QualType getUnderlyingType() const { return TInfo->getType(); } void setTypeSourceInfo(TypeSourceInfo *newType) { TInfo = newType; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const TypedefNameDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstTypedefName && K <= lastTypedefName; } }; /// TypedefDecl - Represents the declaration of a typedef-name via the 'typedef' /// type specifier. class TypedefDecl : public TypedefNameDecl { TypedefDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) : TypedefNameDecl(Typedef, DC, StartLoc, IdLoc, Id, TInfo) {} public: static TypedefDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo); static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const TypedefDecl *D) { return true; } static bool classofKind(Kind K) { return K == Typedef; } }; /// TypeAliasDecl - Represents the declaration of a typedef-name via a C++0x /// alias-declaration. class TypeAliasDecl : public TypedefNameDecl { TypeAliasDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) : TypedefNameDecl(TypeAlias, DC, StartLoc, IdLoc, Id, TInfo) {} public: static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo); static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const TypeAliasDecl *D) { return true; } static bool classofKind(Kind K) { return K == TypeAlias; } }; /// TagDecl - Represents the declaration of a struct/union/class/enum. class TagDecl : public TypeDecl, public DeclContext, public Redeclarable<TagDecl> { public: // This is really ugly. typedef TagTypeKind TagKind; private: // FIXME: This can be packed into the bitfields in Decl. /// TagDeclKind - The TagKind enum. unsigned TagDeclKind : 2; /// IsCompleteDefinition - True if this is a definition ("struct foo /// {};"), false if it is a declaration ("struct foo;"). It is not /// a definition until the definition has been fully processed. bool IsCompleteDefinition : 1; protected: /// IsBeingDefined - True if this is currently being defined. bool IsBeingDefined : 1; private: /// IsEmbeddedInDeclarator - True if this tag declaration is /// "embedded" (i.e., defined or declared for the very first time) /// in the syntax of a declarator. bool IsEmbeddedInDeclarator : 1; /// \brief True if this tag is free standing, e.g. "struct foo;". bool IsFreeStanding : 1; protected: // These are used by (and only defined for) EnumDecl. unsigned NumPositiveBits : 8; unsigned NumNegativeBits : 8; /// IsScoped - True if this tag declaration is a scoped enumeration. Only /// possible in C++11 mode. bool IsScoped : 1; /// IsScopedUsingClassTag - If this tag declaration is a scoped enum, /// then this is true if the scoped enum was declared using the class /// tag, false if it was declared with the struct tag. No meaning is /// associated if this tag declaration is not a scoped enum. bool IsScopedUsingClassTag : 1; /// IsFixed - True if this is an enumeration with fixed underlying type. Only /// possible in C++11 or Microsoft extensions mode. bool IsFixed : 1; private: SourceLocation RBraceLoc; // A struct representing syntactic qualifier info, // to be used for the (uncommon) case of out-of-line declarations. typedef QualifierInfo ExtInfo; /// TypedefNameDeclOrQualifier - If the (out-of-line) tag declaration name /// is qualified, it points to the qualifier info (nns and range); /// otherwise, if the tag declaration is anonymous and it is part of /// a typedef or alias, it points to the TypedefNameDecl (used for mangling); /// otherwise, it is a null (TypedefNameDecl) pointer. llvm::PointerUnion<TypedefNameDecl*, ExtInfo*> TypedefNameDeclOrQualifier; bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo*>(); } ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo*>(); } const ExtInfo *getExtInfo() const { return TypedefNameDeclOrQualifier.get<ExtInfo*>(); } protected: TagDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, SourceLocation StartL) : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), TypedefNameDeclOrQualifier((TypedefNameDecl*) 0) { assert((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"); TagDeclKind = TK; IsCompleteDefinition = false; IsBeingDefined = false; IsEmbeddedInDeclarator = false; IsFreeStanding = false; setPreviousDeclaration(PrevDecl); } typedef Redeclarable<TagDecl> redeclarable_base; virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); } virtual TagDecl *getPreviousDeclImpl() { return getPreviousDecl(); } virtual TagDecl *getMostRecentDeclImpl() { return getMostRecentDecl(); } /// @brief Completes the definition of this tag declaration. /// /// This is a helper function for derived classes. void completeDefinition(); public: typedef redeclarable_base::redecl_iterator redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; SourceLocation getRBraceLoc() const { return RBraceLoc; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; } /// getInnerLocStart - Return SourceLocation representing start of source /// range ignoring outer template declarations. SourceLocation getInnerLocStart() const { return getLocStart(); } /// getOuterLocStart - Return SourceLocation representing start of source /// range taking into account any outer template declarations. SourceLocation getOuterLocStart() const; virtual SourceRange getSourceRange() const LLVM_READONLY; virtual TagDecl* getCanonicalDecl(); const TagDecl* getCanonicalDecl() const { return const_cast<TagDecl*>(this)->getCanonicalDecl(); } /// isThisDeclarationADefinition() - Return true if this declaration /// is a completion definintion of the type. Provided for consistency. bool isThisDeclarationADefinition() const { return isCompleteDefinition(); } /// isCompleteDefinition - Return true if this decl has its body /// fully specified. bool isCompleteDefinition() const { return IsCompleteDefinition; } /// isBeingDefined - Return true if this decl is currently being defined. bool isBeingDefined() const { return IsBeingDefined; } bool isEmbeddedInDeclarator() const { return IsEmbeddedInDeclarator; } void setEmbeddedInDeclarator(bool isInDeclarator) { IsEmbeddedInDeclarator = isInDeclarator; } bool isFreeStanding() const { return IsFreeStanding; } void setFreeStanding(bool isFreeStanding = true) { IsFreeStanding = isFreeStanding; } /// \brief Whether this declaration declares a type that is /// dependent, i.e., a type that somehow depends on template /// parameters. bool isDependentType() const { return isDependentContext(); } /// @brief Starts the definition of this tag declaration. /// /// This method should be invoked at the beginning of the definition /// of this tag declaration. It will set the tag type into a state /// where it is in the process of being defined. void startDefinition(); /// getDefinition - Returns the TagDecl that actually defines this /// struct/union/class/enum. When determining whether or not a /// struct/union/class/enum has a definition, one should use this /// method as opposed to 'isDefinition'. 'isDefinition' indicates /// whether or not a specific TagDecl is defining declaration, not /// whether or not the struct/union/class/enum type is defined. /// This method returns NULL if there is no TagDecl that defines /// the struct/union/class/enum. TagDecl *getDefinition() const; void setCompleteDefinition(bool V) { IsCompleteDefinition = V; } const char *getKindName() const { return TypeWithKeyword::getTagTypeKindName(getTagKind()); } TagKind getTagKind() const { return TagKind(TagDeclKind); } void setTagKind(TagKind TK) { TagDeclKind = TK; } bool isStruct() const { return getTagKind() == TTK_Struct; } bool isClass() const { return getTagKind() == TTK_Class; } bool isUnion() const { return getTagKind() == TTK_Union; } bool isEnum() const { return getTagKind() == TTK_Enum; } TypedefNameDecl *getTypedefNameForAnonDecl() const { return hasExtInfo() ? 0 : TypedefNameDeclOrQualifier.get<TypedefNameDecl*>(); } void setTypedefNameForAnonDecl(TypedefNameDecl *TDD); /// \brief Retrieve the nested-name-specifier that qualifies the name of this /// declaration, if it was present in the source. NestedNameSpecifier *getQualifier() const { return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier() : 0; } /// \brief Retrieve the nested-name-specifier (with source-location /// information) that qualifies the name of this declaration, if it was /// present in the source. NestedNameSpecifierLoc getQualifierLoc() const { return hasExtInfo() ? getExtInfo()->QualifierLoc : NestedNameSpecifierLoc(); } void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc); unsigned getNumTemplateParameterLists() const { return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0; } TemplateParameterList *getTemplateParameterList(unsigned i) const { assert(i < getNumTemplateParameterLists()); return getExtInfo()->TemplParamLists[i]; } void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists, TemplateParameterList **TPLists); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const TagDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; } static DeclContext *castToDeclContext(const TagDecl *D) { return static_cast<DeclContext *>(const_cast<TagDecl*>(D)); } static TagDecl *castFromDeclContext(const DeclContext *DC) { return static_cast<TagDecl *>(const_cast<DeclContext*>(DC)); } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// EnumDecl - Represents an enum. In C++11, enums can be forward-declared /// with a fixed underlying type, and in C we allow them to be forward-declared /// with no underlying type as an extension. class EnumDecl : public TagDecl { virtual void anchor(); /// IntegerType - This represent the integer type that the enum corresponds /// to for code generation purposes. Note that the enumerator constants may /// have a different type than this does. /// /// If the underlying integer type was explicitly stated in the source /// code, this is a TypeSourceInfo* for that type. Otherwise this type /// was automatically deduced somehow, and this is a Type*. /// /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in /// some cases it won't. /// /// The underlying type of an enumeration never has any qualifiers, so /// we can get away with just storing a raw Type*, and thus save an /// extra pointer when TypeSourceInfo is needed. llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType; /// PromotionType - The integer type that values of this type should /// promote to. In C, enumerators are generally of an integer type /// directly, but gcc-style large enumerators (and all enumerators /// in C++) are of the enum type instead. QualType PromotionType; /// \brief If this enumeration is an instantiation of a member enumeration /// of a class template specialization, this is the member specialization /// information. MemberSpecializationInfo *SpecializationInfo; EnumDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool Scoped, bool ScopedUsingClassTag, bool Fixed) : TagDecl(Enum, TTK_Enum, DC, IdLoc, Id, PrevDecl, StartLoc), SpecializationInfo(0) { assert(Scoped || !ScopedUsingClassTag); IntegerType = (const Type*)0; NumNegativeBits = 0; NumPositiveBits = 0; IsScoped = Scoped; IsScopedUsingClassTag = ScopedUsingClassTag; IsFixed = Fixed; } void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, TemplateSpecializationKind TSK); public: EnumDecl *getCanonicalDecl() { return cast<EnumDecl>(TagDecl::getCanonicalDecl()); } const EnumDecl *getCanonicalDecl() const { return cast<EnumDecl>(TagDecl::getCanonicalDecl()); } const EnumDecl *getPreviousDecl() const { return cast_or_null<EnumDecl>(TagDecl::getPreviousDecl()); } EnumDecl *getPreviousDecl() { return cast_or_null<EnumDecl>(TagDecl::getPreviousDecl()); } const EnumDecl *getMostRecentDecl() const { return cast<EnumDecl>(TagDecl::getMostRecentDecl()); } EnumDecl *getMostRecentDecl() { return cast<EnumDecl>(TagDecl::getMostRecentDecl()); } EnumDecl *getDefinition() const { return cast_or_null<EnumDecl>(TagDecl::getDefinition()); } static EnumDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed); static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// completeDefinition - When created, the EnumDecl corresponds to a /// forward-declared enum. This method is used to mark the /// declaration as being defined; it's enumerators have already been /// added (via DeclContext::addDecl). NewType is the new underlying /// type of the enumeration type. void completeDefinition(QualType NewType, QualType PromotionType, unsigned NumPositiveBits, unsigned NumNegativeBits); // enumerator_iterator - Iterates through the enumerators of this // enumeration. typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator; enumerator_iterator enumerator_begin() const { const EnumDecl *E = getDefinition(); if (!E) E = this; return enumerator_iterator(E->decls_begin()); } enumerator_iterator enumerator_end() const { const EnumDecl *E = getDefinition(); if (!E) E = this; return enumerator_iterator(E->decls_end()); } /// getPromotionType - Return the integer type that enumerators /// should promote to. QualType getPromotionType() const { return PromotionType; } /// \brief Set the promotion type. void setPromotionType(QualType T) { PromotionType = T; } /// getIntegerType - Return the integer type this enum decl corresponds to. /// This returns a null qualtype for an enum forward definition. QualType getIntegerType() const { if (!IntegerType) return QualType(); if (const Type* T = IntegerType.dyn_cast<const Type*>()) return QualType(T, 0); return IntegerType.get<TypeSourceInfo*>()->getType(); } /// \brief Set the underlying integer type. void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); } /// \brief Set the underlying integer type source info. void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; } /// \brief Return the type source info for the underlying integer type, /// if no type source info exists, return 0. TypeSourceInfo* getIntegerTypeSourceInfo() const { return IntegerType.dyn_cast<TypeSourceInfo*>(); } /// \brief Returns the width in bits required to store all the /// non-negative enumerators of this enum. unsigned getNumPositiveBits() const { return NumPositiveBits; } void setNumPositiveBits(unsigned Num) { NumPositiveBits = Num; assert(NumPositiveBits == Num && "can't store this bitcount"); } /// \brief Returns the width in bits required to store all the /// negative enumerators of this enum. These widths include /// the rightmost leading 1; that is: /// /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS /// ------------------------ ------- ----------------- /// -1 1111111 1 /// -10 1110110 5 /// -101 1001011 8 unsigned getNumNegativeBits() const { return NumNegativeBits; } void setNumNegativeBits(unsigned Num) { NumNegativeBits = Num; } /// \brief Returns true if this is a C++0x scoped enumeration. bool isScoped() const { return IsScoped; } /// \brief Returns true if this is a C++0x scoped enumeration. bool isScopedUsingClassTag() const { return IsScopedUsingClassTag; } /// \brief Returns true if this is a C++0x enumeration with fixed underlying /// type. bool isFixed() const { return IsFixed; } /// \brief Returns true if this can be considered a complete type. bool isComplete() const { return isCompleteDefinition() || isFixed(); } /// \brief Returns the enumeration (declared within the template) /// from which this enumeration type was instantiated, or NULL if /// this enumeration was not instantiated from any template. EnumDecl *getInstantiatedFromMemberEnum() const; /// \brief If this enumeration is a member of a specialization of a /// templated class, determine what kind of template specialization /// or instantiation this is. TemplateSpecializationKind getTemplateSpecializationKind() const; /// \brief For an enumeration member that was instantiated from a member /// enumeration of a templated class, set the template specialiation kind. void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation = SourceLocation()); /// \brief If this enumeration is an instantiation of a member enumeration of /// a class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const { return SpecializationInfo; } /// \brief Specify that this enumeration is an instantiation of the /// member enumeration ED. void setInstantiationOfMemberEnum(EnumDecl *ED, TemplateSpecializationKind TSK) { setInstantiationOfMemberEnum(getASTContext(), ED, TSK); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const EnumDecl *D) { return true; } static bool classofKind(Kind K) { return K == Enum; } friend class ASTDeclReader; }; /// RecordDecl - Represents a struct/union/class. For example: /// struct X; // Forward declaration, no "body". /// union Y { int A, B; }; // Has body with members A and B (FieldDecls). /// This decl will be marked invalid if *any* members are invalid. /// class RecordDecl : public TagDecl { // FIXME: This can be packed into the bitfields in Decl. /// HasFlexibleArrayMember - This is true if this struct ends with a flexible /// array member (e.g. int X[]) or if this union contains a struct that does. /// If so, this cannot be contained in arrays or other structs as a member. bool HasFlexibleArrayMember : 1; /// AnonymousStructOrUnion - Whether this is the type of an anonymous struct /// or union. bool AnonymousStructOrUnion : 1; /// HasObjectMember - This is true if this struct has at least one member /// containing an Objective-C object pointer type. bool HasObjectMember : 1; /// \brief Whether the field declarations of this record have been loaded /// from external storage. To avoid unnecessary deserialization of /// methods/nested types we allow deserialization of just the fields /// when needed. mutable bool LoadedFieldsFromExternalStorage : 1; friend class DeclContext; protected: RecordDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl); public: static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl* PrevDecl = 0); static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID); const RecordDecl *getPreviousDecl() const { return cast_or_null<RecordDecl>(TagDecl::getPreviousDecl()); } RecordDecl *getPreviousDecl() { return cast_or_null<RecordDecl>(TagDecl::getPreviousDecl()); } const RecordDecl *getMostRecentDecl() const { return cast<RecordDecl>(TagDecl::getMostRecentDecl()); } RecordDecl *getMostRecentDecl() { return cast<RecordDecl>(TagDecl::getMostRecentDecl()); } bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; } void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; } /// isAnonymousStructOrUnion - Whether this is an anonymous struct /// or union. To be an anonymous struct or union, it must have been /// declared without a name and there must be no objects of this /// type declared, e.g., /// @code /// union { int i; float f; }; /// @endcode /// is an anonymous union but neither of the following are: /// @code /// union X { int i; float f; }; /// union { int i; float f; } obj; /// @endcode bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; } void setAnonymousStructOrUnion(bool Anon) { AnonymousStructOrUnion = Anon; } bool hasObjectMember() const { return HasObjectMember; } void setHasObjectMember (bool val) { HasObjectMember = val; } /// \brief Determines whether this declaration represents the /// injected class name. /// /// The injected class name in C++ is the name of the class that /// appears inside the class itself. For example: /// /// \code /// struct C { /// // C is implicitly declared here as a synonym for the class name. /// }; /// /// C::C c; // same as "C c;" /// \endcode bool isInjectedClassName() const; /// getDefinition - Returns the RecordDecl that actually defines /// this struct/union/class. When determining whether or not a /// struct/union/class is completely defined, one should use this /// method as opposed to 'isCompleteDefinition'. /// 'isCompleteDefinition' indicates whether or not a specific /// RecordDecl is a completed definition, not whether or not the /// record type is defined. This method returns NULL if there is /// no RecordDecl that defines the struct/union/tag. RecordDecl *getDefinition() const { return cast_or_null<RecordDecl>(TagDecl::getDefinition()); } // Iterator access to field members. The field iterator only visits // the non-static data members of this class, ignoring any static // data members, functions, constructors, destructors, etc. typedef specific_decl_iterator<FieldDecl> field_iterator; field_iterator field_begin() const; field_iterator field_end() const { return field_iterator(decl_iterator()); } // field_empty - Whether there are any fields (non-static data // members) in this record. bool field_empty() const { return field_begin() == field_end(); } /// completeDefinition - Notes that the definition of this type is /// now complete. virtual void completeDefinition(); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const RecordDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstRecord && K <= lastRecord; } private: /// \brief Deserialize just the fields. void LoadFieldsFromExternalStorage() const; }; class FileScopeAsmDecl : public Decl { virtual void anchor(); StringLiteral *AsmString; SourceLocation RParenLoc; FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring, SourceLocation StartL, SourceLocation EndL) : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {} public: static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC, StringLiteral *Str, SourceLocation AsmLoc, SourceLocation RParenLoc); static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceLocation getAsmLoc() const { return getLocation(); } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getAsmLoc(), getRParenLoc()); } const StringLiteral *getAsmString() const { return AsmString; } StringLiteral *getAsmString() { return AsmString; } void setAsmString(StringLiteral *Asm) { AsmString = Asm; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const FileScopeAsmDecl *D) { return true; } static bool classofKind(Kind K) { return K == FileScopeAsm; } }; /// BlockDecl - This represents a block literal declaration, which is like an /// unnamed FunctionDecl. For example: /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body } /// class BlockDecl : public Decl, public DeclContext { public: /// A class which contains all the information about a particular /// captured value. class Capture { enum { flag_isByRef = 0x1, flag_isNested = 0x2 }; /// The variable being captured. llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags; /// The copy expression, expressed in terms of a DeclRef (or /// BlockDeclRef) to the captured variable. Only required if the /// variable has a C++ class type. Expr *CopyExpr; public: Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy) : VariableAndFlags(variable, (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)), CopyExpr(copy) {} /// The variable being captured. VarDecl *getVariable() const { return VariableAndFlags.getPointer(); } /// Whether this is a "by ref" capture, i.e. a capture of a __block /// variable. bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; } /// Whether this is a nested capture, i.e. the variable captured /// is not from outside the immediately enclosing function/block. bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; } bool hasCopyExpr() const { return CopyExpr != 0; } Expr *getCopyExpr() const { return CopyExpr; } void setCopyExpr(Expr *e) { CopyExpr = e; } }; private: // FIXME: This can be packed into the bitfields in Decl. bool IsVariadic : 1; bool CapturesCXXThis : 1; bool BlockMissingReturnType : 1; bool IsConversionFromLambda : 1; /// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal /// parameters of this function. This is null if a prototype or if there are /// no formals. ParmVarDecl **ParamInfo; unsigned NumParams; Stmt *Body; TypeSourceInfo *SignatureAsWritten; Capture *Captures; unsigned NumCaptures; protected: BlockDecl(DeclContext *DC, SourceLocation CaretLoc) : Decl(Block, DC, CaretLoc), DeclContext(Block), IsVariadic(false), CapturesCXXThis(false), BlockMissingReturnType(true), IsConversionFromLambda(false), ParamInfo(0), NumParams(0), Body(0), SignatureAsWritten(0), Captures(0), NumCaptures(0) {} public: static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L); static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceLocation getCaretLocation() const { return getLocation(); } bool isVariadic() const { return IsVariadic; } void setIsVariadic(bool value) { IsVariadic = value; } CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; } Stmt *getBody() const { return (Stmt*) Body; } void setBody(CompoundStmt *B) { Body = (Stmt*) B; } void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; } TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; } // Iterator access to formal parameters. unsigned param_size() const { return getNumParams(); } typedef ParmVarDecl **param_iterator; typedef ParmVarDecl * const *param_const_iterator; bool param_empty() const { return NumParams == 0; } param_iterator param_begin() { return ParamInfo; } param_iterator param_end() { return ParamInfo+param_size(); } param_const_iterator param_begin() const { return ParamInfo; } param_const_iterator param_end() const { return ParamInfo+param_size(); } unsigned getNumParams() const { return NumParams; } const ParmVarDecl *getParamDecl(unsigned i) const { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } ParmVarDecl *getParamDecl(unsigned i) { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } void setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo); /// hasCaptures - True if this block (or its nested blocks) captures /// anything of local storage from its enclosing scopes. bool hasCaptures() const { return NumCaptures != 0 || CapturesCXXThis; } /// getNumCaptures - Returns the number of captured variables. /// Does not include an entry for 'this'. unsigned getNumCaptures() const { return NumCaptures; } typedef const Capture *capture_iterator; typedef const Capture *capture_const_iterator; capture_iterator capture_begin() { return Captures; } capture_iterator capture_end() { return Captures + NumCaptures; } capture_const_iterator capture_begin() const { return Captures; } capture_const_iterator capture_end() const { return Captures + NumCaptures; } bool capturesCXXThis() const { return CapturesCXXThis; } bool blockMissingReturnType() const { return BlockMissingReturnType; } void setBlockMissingReturnType(bool val) { BlockMissingReturnType = val; } bool isConversionFromLambda() const { return IsConversionFromLambda; } void setIsConversionFromLambda(bool val) { IsConversionFromLambda = val; } bool capturesVariable(const VarDecl *var) const; void setCaptures(ASTContext &Context, const Capture *begin, const Capture *end, bool capturesCXXThis); virtual SourceRange getSourceRange() const LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const BlockDecl *D) { return true; } static bool classofKind(Kind K) { return K == Block; } static DeclContext *castToDeclContext(const BlockDecl *D) { return static_cast<DeclContext *>(const_cast<BlockDecl*>(D)); } static BlockDecl *castFromDeclContext(const DeclContext *DC) { return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC)); } }; /// \brief Describes a module import declaration, which makes the contents /// of the named module visible in the current translation unit. /// /// An import declaration imports the named module (or submodule). For example: /// \code /// @__experimental_modules_import std.vector; /// \endcode /// /// Import declarations can also be implicitly generated from #include/#import /// directives. class ImportDecl : public Decl { /// \brief The imported module, along with a bit that indicates whether /// we have source-location information for each identifier in the module /// name. /// /// When the bit is false, we only have a single source location for the /// end of the import declaration. llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete; /// \brief The next import in the list of imports local to the translation /// unit being parsed (not loaded from an AST file). ImportDecl *NextLocalImport; friend class ASTReader; friend class ASTDeclReader; friend class ASTContext; ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef<SourceLocation> IdentifierLocs); ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc); ImportDecl(EmptyShell Empty) : Decl(Import, Empty), NextLocalImport() { } public: /// \brief Create a new module import declaration. static ImportDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef<SourceLocation> IdentifierLocs); /// \brief Create a new module import declaration for an implicitly-generated /// import. static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc); /// \brief Create a new, deserialized module import declaration. static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations); /// \brief Retrieve the module that was imported by the import declaration. Module *getImportedModule() const { return ImportedAndComplete.getPointer(); } /// \brief Retrieves the locations of each of the identifiers that make up /// the complete module name in the import declaration. /// /// This will return an empty array if the locations of the individual /// identifiers aren't available. ArrayRef<SourceLocation> getIdentifierLocs() const; virtual SourceRange getSourceRange() const LLVM_READONLY; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const ImportDecl *D) { return true; } static bool classofKind(Kind K) { return K == Import; } }; /// Insertion operator for diagnostics. This allows sending NamedDecl's /// into a diagnostic with <<. inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const NamedDecl* ND) { DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), DiagnosticsEngine::ak_nameddecl); return DB; } inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD, const NamedDecl* ND) { PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND), DiagnosticsEngine::ak_nameddecl); return PD; } template<typename decl_type> void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) { // Note: This routine is implemented here because we need both NamedDecl // and Redeclarable to be defined. decl_type *First; if (PrevDecl) { // Point to previous. Make sure that this is actually the most recent // redeclaration, or we can build invalid chains. If the most recent // redeclaration is invalid, it won't be PrevDecl, but we want it anyway. RedeclLink = PreviousDeclLink( llvm::cast<decl_type>(PrevDecl->getMostRecentDecl())); First = PrevDecl->getFirstDeclaration(); assert(First->RedeclLink.NextIsLatest() && "Expected first"); } else { // Make this first. First = static_cast<decl_type*>(this); } // First one will point to this one as latest. First->RedeclLink = LatestDeclLink(static_cast<decl_type*>(this)); if (NamedDecl *ND = dyn_cast<NamedDecl>(static_cast<decl_type*>(this))) ND->ClearLinkageCache(); } // Inline function definitions. /// \brief Check if the given decl is complete. /// /// We use this function to break a cycle between the inline definitions in /// Type.h and Decl.h. inline bool IsEnumDeclComplete(EnumDecl *ED) { return ED->isComplete(); } /// \brief Check if the given decl is scoped. /// /// We use this function to break a cycle between the inline definitions in /// Type.h and Decl.h. inline bool IsEnumDeclScoped(EnumDecl *ED) { return ED->isScoped(); } } // end namespace clang #endif