Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/DeclBase.h |
//===-- DeclBase.h - Base Classes for representing declarations -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Decl and DeclContext interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLBASE_H #define LLVM_CLANG_AST_DECLBASE_H #include "clang/AST/Attr.h" #include "clang/AST/Type.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PrettyStackTrace.h" namespace clang { class DeclContext; class TranslationUnitDecl; class NamespaceDecl; class UsingDirectiveDecl; class NamedDecl; class FunctionDecl; class CXXRecordDecl; class EnumDecl; class ObjCMethodDecl; class ObjCContainerDecl; class ObjCInterfaceDecl; class ObjCCategoryDecl; class ObjCProtocolDecl; class ObjCImplementationDecl; class ObjCCategoryImplDecl; class ObjCImplDecl; class LinkageSpecDecl; class BlockDecl; class DeclarationName; class CompoundStmt; class StoredDeclsMap; class DependentDiagnostic; class ASTMutationListener; } namespace llvm { // DeclContext* is only 4-byte aligned on 32-bit systems. template<> class PointerLikeTypeTraits<clang::DeclContext*> { typedef clang::DeclContext* PT; public: static inline void *getAsVoidPointer(PT P) { return P; } static inline PT getFromVoidPointer(void *P) { return static_cast<PT>(P); } enum { NumLowBitsAvailable = 2 }; }; } namespace clang { /// \brief Captures the result of checking the availability of a /// declaration. enum AvailabilityResult { AR_Available = 0, AR_NotYetIntroduced, AR_Deprecated, AR_Unavailable }; /// Decl - This represents one declaration (or definition), e.g. a variable, /// typedef, function, struct, etc. /// class Decl { public: /// \brief Lists the kind of concrete classes of Decl. enum Kind { #define DECL(DERIVED, BASE) DERIVED, #define ABSTRACT_DECL(DECL) #define DECL_RANGE(BASE, START, END) \ first##BASE = START, last##BASE = END, #define LAST_DECL_RANGE(BASE, START, END) \ first##BASE = START, last##BASE = END #include "clang/AST/DeclNodes.inc" }; /// \brief A placeholder type used to construct an empty shell of a /// decl-derived type that will be filled in later (e.g., by some /// deserialization method). struct EmptyShell { }; /// IdentifierNamespace - The different namespaces in which /// declarations may appear. According to C99 6.2.3, there are /// four namespaces, labels, tags, members and ordinary /// identifiers. C++ describes lookup completely differently: /// certain lookups merely "ignore" certain kinds of declarations, /// usually based on whether the declaration is of a type, etc. /// /// These are meant as bitmasks, so that searches in /// C++ can look into the "tag" namespace during ordinary lookup. /// /// Decl currently provides 15 bits of IDNS bits. enum IdentifierNamespace { /// Labels, declared with 'x:' and referenced with 'goto x'. IDNS_Label = 0x0001, /// Tags, declared with 'struct foo;' and referenced with /// 'struct foo'. All tags are also types. This is what /// elaborated-type-specifiers look for in C. IDNS_Tag = 0x0002, /// Types, declared with 'struct foo', typedefs, etc. /// This is what elaborated-type-specifiers look for in C++, /// but note that it's ill-formed to find a non-tag. IDNS_Type = 0x0004, /// Members, declared with object declarations within tag /// definitions. In C, these can only be found by "qualified" /// lookup in member expressions. In C++, they're found by /// normal lookup. IDNS_Member = 0x0008, /// Namespaces, declared with 'namespace foo {}'. /// Lookup for nested-name-specifiers find these. IDNS_Namespace = 0x0010, /// Ordinary names. In C, everything that's not a label, tag, /// or member ends up here. IDNS_Ordinary = 0x0020, /// Objective C @protocol. IDNS_ObjCProtocol = 0x0040, /// This declaration is a friend function. A friend function /// declaration is always in this namespace but may also be in /// IDNS_Ordinary if it was previously declared. IDNS_OrdinaryFriend = 0x0080, /// This declaration is a friend class. A friend class /// declaration is always in this namespace but may also be in /// IDNS_Tag|IDNS_Type if it was previously declared. IDNS_TagFriend = 0x0100, /// This declaration is a using declaration. A using declaration /// *introduces* a number of other declarations into the current /// scope, and those declarations use the IDNS of their targets, /// but the actual using declarations go in this namespace. IDNS_Using = 0x0200, /// This declaration is a C++ operator declared in a non-class /// context. All such operators are also in IDNS_Ordinary. /// C++ lexical operator lookup looks for these. IDNS_NonMemberOperator = 0x0400 }; /// ObjCDeclQualifier - 'Qualifiers' written next to the return and /// parameter types in method declarations. Other than remembering /// them and mangling them into the method's signature string, these /// are ignored by the compiler; they are consumed by certain /// remote-messaging frameworks. /// /// in, inout, and out are mutually exclusive and apply only to /// method parameters. bycopy and byref are mutually exclusive and /// apply only to method parameters (?). oneway applies only to /// results. All of these expect their corresponding parameter to /// have a particular type. None of this is currently enforced by /// clang. /// /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier. enum ObjCDeclQualifier { OBJC_TQ_None = 0x0, OBJC_TQ_In = 0x1, OBJC_TQ_Inout = 0x2, OBJC_TQ_Out = 0x4, OBJC_TQ_Bycopy = 0x8, OBJC_TQ_Byref = 0x10, OBJC_TQ_Oneway = 0x20 }; protected: // Enumeration values used in the bits stored in NextInContextAndBits. enum { /// \brief Whether this declaration is a top-level declaration (function, /// global variable, etc.) that is lexically inside an objc container /// definition. TopLevelDeclInObjCContainerFlag = 0x01, /// \brief Whether this declaration is private to the module in which it was /// defined. ModulePrivateFlag = 0x02 }; /// \brief The next declaration within the same lexical /// DeclContext. These pointers form the linked list that is /// traversed via DeclContext's decls_begin()/decls_end(). /// /// The extra two bits are used for the TopLevelDeclInObjCContainer and /// ModulePrivate bits. llvm::PointerIntPair<Decl *, 2, unsigned> NextInContextAndBits; private: friend class DeclContext; struct MultipleDC { DeclContext *SemanticDC; DeclContext *LexicalDC; }; /// DeclCtx - Holds either a DeclContext* or a MultipleDC*. /// For declarations that don't contain C++ scope specifiers, it contains /// the DeclContext where the Decl was declared. /// For declarations with C++ scope specifiers, it contains a MultipleDC* /// with the context where it semantically belongs (SemanticDC) and the /// context where it was lexically declared (LexicalDC). /// e.g.: /// /// namespace A { /// void f(); // SemanticDC == LexicalDC == 'namespace A' /// } /// void A::f(); // SemanticDC == namespace 'A' /// // LexicalDC == global namespace llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx; inline bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); } inline bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); } inline MultipleDC *getMultipleDC() const { return DeclCtx.get<MultipleDC*>(); } inline DeclContext *getSemanticDC() const { return DeclCtx.get<DeclContext*>(); } /// Loc - The location of this decl. SourceLocation Loc; /// DeclKind - This indicates which class this is. unsigned DeclKind : 8; /// InvalidDecl - This indicates a semantic error occurred. unsigned InvalidDecl : 1; /// HasAttrs - This indicates whether the decl has attributes or not. unsigned HasAttrs : 1; /// Implicit - Whether this declaration was implicitly generated by /// the implementation rather than explicitly written by the user. unsigned Implicit : 1; /// \brief Whether this declaration was "used", meaning that a definition is /// required. unsigned Used : 1; /// \brief Whether this declaration was "referenced". /// The difference with 'Used' is whether the reference appears in a /// evaluated context or not, e.g. functions used in uninstantiated templates /// are regarded as "referenced" but not "used". unsigned Referenced : 1; /// \brief Whether statistic collection is enabled. static bool StatisticsEnabled; protected: /// Access - Used by C++ decls for the access specifier. // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum unsigned Access : 2; friend class CXXClassMemberWrapper; /// \brief Whether this declaration was loaded from an AST file. unsigned FromASTFile : 1; /// \brief Whether this declaration is hidden from normal name lookup, e.g., /// because it is was loaded from an AST file is either module-private or /// because its submodule has not been made visible. unsigned Hidden : 1; /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in. unsigned IdentifierNamespace : 12; /// \brief Whether the \c CachedLinkage field is active. /// /// This field is only valid for NamedDecls subclasses. mutable unsigned HasCachedLinkage : 1; /// \brief If \c HasCachedLinkage, the linkage of this declaration. /// /// This field is only valid for NamedDecls subclasses. mutable unsigned CachedLinkage : 2; friend class ASTDeclWriter; friend class ASTDeclReader; friend class ASTReader; private: void CheckAccessDeclContext() const; protected: Decl(Kind DK, DeclContext *DC, SourceLocation L) : NextInContextAndBits(), DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(0), HasAttrs(false), Implicit(false), Used(false), Referenced(false), Access(AS_none), FromASTFile(0), Hidden(0), IdentifierNamespace(getIdentifierNamespaceForKind(DK)), HasCachedLinkage(0) { if (StatisticsEnabled) add(DK); } Decl(Kind DK, EmptyShell Empty) : NextInContextAndBits(), DeclKind(DK), InvalidDecl(0), HasAttrs(false), Implicit(false), Used(false), Referenced(false), Access(AS_none), FromASTFile(0), Hidden(0), IdentifierNamespace(getIdentifierNamespaceForKind(DK)), HasCachedLinkage(0) { if (StatisticsEnabled) add(DK); } virtual ~Decl(); /// \brief Allocate memory for a deserialized declaration. /// /// This routine must be used to allocate memory for any declaration that is /// deserialized from a module file. /// /// \param Context The context in which we will allocate memory. /// \param ID The global ID of the deserialized declaration. /// \param Size The size of the allocated object. static void *AllocateDeserializedDecl(const ASTContext &Context, unsigned ID, unsigned Size); public: /// \brief Source range that this declaration covers. virtual SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getLocation(), getLocation()); } SourceLocation getLocStart() const LLVM_READONLY { return getSourceRange().getBegin(); } SourceLocation getLocEnd() const LLVM_READONLY { return getSourceRange().getEnd(); } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } Kind getKind() const { return static_cast<Kind>(DeclKind); } const char *getDeclKindName() const; Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); } const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();} DeclContext *getDeclContext() { if (isInSemaDC()) return getSemanticDC(); return getMultipleDC()->SemanticDC; } const DeclContext *getDeclContext() const { return const_cast<Decl*>(this)->getDeclContext(); } /// Finds the innermost non-closure context of this declaration. /// That is, walk out the DeclContext chain, skipping any blocks. DeclContext *getNonClosureContext(); const DeclContext *getNonClosureContext() const { return const_cast<Decl*>(this)->getNonClosureContext(); } TranslationUnitDecl *getTranslationUnitDecl(); const TranslationUnitDecl *getTranslationUnitDecl() const { return const_cast<Decl*>(this)->getTranslationUnitDecl(); } bool isInAnonymousNamespace() const; ASTContext &getASTContext() const LLVM_READONLY; void setAccess(AccessSpecifier AS) { Access = AS; #ifndef NDEBUG CheckAccessDeclContext(); #endif } AccessSpecifier getAccess() const { #ifndef NDEBUG CheckAccessDeclContext(); #endif return AccessSpecifier(Access); } bool hasAttrs() const { return HasAttrs; } void setAttrs(const AttrVec& Attrs) { return setAttrsImpl(Attrs, getASTContext()); } AttrVec &getAttrs() { return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs()); } const AttrVec &getAttrs() const; void swapAttrs(Decl *D); void dropAttrs(); void addAttr(Attr *A) { if (hasAttrs()) getAttrs().push_back(A); else setAttrs(AttrVec(1, A)); } typedef AttrVec::const_iterator attr_iterator; // FIXME: Do not rely on iterators having comparable singular values. // Note that this should error out if they do not. attr_iterator attr_begin() const { return hasAttrs() ? getAttrs().begin() : 0; } attr_iterator attr_end() const { return hasAttrs() ? getAttrs().end() : 0; } template <typename T> void dropAttr() { if (!HasAttrs) return; AttrVec &Attrs = getAttrs(); for (unsigned i = 0, e = Attrs.size(); i != e; /* in loop */) { if (isa<T>(Attrs[i])) { Attrs.erase(Attrs.begin() + i); --e; } else ++i; } if (Attrs.empty()) HasAttrs = false; } template <typename T> specific_attr_iterator<T> specific_attr_begin() const { return specific_attr_iterator<T>(attr_begin()); } template <typename T> specific_attr_iterator<T> specific_attr_end() const { return specific_attr_iterator<T>(attr_end()); } template<typename T> T *getAttr() const { return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : 0; } template<typename T> bool hasAttr() const { return hasAttrs() && hasSpecificAttr<T>(getAttrs()); } /// getMaxAlignment - return the maximum alignment specified by attributes /// on this decl, 0 if there are none. unsigned getMaxAlignment() const { return hasAttrs() ? getMaxAttrAlignment(getAttrs(), getASTContext()) : 0; } /// setInvalidDecl - Indicates the Decl had a semantic error. This /// allows for graceful error recovery. void setInvalidDecl(bool Invalid = true); bool isInvalidDecl() const { return (bool) InvalidDecl; } /// isImplicit - Indicates whether the declaration was implicitly /// generated by the implementation. If false, this declaration /// was written explicitly in the source code. bool isImplicit() const { return Implicit; } void setImplicit(bool I = true) { Implicit = I; } /// \brief Whether this declaration was used, meaning that a definition /// is required. /// /// \param CheckUsedAttr When true, also consider the "used" attribute /// (in addition to the "used" bit set by \c setUsed()) when determining /// whether the function is used. bool isUsed(bool CheckUsedAttr = true) const; void setUsed(bool U = true) { Used = U; } /// \brief Whether this declaration was referenced. bool isReferenced() const; void setReferenced(bool R = true) { Referenced = R; } /// \brief Whether this declaration is a top-level declaration (function, /// global variable, etc.) that is lexically inside an objc container /// definition. bool isTopLevelDeclInObjCContainer() const { return NextInContextAndBits.getInt() & TopLevelDeclInObjCContainerFlag; } void setTopLevelDeclInObjCContainer(bool V = true) { unsigned Bits = NextInContextAndBits.getInt(); if (V) Bits |= TopLevelDeclInObjCContainerFlag; else Bits &= ~TopLevelDeclInObjCContainerFlag; NextInContextAndBits.setInt(Bits); } protected: /// \brief Whether this declaration was marked as being private to the /// module in which it was defined. bool isModulePrivate() const { return NextInContextAndBits.getInt() & ModulePrivateFlag; } /// \brief Specify whether this declaration was marked as being private /// to the module in which it was defined. void setModulePrivate(bool MP = true) { unsigned Bits = NextInContextAndBits.getInt(); if (MP) Bits |= ModulePrivateFlag; else Bits &= ~ModulePrivateFlag; NextInContextAndBits.setInt(Bits); } /// \brief Set the owning module ID. void setOwningModuleID(unsigned ID) { assert(isFromASTFile() && "Only works on a deserialized declaration"); *((unsigned*)this - 2) = ID; } public: /// \brief Determine the availability of the given declaration. /// /// This routine will determine the most restrictive availability of /// the given declaration (e.g., preferring 'unavailable' to /// 'deprecated'). /// /// \param Message If non-NULL and the result is not \c /// AR_Available, will be set to a (possibly empty) message /// describing why the declaration has not been introduced, is /// deprecated, or is unavailable. AvailabilityResult getAvailability(std::string *Message = 0) const; /// \brief Determine whether this declaration is marked 'deprecated'. /// /// \param Message If non-NULL and the declaration is deprecated, /// this will be set to the message describing why the declaration /// was deprecated (which may be empty). bool isDeprecated(std::string *Message = 0) const { return getAvailability(Message) == AR_Deprecated; } /// \brief Determine whether this declaration is marked 'unavailable'. /// /// \param Message If non-NULL and the declaration is unavailable, /// this will be set to the message describing why the declaration /// was made unavailable (which may be empty). bool isUnavailable(std::string *Message = 0) const { return getAvailability(Message) == AR_Unavailable; } /// \brief Determine whether this is a weak-imported symbol. /// /// Weak-imported symbols are typically marked with the /// 'weak_import' attribute, but may also be marked with an /// 'availability' attribute where we're targing a platform prior to /// the introduction of this feature. bool isWeakImported() const; /// \brief Determines whether this symbol can be weak-imported, /// e.g., whether it would be well-formed to add the weak_import /// attribute. /// /// \param IsDefinition Set to \c true to indicate that this /// declaration cannot be weak-imported because it has a definition. bool canBeWeakImported(bool &IsDefinition) const; /// \brief Determine whether this declaration came from an AST file (such as /// a precompiled header or module) rather than having been parsed. bool isFromASTFile() const { return FromASTFile; } /// \brief Retrieve the global declaration ID associated with this /// declaration, which specifies where in the unsigned getGlobalID() const { if (isFromASTFile()) return *((const unsigned*)this - 1); return 0; } /// \brief Retrieve the global ID of the module that owns this particular /// declaration. unsigned getOwningModuleID() const { if (isFromASTFile()) return *((const unsigned*)this - 2); return 0; } unsigned getIdentifierNamespace() const { return IdentifierNamespace; } bool isInIdentifierNamespace(unsigned NS) const { return getIdentifierNamespace() & NS; } static unsigned getIdentifierNamespaceForKind(Kind DK); bool hasTagIdentifierNamespace() const { return isTagIdentifierNamespace(getIdentifierNamespace()); } static bool isTagIdentifierNamespace(unsigned NS) { // TagDecls have Tag and Type set and may also have TagFriend. return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type); } /// getLexicalDeclContext - The declaration context where this Decl was /// lexically declared (LexicalDC). May be different from /// getDeclContext() (SemanticDC). /// e.g.: /// /// namespace A { /// void f(); // SemanticDC == LexicalDC == 'namespace A' /// } /// void A::f(); // SemanticDC == namespace 'A' /// // LexicalDC == global namespace DeclContext *getLexicalDeclContext() { if (isInSemaDC()) return getSemanticDC(); return getMultipleDC()->LexicalDC; } const DeclContext *getLexicalDeclContext() const { return const_cast<Decl*>(this)->getLexicalDeclContext(); } virtual bool isOutOfLine() const { return getLexicalDeclContext() != getDeclContext(); } /// setDeclContext - Set both the semantic and lexical DeclContext /// to DC. void setDeclContext(DeclContext *DC); void setLexicalDeclContext(DeclContext *DC); /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this /// scoped decl is defined outside the current function or method. This is /// roughly global variables and functions, but also handles enums (which /// could be defined inside or outside a function etc). bool isDefinedOutsideFunctionOrMethod() const { return getParentFunctionOrMethod() == 0; } /// \brief If this decl is defined inside a function/method/block it returns /// the corresponding DeclContext, otherwise it returns null. const DeclContext *getParentFunctionOrMethod() const; DeclContext *getParentFunctionOrMethod() { return const_cast<DeclContext*>( const_cast<const Decl*>(this)->getParentFunctionOrMethod()); } /// \brief Retrieves the "canonical" declaration of the given declaration. virtual Decl *getCanonicalDecl() { return this; } const Decl *getCanonicalDecl() const { return const_cast<Decl*>(this)->getCanonicalDecl(); } /// \brief Whether this particular Decl is a canonical one. bool isCanonicalDecl() const { return getCanonicalDecl() == this; } protected: /// \brief Returns the next redeclaration or itself if this is the only decl. /// /// Decl subclasses that can be redeclared should override this method so that /// Decl::redecl_iterator can iterate over them. virtual Decl *getNextRedeclaration() { return this; } /// \brief Implementation of getPreviousDecl(), to be overridden by any /// subclass that has a redeclaration chain. virtual Decl *getPreviousDeclImpl() { return 0; } /// \brief Implementation of getMostRecentDecl(), to be overridden by any /// subclass that has a redeclaration chain. virtual Decl *getMostRecentDeclImpl() { return this; } public: /// \brief Iterates through all the redeclarations of the same decl. class redecl_iterator { /// Current - The current declaration. Decl *Current; Decl *Starter; public: typedef Decl* value_type; typedef Decl* reference; typedef Decl* pointer; typedef std::forward_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; redecl_iterator() : Current(0) { } explicit redecl_iterator(Decl *C) : Current(C), Starter(C) { } reference operator*() const { return Current; } pointer operator->() const { return Current; } redecl_iterator& operator++() { assert(Current && "Advancing while iterator has reached end"); // Get either previous decl or latest decl. Decl *Next = Current->getNextRedeclaration(); assert(Next && "Should return next redeclaration or itself, never null!"); Current = (Next != Starter ? Next : 0); return *this; } redecl_iterator operator++(int) { redecl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(redecl_iterator x, redecl_iterator y) { return x.Current == y.Current; } friend bool operator!=(redecl_iterator x, redecl_iterator y) { return x.Current != y.Current; } }; /// \brief Returns iterator for all the redeclarations of the same decl. /// It will iterate at least once (when this decl is the only one). redecl_iterator redecls_begin() const { return redecl_iterator(const_cast<Decl*>(this)); } redecl_iterator redecls_end() const { return redecl_iterator(); } /// \brief Retrieve the previous declaration that declares the same entity /// as this declaration, or NULL if there is no previous declaration. Decl *getPreviousDecl() { return getPreviousDeclImpl(); } /// \brief Retrieve the most recent declaration that declares the same entity /// as this declaration, or NULL if there is no previous declaration. const Decl *getPreviousDecl() const { return const_cast<Decl *>(this)->getPreviousDeclImpl(); } /// \brief Retrieve the most recent declaration that declares the same entity /// as this declaration (which may be this declaration). Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); } /// \brief Retrieve the most recent declaration that declares the same entity /// as this declaration (which may be this declaration). const Decl *getMostRecentDecl() const { return const_cast<Decl *>(this)->getMostRecentDeclImpl(); } /// getBody - If this Decl represents a declaration for a body of code, /// such as a function or method definition, this method returns the /// top-level Stmt* of that body. Otherwise this method returns null. virtual Stmt* getBody() const { return 0; } /// \brief Returns true if this Decl represents a declaration for a body of /// code, such as a function or method definition. virtual bool hasBody() const { return getBody() != 0; } /// getBodyRBrace - Gets the right brace of the body, if a body exists. /// This works whether the body is a CompoundStmt or a CXXTryStmt. SourceLocation getBodyRBrace() const; // global temp stats (until we have a per-module visitor) static void add(Kind k); static void EnableStatistics(); static void PrintStats(); /// isTemplateParameter - Determines whether this declaration is a /// template parameter. bool isTemplateParameter() const; /// isTemplateParameter - Determines whether this declaration is a /// template parameter pack. bool isTemplateParameterPack() const; /// \brief Whether this declaration is a parameter pack. bool isParameterPack() const; /// \brief returns true if this declaration is a template bool isTemplateDecl() const; /// \brief Whether this declaration is a function or function template. bool isFunctionOrFunctionTemplate() const; /// \brief Changes the namespace of this declaration to reflect that it's /// the object of a friend declaration. /// /// These declarations appear in the lexical context of the friending /// class, but in the semantic context of the actual entity. This property /// applies only to a specific decl object; other redeclarations of the /// same entity may not (and probably don't) share this property. void setObjectOfFriendDecl(bool PreviouslyDeclared) { unsigned OldNS = IdentifierNamespace; assert((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend)) && "namespace includes neither ordinary nor tag"); assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend)) && "namespace includes other than ordinary or tag"); IdentifierNamespace = 0; if (OldNS & (IDNS_Tag | IDNS_TagFriend)) { IdentifierNamespace |= IDNS_TagFriend; if (PreviouslyDeclared) IdentifierNamespace |= IDNS_Tag | IDNS_Type; } if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend)) { IdentifierNamespace |= IDNS_OrdinaryFriend; if (PreviouslyDeclared) IdentifierNamespace |= IDNS_Ordinary; } } enum FriendObjectKind { FOK_None, // not a friend object FOK_Declared, // a friend of a previously-declared entity FOK_Undeclared // a friend of a previously-undeclared entity }; /// \brief Determines whether this declaration is the object of a /// friend declaration and, if so, what kind. /// /// There is currently no direct way to find the associated FriendDecl. FriendObjectKind getFriendObjectKind() const { unsigned mask = (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend)); if (!mask) return FOK_None; return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared : FOK_Undeclared); } /// Specifies that this declaration is a C++ overloaded non-member. void setNonMemberOperator() { assert(getKind() == Function || getKind() == FunctionTemplate); assert((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"); IdentifierNamespace |= IDNS_NonMemberOperator; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *) { return true; } static bool classofKind(Kind K) { return true; } static DeclContext *castToDeclContext(const Decl *); static Decl *castFromDeclContext(const DeclContext *); void print(raw_ostream &Out, unsigned Indentation = 0, bool PrintInstantiation = false) const; void print(raw_ostream &Out, const PrintingPolicy &Policy, unsigned Indentation = 0, bool PrintInstantiation = false) const; static void printGroup(Decl** Begin, unsigned NumDecls, raw_ostream &Out, const PrintingPolicy &Policy, unsigned Indentation = 0); LLVM_ATTRIBUTE_USED void dump() const; LLVM_ATTRIBUTE_USED void dumpXML() const; void dumpXML(raw_ostream &OS) const; private: void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx); void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC, ASTContext &Ctx); protected: ASTMutationListener *getASTMutationListener() const; }; /// \brief Determine whether two declarations declare the same entity. inline bool declaresSameEntity(const Decl *D1, const Decl *D2) { if (!D1 || !D2) return false; if (D1 == D2) return true; return D1->getCanonicalDecl() == D2->getCanonicalDecl(); } /// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when /// doing something to a specific decl. class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry { const Decl *TheDecl; SourceLocation Loc; SourceManager &SM; const char *Message; public: PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L, SourceManager &sm, const char *Msg) : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {} virtual void print(raw_ostream &OS) const; }; class DeclContextLookupResult : public std::pair<NamedDecl**,NamedDecl**> { public: DeclContextLookupResult(NamedDecl **I, NamedDecl **E) : std::pair<NamedDecl**,NamedDecl**>(I, E) {} DeclContextLookupResult() : std::pair<NamedDecl**,NamedDecl**>() {} using std::pair<NamedDecl**,NamedDecl**>::operator=; }; class DeclContextLookupConstResult : public std::pair<NamedDecl*const*, NamedDecl*const*> { public: DeclContextLookupConstResult(std::pair<NamedDecl**,NamedDecl**> R) : std::pair<NamedDecl*const*, NamedDecl*const*>(R) {} DeclContextLookupConstResult(NamedDecl * const *I, NamedDecl * const *E) : std::pair<NamedDecl*const*, NamedDecl*const*>(I, E) {} DeclContextLookupConstResult() : std::pair<NamedDecl*const*, NamedDecl*const*>() {} using std::pair<NamedDecl*const*,NamedDecl*const*>::operator=; }; /// DeclContext - This is used only as base class of specific decl types that /// can act as declaration contexts. These decls are (only the top classes /// that directly derive from DeclContext are mentioned, not their subclasses): /// /// TranslationUnitDecl /// NamespaceDecl /// FunctionDecl /// TagDecl /// ObjCMethodDecl /// ObjCContainerDecl /// LinkageSpecDecl /// BlockDecl /// class DeclContext { /// DeclKind - This indicates which class this is. unsigned DeclKind : 8; /// \brief Whether this declaration context also has some external /// storage that contains additional declarations that are lexically /// part of this context. mutable unsigned ExternalLexicalStorage : 1; /// \brief Whether this declaration context also has some external /// storage that contains additional declarations that are visible /// in this context. mutable unsigned ExternalVisibleStorage : 1; /// \brief Pointer to the data structure used to lookup declarations /// within this context (or a DependentStoredDeclsMap if this is a /// dependent context), and a bool indicating whether we have lazily /// omitted any declarations from the map. We maintain the invariant /// that, if the map contains an entry for a DeclarationName, then it /// contains all relevant entries for that name. mutable llvm::PointerIntPair<StoredDeclsMap*, 1, bool> LookupPtr; protected: /// FirstDecl - The first declaration stored within this declaration /// context. mutable Decl *FirstDecl; /// LastDecl - The last declaration stored within this declaration /// context. FIXME: We could probably cache this value somewhere /// outside of the DeclContext, to reduce the size of DeclContext by /// another pointer. mutable Decl *LastDecl; friend class ExternalASTSource; friend class ASTWriter; /// \brief Build up a chain of declarations. /// /// \returns the first/last pair of declarations. static std::pair<Decl *, Decl *> BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded); DeclContext(Decl::Kind K) : DeclKind(K), ExternalLexicalStorage(false), ExternalVisibleStorage(false), LookupPtr(0, false), FirstDecl(0), LastDecl(0) { } public: ~DeclContext(); Decl::Kind getDeclKind() const { return static_cast<Decl::Kind>(DeclKind); } const char *getDeclKindName() const; /// getParent - Returns the containing DeclContext. DeclContext *getParent() { return cast<Decl>(this)->getDeclContext(); } const DeclContext *getParent() const { return const_cast<DeclContext*>(this)->getParent(); } /// getLexicalParent - Returns the containing lexical DeclContext. May be /// different from getParent, e.g.: /// /// namespace A { /// struct S; /// } /// struct A::S {}; // getParent() == namespace 'A' /// // getLexicalParent() == translation unit /// DeclContext *getLexicalParent() { return cast<Decl>(this)->getLexicalDeclContext(); } const DeclContext *getLexicalParent() const { return const_cast<DeclContext*>(this)->getLexicalParent(); } DeclContext *getLookupParent(); const DeclContext *getLookupParent() const { return const_cast<DeclContext*>(this)->getLookupParent(); } ASTContext &getParentASTContext() const { return cast<Decl>(this)->getASTContext(); } bool isClosure() const { return DeclKind == Decl::Block; } bool isObjCContainer() const { switch (DeclKind) { case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::ObjCInterface: case Decl::ObjCProtocol: return true; } return false; } bool isFunctionOrMethod() const { switch (DeclKind) { case Decl::Block: case Decl::ObjCMethod: return true; default: return DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction; } } bool isFileContext() const { return DeclKind == Decl::TranslationUnit || DeclKind == Decl::Namespace; } bool isTranslationUnit() const { return DeclKind == Decl::TranslationUnit; } bool isRecord() const { return DeclKind >= Decl::firstRecord && DeclKind <= Decl::lastRecord; } bool isNamespace() const { return DeclKind == Decl::Namespace; } bool isInlineNamespace() const; /// \brief Determines whether this context is dependent on a /// template parameter. bool isDependentContext() const; /// isTransparentContext - Determines whether this context is a /// "transparent" context, meaning that the members declared in this /// context are semantically declared in the nearest enclosing /// non-transparent (opaque) context but are lexically declared in /// this context. For example, consider the enumerators of an /// enumeration type: /// @code /// enum E { /// Val1 /// }; /// @endcode /// Here, E is a transparent context, so its enumerator (Val1) will /// appear (semantically) that it is in the same context of E. /// Examples of transparent contexts include: enumerations (except for /// C++0x scoped enums), and C++ linkage specifications. bool isTransparentContext() const; /// \brief Determines whether this context is, or is nested within, /// a C++ extern "C" linkage spec. bool isExternCContext() const; /// \brief Determine whether this declaration context is equivalent /// to the declaration context DC. bool Equals(const DeclContext *DC) const { return DC && this->getPrimaryContext() == DC->getPrimaryContext(); } /// \brief Determine whether this declaration context encloses the /// declaration context DC. bool Encloses(const DeclContext *DC) const; /// \brief Find the nearest non-closure ancestor of this context, /// i.e. the innermost semantic parent of this context which is not /// a closure. A context may be its own non-closure ancestor. DeclContext *getNonClosureAncestor(); const DeclContext *getNonClosureAncestor() const { return const_cast<DeclContext*>(this)->getNonClosureAncestor(); } /// getPrimaryContext - There may be many different /// declarations of the same entity (including forward declarations /// of classes, multiple definitions of namespaces, etc.), each with /// a different set of declarations. This routine returns the /// "primary" DeclContext structure, which will contain the /// information needed to perform name lookup into this context. DeclContext *getPrimaryContext(); const DeclContext *getPrimaryContext() const { return const_cast<DeclContext*>(this)->getPrimaryContext(); } /// getRedeclContext - Retrieve the context in which an entity conflicts with /// other entities of the same name, or where it is a redeclaration if the /// two entities are compatible. This skips through transparent contexts. DeclContext *getRedeclContext(); const DeclContext *getRedeclContext() const { return const_cast<DeclContext *>(this)->getRedeclContext(); } /// \brief Retrieve the nearest enclosing namespace context. DeclContext *getEnclosingNamespaceContext(); const DeclContext *getEnclosingNamespaceContext() const { return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext(); } /// \brief Test if this context is part of the enclosing namespace set of /// the context NS, as defined in C++0x [namespace.def]p9. If either context /// isn't a namespace, this is equivalent to Equals(). /// /// The enclosing namespace set of a namespace is the namespace and, if it is /// inline, its enclosing namespace, recursively. bool InEnclosingNamespaceSetOf(const DeclContext *NS) const; /// \\brief Collects all of the declaration contexts that are semantically /// connected to this declaration context. /// /// For declaration contexts that have multiple semantically connected but /// syntactically distinct contexts, such as C++ namespaces, this routine /// retrieves the complete set of such declaration contexts in source order. /// For example, given: /// /// \code /// namespace N { /// int x; /// } /// namespace N { /// int y; /// } /// \endcode /// /// The \c Contexts parameter will contain both definitions of N. /// /// \param Contexts Will be cleared and set to the set of declaration /// contexts that are semanticaly connected to this declaration context, /// in source order, including this context (which may be the only result, /// for non-namespace contexts). void collectAllContexts(llvm::SmallVectorImpl<DeclContext *> &Contexts); /// decl_iterator - Iterates through the declarations stored /// within this context. class decl_iterator { /// Current - The current declaration. Decl *Current; public: typedef Decl* value_type; typedef Decl* reference; typedef Decl* pointer; typedef std::forward_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; decl_iterator() : Current(0) { } explicit decl_iterator(Decl *C) : Current(C) { } reference operator*() const { return Current; } pointer operator->() const { return Current; } decl_iterator& operator++() { Current = Current->getNextDeclInContext(); return *this; } decl_iterator operator++(int) { decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(decl_iterator x, decl_iterator y) { return x.Current == y.Current; } friend bool operator!=(decl_iterator x, decl_iterator y) { return x.Current != y.Current; } }; /// decls_begin/decls_end - Iterate over the declarations stored in /// this context. decl_iterator decls_begin() const; decl_iterator decls_end() const; bool decls_empty() const; /// noload_decls_begin/end - Iterate over the declarations stored in this /// context that are currently loaded; don't attempt to retrieve anything /// from an external source. decl_iterator noload_decls_begin() const; decl_iterator noload_decls_end() const; /// specific_decl_iterator - Iterates over a subrange of /// declarations stored in a DeclContext, providing only those that /// are of type SpecificDecl (or a class derived from it). This /// iterator is used, for example, to provide iteration over just /// the fields within a RecordDecl (with SpecificDecl = FieldDecl). template<typename SpecificDecl> class specific_decl_iterator { /// Current - The current, underlying declaration iterator, which /// will either be NULL or will point to a declaration of /// type SpecificDecl. DeclContext::decl_iterator Current; /// SkipToNextDecl - Advances the current position up to the next /// declaration of type SpecificDecl that also meets the criteria /// required by Acceptable. void SkipToNextDecl() { while (*Current && !isa<SpecificDecl>(*Current)) ++Current; } public: typedef SpecificDecl* value_type; typedef SpecificDecl* reference; typedef SpecificDecl* pointer; typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type difference_type; typedef std::forward_iterator_tag iterator_category; specific_decl_iterator() : Current() { } /// specific_decl_iterator - Construct a new iterator over a /// subset of the declarations the range [C, /// end-of-declarations). If A is non-NULL, it is a pointer to a /// member function of SpecificDecl that should return true for /// all of the SpecificDecl instances that will be in the subset /// of iterators. For example, if you want Objective-C instance /// methods, SpecificDecl will be ObjCMethodDecl and A will be /// &ObjCMethodDecl::isInstanceMethod. explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) { SkipToNextDecl(); } reference operator*() const { return cast<SpecificDecl>(*Current); } pointer operator->() const { return cast<SpecificDecl>(*Current); } specific_decl_iterator& operator++() { ++Current; SkipToNextDecl(); return *this; } specific_decl_iterator operator++(int) { specific_decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(const specific_decl_iterator& x, const specific_decl_iterator& y) { return x.Current == y.Current; } friend bool operator!=(const specific_decl_iterator& x, const specific_decl_iterator& y) { return x.Current != y.Current; } }; /// \brief Iterates over a filtered subrange of declarations stored /// in a DeclContext. /// /// This iterator visits only those declarations that are of type /// SpecificDecl (or a class derived from it) and that meet some /// additional run-time criteria. This iterator is used, for /// example, to provide access to the instance methods within an /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and /// Acceptable = ObjCMethodDecl::isInstanceMethod). template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const> class filtered_decl_iterator { /// Current - The current, underlying declaration iterator, which /// will either be NULL or will point to a declaration of /// type SpecificDecl. DeclContext::decl_iterator Current; /// SkipToNextDecl - Advances the current position up to the next /// declaration of type SpecificDecl that also meets the criteria /// required by Acceptable. void SkipToNextDecl() { while (*Current && (!isa<SpecificDecl>(*Current) || (Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)()))) ++Current; } public: typedef SpecificDecl* value_type; typedef SpecificDecl* reference; typedef SpecificDecl* pointer; typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type difference_type; typedef std::forward_iterator_tag iterator_category; filtered_decl_iterator() : Current() { } /// specific_decl_iterator - Construct a new iterator over a /// subset of the declarations the range [C, /// end-of-declarations). If A is non-NULL, it is a pointer to a /// member function of SpecificDecl that should return true for /// all of the SpecificDecl instances that will be in the subset /// of iterators. For example, if you want Objective-C instance /// methods, SpecificDecl will be ObjCMethodDecl and A will be /// &ObjCMethodDecl::isInstanceMethod. explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) { SkipToNextDecl(); } reference operator*() const { return cast<SpecificDecl>(*Current); } pointer operator->() const { return cast<SpecificDecl>(*Current); } filtered_decl_iterator& operator++() { ++Current; SkipToNextDecl(); return *this; } filtered_decl_iterator operator++(int) { filtered_decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(const filtered_decl_iterator& x, const filtered_decl_iterator& y) { return x.Current == y.Current; } friend bool operator!=(const filtered_decl_iterator& x, const filtered_decl_iterator& y) { return x.Current != y.Current; } }; /// @brief Add the declaration D into this context. /// /// This routine should be invoked when the declaration D has first /// been declared, to place D into the context where it was /// (lexically) defined. Every declaration must be added to one /// (and only one!) context, where it can be visited via /// [decls_begin(), decls_end()). Once a declaration has been added /// to its lexical context, the corresponding DeclContext owns the /// declaration. /// /// If D is also a NamedDecl, it will be made visible within its /// semantic context via makeDeclVisibleInContext. void addDecl(Decl *D); /// @brief Add the declaration D into this context, but suppress /// searches for external declarations with the same name. /// /// Although analogous in function to addDecl, this removes an /// important check. This is only useful if the Decl is being /// added in response to an external search; in all other cases, /// addDecl() is the right function to use. /// See the ASTImporter for use cases. void addDeclInternal(Decl *D); /// @brief Add the declaration D to this context without modifying /// any lookup tables. /// /// This is useful for some operations in dependent contexts where /// the semantic context might not be dependent; this basically /// only happens with friends. void addHiddenDecl(Decl *D); /// @brief Removes a declaration from this context. void removeDecl(Decl *D); /// lookup_iterator - An iterator that provides access to the results /// of looking up a name within this context. typedef NamedDecl **lookup_iterator; /// lookup_const_iterator - An iterator that provides non-mutable /// access to the results of lookup up a name within this context. typedef NamedDecl * const * lookup_const_iterator; typedef DeclContextLookupResult lookup_result; typedef DeclContextLookupConstResult lookup_const_result; /// lookup - Find the declarations (if any) with the given Name in /// this context. Returns a range of iterators that contains all of /// the declarations with this name, with object, function, member, /// and enumerator names preceding any tag name. Note that this /// routine will not look into parent contexts. lookup_result lookup(DeclarationName Name); lookup_const_result lookup(DeclarationName Name) const; /// \brief A simplistic name lookup mechanism that performs name lookup /// into this declaration context without consulting the external source. /// /// This function should almost never be used, because it subverts the /// usual relationship between a DeclContext and the external source. /// See the ASTImporter for the (few, but important) use cases. void localUncachedLookup(DeclarationName Name, llvm::SmallVectorImpl<NamedDecl *> &Results); /// @brief Makes a declaration visible within this context. /// /// This routine makes the declaration D visible to name lookup /// within this context and, if this is a transparent context, /// within its parent contexts up to the first enclosing /// non-transparent context. Making a declaration visible within a /// context does not transfer ownership of a declaration, and a /// declaration can be visible in many contexts that aren't its /// lexical context. /// /// If D is a redeclaration of an existing declaration that is /// visible from this context, as determined by /// NamedDecl::declarationReplaces, the previous declaration will be /// replaced with D. void makeDeclVisibleInContext(NamedDecl *D); /// all_lookups_iterator - An iterator that provides a view over the results /// of looking up every possible name. class all_lookups_iterator; all_lookups_iterator lookups_begin() const; all_lookups_iterator lookups_end() const; /// udir_iterator - Iterates through the using-directives stored /// within this context. typedef UsingDirectiveDecl * const * udir_iterator; typedef std::pair<udir_iterator, udir_iterator> udir_iterator_range; udir_iterator_range getUsingDirectives() const; udir_iterator using_directives_begin() const { return getUsingDirectives().first; } udir_iterator using_directives_end() const { return getUsingDirectives().second; } // These are all defined in DependentDiagnostic.h. class ddiag_iterator; inline ddiag_iterator ddiag_begin() const; inline ddiag_iterator ddiag_end() const; // Low-level accessors /// \brief Retrieve the internal representation of the lookup structure. /// This may omit some names if we are lazily building the structure. StoredDeclsMap *getLookupPtr() const { return LookupPtr.getPointer(); } /// \brief Ensure the lookup structure is fully-built and return it. StoredDeclsMap *buildLookup(); /// \brief Whether this DeclContext has external storage containing /// additional declarations that are lexically in this context. bool hasExternalLexicalStorage() const { return ExternalLexicalStorage; } /// \brief State whether this DeclContext has external storage for /// declarations lexically in this context. void setHasExternalLexicalStorage(bool ES = true) { ExternalLexicalStorage = ES; } /// \brief Whether this DeclContext has external storage containing /// additional declarations that are visible in this context. bool hasExternalVisibleStorage() const { return ExternalVisibleStorage; } /// \brief State whether this DeclContext has external storage for /// declarations visible in this context. void setHasExternalVisibleStorage(bool ES = true) { ExternalVisibleStorage = ES; } /// \brief Determine whether the given declaration is stored in the list of /// declarations lexically within this context. bool isDeclInLexicalTraversal(const Decl *D) const { return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl || D == LastDecl); } static bool classof(const Decl *D); static bool classof(const DeclContext *D) { return true; } #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) \ static bool classof(const NAME##Decl *D) { return true; } #include "clang/AST/DeclNodes.inc" LLVM_ATTRIBUTE_USED void dumpDeclContext() const; private: void LoadLexicalDeclsFromExternalStorage() const; /// @brief Makes a declaration visible within this context, but /// suppresses searches for external declarations with the same /// name. /// /// Analogous to makeDeclVisibleInContext, but for the exclusive /// use of addDeclInternal(). void makeDeclVisibleInContextInternal(NamedDecl *D); friend class DependentDiagnostic; StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const; void buildLookupImpl(DeclContext *DCtx); void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal, bool Rediscoverable); void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal); }; inline bool Decl::isTemplateParameter() const { return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm || getKind() == TemplateTemplateParm; } // Specialization selected when ToTy is not a known subclass of DeclContext. template <class ToTy, bool IsKnownSubtype = ::llvm::is_base_of< DeclContext, ToTy>::value> struct cast_convert_decl_context { static const ToTy *doit(const DeclContext *Val) { return static_cast<const ToTy*>(Decl::castFromDeclContext(Val)); } static ToTy *doit(DeclContext *Val) { return static_cast<ToTy*>(Decl::castFromDeclContext(Val)); } }; // Specialization selected when ToTy is a known subclass of DeclContext. template <class ToTy> struct cast_convert_decl_context<ToTy, true> { static const ToTy *doit(const DeclContext *Val) { return static_cast<const ToTy*>(Val); } static ToTy *doit(DeclContext *Val) { return static_cast<ToTy*>(Val); } }; } // end clang. namespace llvm { /// isa<T>(DeclContext*) template <typename To> struct isa_impl<To, ::clang::DeclContext> { static bool doit(const ::clang::DeclContext &Val) { return To::classofKind(Val.getDeclKind()); } }; /// cast<T>(DeclContext*) template<class ToTy> struct cast_convert_val<ToTy, const ::clang::DeclContext,const ::clang::DeclContext> { static const ToTy &doit(const ::clang::DeclContext &Val) { return *::clang::cast_convert_decl_context<ToTy>::doit(&Val); } }; template<class ToTy> struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> { static ToTy &doit(::clang::DeclContext &Val) { return *::clang::cast_convert_decl_context<ToTy>::doit(&Val); } }; template<class ToTy> struct cast_convert_val<ToTy, const ::clang::DeclContext*, const ::clang::DeclContext*> { static const ToTy *doit(const ::clang::DeclContext *Val) { return ::clang::cast_convert_decl_context<ToTy>::doit(Val); } }; template<class ToTy> struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> { static ToTy *doit(::clang::DeclContext *Val) { return ::clang::cast_convert_decl_context<ToTy>::doit(Val); } }; /// Implement cast_convert_val for Decl -> DeclContext conversions. template<class FromTy> struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> { static ::clang::DeclContext &doit(const FromTy &Val) { return *FromTy::castToDeclContext(&Val); } }; template<class FromTy> struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> { static ::clang::DeclContext *doit(const FromTy *Val) { return FromTy::castToDeclContext(Val); } }; template<class FromTy> struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> { static const ::clang::DeclContext &doit(const FromTy &Val) { return *FromTy::castToDeclContext(&Val); } }; template<class FromTy> struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> { static const ::clang::DeclContext *doit(const FromTy *Val) { return FromTy::castToDeclContext(Val); } }; } // end namespace llvm #endif