Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/RecursiveASTVisitor.h |
//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RecursiveASTVisitor interface, which recursively // traverses the entire AST. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_RECURSIVEASTVISITOR_H #define LLVM_CLANG_AST_RECURSIVEASTVISITOR_H #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" // The following three macros are used for meta programming. The code // using them is responsible for defining macro OPERATOR(). // All unary operators. #define UNARYOP_LIST() \ OPERATOR(PostInc) OPERATOR(PostDec) \ OPERATOR(PreInc) OPERATOR(PreDec) \ OPERATOR(AddrOf) OPERATOR(Deref) \ OPERATOR(Plus) OPERATOR(Minus) \ OPERATOR(Not) OPERATOR(LNot) \ OPERATOR(Real) OPERATOR(Imag) \ OPERATOR(Extension) // All binary operators (excluding compound assign operators). #define BINOP_LIST() \ OPERATOR(PtrMemD) OPERATOR(PtrMemI) \ OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \ OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \ OPERATOR(Shr) \ \ OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \ OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \ OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \ OPERATOR(LAnd) OPERATOR(LOr) \ \ OPERATOR(Assign) \ OPERATOR(Comma) // All compound assign operators. #define CAO_LIST() \ OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \ OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor) namespace clang { // A helper macro to implement short-circuiting when recursing. It // invokes CALL_EXPR, which must be a method call, on the derived // object (s.t. a user of RecursiveASTVisitor can override the method // in CALL_EXPR). #define TRY_TO(CALL_EXPR) \ do { if (!getDerived().CALL_EXPR) return false; } while (0) /// \brief A class that does preorder depth-first traversal on the /// entire Clang AST and visits each node. /// /// This class performs three distinct tasks: /// 1. traverse the AST (i.e. go to each node); /// 2. at a given node, walk up the class hierarchy, starting from /// the node's dynamic type, until the top-most class (e.g. Stmt, /// Decl, or Type) is reached. /// 3. given a (node, class) combination, where 'class' is some base /// class of the dynamic type of 'node', call a user-overridable /// function to actually visit the node. /// /// These tasks are done by three groups of methods, respectively: /// 1. TraverseDecl(Decl *x) does task #1. It is the entry point /// for traversing an AST rooted at x. This method simply /// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo /// is the dynamic type of *x, which calls WalkUpFromFoo(x) and /// then recursively visits the child nodes of x. /// TraverseStmt(Stmt *x) and TraverseType(QualType x) work /// similarly. /// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit /// any child node of x. Instead, it first calls WalkUpFromBar(x) /// where Bar is the direct parent class of Foo (unless Foo has /// no parent), and then calls VisitFoo(x) (see the next list item). /// 3. VisitFoo(Foo *x) does task #3. /// /// These three method groups are tiered (Traverse* > WalkUpFrom* > /// Visit*). A method (e.g. Traverse*) may call methods from the same /// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*). /// It may not call methods from a higher tier. /// /// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar /// is Foo's super class) before calling VisitFoo(), the result is /// that the Visit*() methods for a given node are called in the /// top-down order (e.g. for a node of type NamedDecl, the order will /// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()). /// /// This scheme guarantees that all Visit*() calls for the same AST /// node are grouped together. In other words, Visit*() methods for /// different nodes are never interleaved. /// /// Clients of this visitor should subclass the visitor (providing /// themselves as the template argument, using the curiously recurring /// template pattern) and override any of the Traverse*, WalkUpFrom*, /// and Visit* methods for declarations, types, statements, /// expressions, or other AST nodes where the visitor should customize /// behavior. Most users only need to override Visit*. Advanced /// users may override Traverse* and WalkUpFrom* to implement custom /// traversal strategies. Returning false from one of these overridden /// functions will abort the entire traversal. /// /// By default, this visitor tries to visit every part of the explicit /// source code exactly once. The default policy towards templates /// is to descend into the 'pattern' class or function body, not any /// explicit or implicit instantiations. Explicit specializations /// are still visited, and the patterns of partial specializations /// are visited separately. This behavior can be changed by /// overriding shouldVisitTemplateInstantiations() in the derived class /// to return true, in which case all known implicit and explicit /// instantiations will be visited at the same time as the pattern /// from which they were produced. template<typename Derived> class RecursiveASTVisitor { public: /// \brief Return a reference to the derived class. Derived &getDerived() { return *static_cast<Derived*>(this); } /// \brief Return whether this visitor should recurse into /// template instantiations. bool shouldVisitTemplateInstantiations() const { return false; } /// \brief Return whether this visitor should recurse into the types of /// TypeLocs. bool shouldWalkTypesOfTypeLocs() const { return true; } /// \brief Return whether \param S should be traversed using data recursion /// to avoid a stack overflow with extreme cases. bool shouldUseDataRecursionFor(Stmt *S) const { return isa<BinaryOperator>(S) || isa<UnaryOperator>(S) || isa<CaseStmt>(S); } /// \brief Recursively visit a statement or expression, by /// dispatching to Traverse*() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is NULL). bool TraverseStmt(Stmt *S); /// \brief Recursively visit a type, by dispatching to /// Traverse*Type() based on the argument's getTypeClass() property. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type). bool TraverseType(QualType T); /// \brief Recursively visit a type with location, by dispatching to /// Traverse*TypeLoc() based on the argument type's getTypeClass() property. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type location). bool TraverseTypeLoc(TypeLoc TL); /// \brief Recursively visit a declaration, by dispatching to /// Traverse*Decl() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is NULL). bool TraverseDecl(Decl *D); /// \brief Recursively visit a C++ nested-name-specifier. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); /// \brief Recursively visit a C++ nested-name-specifier with location /// information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); /// \brief Recursively visit a name with its location information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo); /// \brief Recursively visit a template name and dispatch to the /// appropriate method. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseTemplateName(TemplateName Template); /// \brief Recursively visit a template argument and dispatch to the /// appropriate method for the argument type. /// /// \returns false if the visitation was terminated early, true otherwise. // FIXME: migrate callers to TemplateArgumentLoc instead. bool TraverseTemplateArgument(const TemplateArgument &Arg); /// \brief Recursively visit a template argument location and dispatch to the /// appropriate method for the argument type. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc); /// \brief Recursively visit a set of template arguments. /// This can be overridden by a subclass, but it's not expected that /// will be needed -- this visitor always dispatches to another. /// /// \returns false if the visitation was terminated early, true otherwise. // FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead. bool TraverseTemplateArguments(const TemplateArgument *Args, unsigned NumArgs); /// \brief Recursively visit a constructor initializer. This /// automatically dispatches to another visitor for the initializer /// expression, but not for the name of the initializer, so may /// be overridden for clients that need access to the name. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseConstructorInitializer(CXXCtorInitializer *Init); /// \brief Recursively visit a lambda capture. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseLambdaCapture(LambdaExpr::Capture C); // ---- Methods on Stmts ---- // Declare Traverse*() for all concrete Stmt classes. #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ bool Traverse##CLASS(CLASS *S); #include "clang/AST/StmtNodes.inc" // The above header #undefs ABSTRACT_STMT and STMT upon exit. // Define WalkUpFrom*() and empty Visit*() for all Stmt classes. bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); } bool VisitStmt(Stmt *S) { return true; } #define STMT(CLASS, PARENT) \ bool WalkUpFrom##CLASS(CLASS *S) { \ TRY_TO(WalkUpFrom##PARENT(S)); \ TRY_TO(Visit##CLASS(S)); \ return true; \ } \ bool Visit##CLASS(CLASS *S) { return true; } #include "clang/AST/StmtNodes.inc" // Define Traverse*(), WalkUpFrom*(), and Visit*() for unary // operator methods. Unary operators are not classes in themselves // (they're all opcodes in UnaryOperator) but do have visitors. #define OPERATOR(NAME) \ bool TraverseUnary##NAME(UnaryOperator *S) { \ TRY_TO(WalkUpFromUnary##NAME(S)); \ TRY_TO(TraverseStmt(S->getSubExpr())); \ return true; \ } \ bool WalkUpFromUnary##NAME(UnaryOperator *S) { \ TRY_TO(WalkUpFromUnaryOperator(S)); \ TRY_TO(VisitUnary##NAME(S)); \ return true; \ } \ bool VisitUnary##NAME(UnaryOperator *S) { return true; } UNARYOP_LIST() #undef OPERATOR // Define Traverse*(), WalkUpFrom*(), and Visit*() for binary // operator methods. Binary operators are not classes in themselves // (they're all opcodes in BinaryOperator) but do have visitors. #define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \ bool TraverseBin##NAME(BINOP_TYPE *S) { \ TRY_TO(WalkUpFromBin##NAME(S)); \ TRY_TO(TraverseStmt(S->getLHS())); \ TRY_TO(TraverseStmt(S->getRHS())); \ return true; \ } \ bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \ TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \ TRY_TO(VisitBin##NAME(S)); \ return true; \ } \ bool VisitBin##NAME(BINOP_TYPE *S) { return true; } #define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator) BINOP_LIST() #undef OPERATOR // Define Traverse*(), WalkUpFrom*(), and Visit*() for compound // assignment methods. Compound assignment operators are not // classes in themselves (they're all opcodes in // CompoundAssignOperator) but do have visitors. #define OPERATOR(NAME) \ GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator) CAO_LIST() #undef OPERATOR #undef GENERAL_BINOP_FALLBACK // ---- Methods on Types ---- // FIXME: revamp to take TypeLoc's rather than Types. // Declare Traverse*() for all concrete Type classes. #define ABSTRACT_TYPE(CLASS, BASE) #define TYPE(CLASS, BASE) \ bool Traverse##CLASS##Type(CLASS##Type *T); #include "clang/AST/TypeNodes.def" // The above header #undefs ABSTRACT_TYPE and TYPE upon exit. // Define WalkUpFrom*() and empty Visit*() for all Type classes. bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); } bool VisitType(Type *T) { return true; } #define TYPE(CLASS, BASE) \ bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \ TRY_TO(WalkUpFrom##BASE(T)); \ TRY_TO(Visit##CLASS##Type(T)); \ return true; \ } \ bool Visit##CLASS##Type(CLASS##Type *T) { return true; } #include "clang/AST/TypeNodes.def" // ---- Methods on TypeLocs ---- // FIXME: this currently just calls the matching Type methods // Declare Traverse*() for all concrete Type classes. #define ABSTRACT_TYPELOC(CLASS, BASE) #define TYPELOC(CLASS, BASE) \ bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL); #include "clang/AST/TypeLocNodes.def" // The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit. // Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes. bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); } bool VisitTypeLoc(TypeLoc TL) { return true; } // QualifiedTypeLoc and UnqualTypeLoc are not declared in // TypeNodes.def and thus need to be handled specially. bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) { return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); } bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; } bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) { return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); } bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; } // Note that BASE includes trailing 'Type' which CLASS doesn't. #define TYPE(CLASS, BASE) \ bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \ TRY_TO(WalkUpFrom##BASE##Loc(TL)); \ TRY_TO(Visit##CLASS##TypeLoc(TL)); \ return true; \ } \ bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; } #include "clang/AST/TypeNodes.def" // ---- Methods on Decls ---- // Declare Traverse*() for all concrete Decl classes. #define ABSTRACT_DECL(DECL) #define DECL(CLASS, BASE) \ bool Traverse##CLASS##Decl(CLASS##Decl *D); #include "clang/AST/DeclNodes.inc" // The above header #undefs ABSTRACT_DECL and DECL upon exit. // Define WalkUpFrom*() and empty Visit*() for all Decl classes. bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); } bool VisitDecl(Decl *D) { return true; } #define DECL(CLASS, BASE) \ bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \ TRY_TO(WalkUpFrom##BASE(D)); \ TRY_TO(Visit##CLASS##Decl(D)); \ return true; \ } \ bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; } #include "clang/AST/DeclNodes.inc" private: // These are helper methods used by more than one Traverse* method. bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL); bool TraverseClassInstantiations(ClassTemplateDecl* D, Decl *Pattern); bool TraverseFunctionInstantiations(FunctionTemplateDecl* D) ; bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL, unsigned Count); bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL); bool TraverseRecordHelper(RecordDecl *D); bool TraverseCXXRecordHelper(CXXRecordDecl *D); bool TraverseDeclaratorHelper(DeclaratorDecl *D); bool TraverseDeclContextHelper(DeclContext *DC); bool TraverseFunctionHelper(FunctionDecl *D); bool TraverseVarHelper(VarDecl *D); bool Walk(Stmt *S); struct EnqueueJob { Stmt *S; Stmt::child_iterator StmtIt; EnqueueJob(Stmt *S) : S(S), StmtIt() { if (Expr *E = dyn_cast_or_null<Expr>(S)) S = E->IgnoreParens(); } }; bool dataTraverse(Stmt *S); }; template<typename Derived> bool RecursiveASTVisitor<Derived>::dataTraverse(Stmt *S) { SmallVector<EnqueueJob, 16> Queue; Queue.push_back(S); while (!Queue.empty()) { EnqueueJob &job = Queue.back(); Stmt *CurrS = job.S; if (!CurrS) { Queue.pop_back(); continue; } if (getDerived().shouldUseDataRecursionFor(CurrS)) { if (job.StmtIt == Stmt::child_iterator()) { if (!Walk(CurrS)) return false; job.StmtIt = CurrS->child_begin(); } else { ++job.StmtIt; } if (job.StmtIt != CurrS->child_end()) Queue.push_back(*job.StmtIt); else Queue.pop_back(); continue; } Queue.pop_back(); TRY_TO(TraverseStmt(CurrS)); } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::Walk(Stmt *S) { #define DISPATCH_WALK(NAME, CLASS, VAR) \ return getDerived().WalkUpFrom##NAME(static_cast<CLASS*>(VAR)); if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) { switch (BinOp->getOpcode()) { #define OPERATOR(NAME) \ case BO_##NAME: DISPATCH_WALK(Bin##NAME, BinaryOperator, S); BINOP_LIST() #undef OPERATOR #define OPERATOR(NAME) \ case BO_##NAME##Assign: \ DISPATCH_WALK(Bin##NAME##Assign, CompoundAssignOperator, S); CAO_LIST() #undef OPERATOR } } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) { switch (UnOp->getOpcode()) { #define OPERATOR(NAME) \ case UO_##NAME: DISPATCH_WALK(Unary##NAME, UnaryOperator, S); UNARYOP_LIST() #undef OPERATOR } } // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ case Stmt::CLASS##Class: DISPATCH_WALK(CLASS, CLASS, S); #include "clang/AST/StmtNodes.inc" } #undef DISPATCH_WALK return true; } #define DISPATCH(NAME, CLASS, VAR) \ return getDerived().Traverse##NAME(static_cast<CLASS*>(VAR)) template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) { if (!S) return true; if (getDerived().shouldUseDataRecursionFor(S)) return dataTraverse(S); // If we have a binary expr, dispatch to the subcode of the binop. A smart // optimizer (e.g. LLVM) will fold this comparison into the switch stmt // below. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) { switch (BinOp->getOpcode()) { #define OPERATOR(NAME) \ case BO_##NAME: DISPATCH(Bin##NAME, BinaryOperator, S); BINOP_LIST() #undef OPERATOR #undef BINOP_LIST #define OPERATOR(NAME) \ case BO_##NAME##Assign: \ DISPATCH(Bin##NAME##Assign, CompoundAssignOperator, S); CAO_LIST() #undef OPERATOR #undef CAO_LIST } } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) { switch (UnOp->getOpcode()) { #define OPERATOR(NAME) \ case UO_##NAME: DISPATCH(Unary##NAME, UnaryOperator, S); UNARYOP_LIST() #undef OPERATOR #undef UNARYOP_LIST } } // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ case Stmt::CLASS##Class: DISPATCH(CLASS, CLASS, S); #include "clang/AST/StmtNodes.inc" } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) { if (T.isNull()) return true; switch (T->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, BASE) #define TYPE(CLASS, BASE) \ case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \ const_cast<Type*>(T.getTypePtr())); #include "clang/AST/TypeNodes.def" } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) { if (TL.isNull()) return true; switch (TL.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, BASE) #define TYPELOC(CLASS, BASE) \ case TypeLoc::CLASS: \ return getDerived().Traverse##CLASS##TypeLoc(*cast<CLASS##TypeLoc>(&TL)); #include "clang/AST/TypeLocNodes.def" } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) { if (!D) return true; // As a syntax visitor, we want to ignore declarations for // implicitly-defined declarations (ones not typed explicitly by the // user). if (D->isImplicit()) return true; switch (D->getKind()) { #define ABSTRACT_DECL(DECL) #define DECL(CLASS, BASE) \ case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D); #include "clang/AST/DeclNodes.inc" } return true; } #undef DISPATCH template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier( NestedNameSpecifier *NNS) { if (!NNS) return true; if (NNS->getPrefix()) TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix())); switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: case NestedNameSpecifier::Global: return true; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: TRY_TO(TraverseType(QualType(NNS->getAsType(), 0))); } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS) { if (!NNS) return true; if (NestedNameSpecifierLoc Prefix = NNS.getPrefix()) TRY_TO(TraverseNestedNameSpecifierLoc(Prefix)); switch (NNS.getNestedNameSpecifier()->getKind()) { case NestedNameSpecifier::Identifier: case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: case NestedNameSpecifier::Global: return true; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: TRY_TO(TraverseTypeLoc(NNS.getTypeLoc())); break; } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo( DeclarationNameInfo NameInfo) { switch (NameInfo.getName().getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo()) TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc())); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXOperatorName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: break; } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) { if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier())); else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier())); return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument( const TemplateArgument &Arg) { switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Declaration: case TemplateArgument::Integral: return true; case TemplateArgument::Type: return getDerived().TraverseType(Arg.getAsType()); case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: return getDerived().TraverseTemplateName( Arg.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return getDerived().TraverseStmt(Arg.getAsExpr()); case TemplateArgument::Pack: return getDerived().TraverseTemplateArguments(Arg.pack_begin(), Arg.pack_size()); } return true; } // FIXME: no template name location? // FIXME: no source locations for a template argument pack? template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc( const TemplateArgumentLoc &ArgLoc) { const TemplateArgument &Arg = ArgLoc.getArgument(); switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Declaration: case TemplateArgument::Integral: return true; case TemplateArgument::Type: { // FIXME: how can TSI ever be NULL? if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo()) return getDerived().TraverseTypeLoc(TSI->getTypeLoc()); else return getDerived().TraverseType(Arg.getAsType()); } case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (ArgLoc.getTemplateQualifierLoc()) TRY_TO(getDerived().TraverseNestedNameSpecifierLoc( ArgLoc.getTemplateQualifierLoc())); return getDerived().TraverseTemplateName( Arg.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return getDerived().TraverseStmt(ArgLoc.getSourceExpression()); case TemplateArgument::Pack: return getDerived().TraverseTemplateArguments(Arg.pack_begin(), Arg.pack_size()); } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments( const TemplateArgument *Args, unsigned NumArgs) { for (unsigned I = 0; I != NumArgs; ++I) { TRY_TO(TraverseTemplateArgument(Args[I])); } return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer( CXXCtorInitializer *Init) { if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); if (Init->isWritten()) TRY_TO(TraverseStmt(Init->getInit())); return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr::Capture C){ return true; } // ----------------- Type traversal ----------------- // This macro makes available a variable T, the passed-in type. #define DEF_TRAVERSE_TYPE(TYPE, CODE) \ template<typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##TYPE (TYPE *T) { \ TRY_TO(WalkUpFrom##TYPE (T)); \ { CODE; } \ return true; \ } DEF_TRAVERSE_TYPE(BuiltinType, { }) DEF_TRAVERSE_TYPE(ComplexType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(PointerType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(BlockPointerType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(LValueReferenceType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(RValueReferenceType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(MemberPointerType, { TRY_TO(TraverseType(QualType(T->getClass(), 0))); TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(ConstantArrayType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(IncompleteArrayType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(VariableArrayType, { TRY_TO(TraverseType(T->getElementType())); TRY_TO(TraverseStmt(T->getSizeExpr())); }) DEF_TRAVERSE_TYPE(DependentSizedArrayType, { TRY_TO(TraverseType(T->getElementType())); if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); }) DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, { if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(VectorType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(ExtVectorType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(FunctionNoProtoType, { TRY_TO(TraverseType(T->getResultType())); }) DEF_TRAVERSE_TYPE(FunctionProtoType, { TRY_TO(TraverseType(T->getResultType())); for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), AEnd = T->arg_type_end(); A != AEnd; ++A) { TRY_TO(TraverseType(*A)); } for (FunctionProtoType::exception_iterator E = T->exception_begin(), EEnd = T->exception_end(); E != EEnd; ++E) { TRY_TO(TraverseType(*E)); } }) DEF_TRAVERSE_TYPE(UnresolvedUsingType, { }) DEF_TRAVERSE_TYPE(TypedefType, { }) DEF_TRAVERSE_TYPE(TypeOfExprType, { TRY_TO(TraverseStmt(T->getUnderlyingExpr())); }) DEF_TRAVERSE_TYPE(TypeOfType, { TRY_TO(TraverseType(T->getUnderlyingType())); }) DEF_TRAVERSE_TYPE(DecltypeType, { TRY_TO(TraverseStmt(T->getUnderlyingExpr())); }) DEF_TRAVERSE_TYPE(UnaryTransformType, { TRY_TO(TraverseType(T->getBaseType())); TRY_TO(TraverseType(T->getUnderlyingType())); }) DEF_TRAVERSE_TYPE(AutoType, { TRY_TO(TraverseType(T->getDeducedType())); }) DEF_TRAVERSE_TYPE(RecordType, { }) DEF_TRAVERSE_TYPE(EnumType, { }) DEF_TRAVERSE_TYPE(TemplateTypeParmType, { }) DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { }) DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { }) DEF_TRAVERSE_TYPE(TemplateSpecializationType, { TRY_TO(TraverseTemplateName(T->getTemplateName())); TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); }) DEF_TRAVERSE_TYPE(InjectedClassNameType, { }) DEF_TRAVERSE_TYPE(AttributedType, { TRY_TO(TraverseType(T->getModifiedType())); }) DEF_TRAVERSE_TYPE(ParenType, { TRY_TO(TraverseType(T->getInnerType())); }) DEF_TRAVERSE_TYPE(ElaboratedType, { if (T->getQualifier()) { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); } TRY_TO(TraverseType(T->getNamedType())); }) DEF_TRAVERSE_TYPE(DependentNameType, { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); }) DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); }) DEF_TRAVERSE_TYPE(PackExpansionType, { TRY_TO(TraverseType(T->getPattern())); }) DEF_TRAVERSE_TYPE(ObjCInterfaceType, { }) DEF_TRAVERSE_TYPE(ObjCObjectType, { // We have to watch out here because an ObjCInterfaceType's base // type is itself. if (T->getBaseType().getTypePtr() != T) TRY_TO(TraverseType(T->getBaseType())); }) DEF_TRAVERSE_TYPE(ObjCObjectPointerType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(AtomicType, { TRY_TO(TraverseType(T->getValueType())); }) #undef DEF_TRAVERSE_TYPE // ----------------- TypeLoc traversal ----------------- // This macro makes available a variable TL, the passed-in TypeLoc. // If requested, it calls WalkUpFrom* for the Type in the given TypeLoc, // in addition to WalkUpFrom* for the TypeLoc itself, such that existing // clients that override the WalkUpFrom*Type() and/or Visit*Type() methods // continue to work. #define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \ template<typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \ if (getDerived().shouldWalkTypesOfTypeLocs()) \ TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE*>(TL.getTypePtr()))); \ TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \ { CODE; } \ return true; \ } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc( QualifiedTypeLoc TL) { // Move this over to the 'main' typeloc tree. Note that this is a // move -- we pretend that we were really looking at the unqualified // typeloc all along -- rather than a recursion, so we don't follow // the normal CRTP plan of going through // getDerived().TraverseTypeLoc. If we did, we'd be traversing // twice for the same type (once as a QualifiedTypeLoc version of // the type, once as an UnqualifiedTypeLoc version of the type), // which in effect means we'd call VisitTypeLoc twice with the // 'same' type. This solves that problem, at the cost of never // seeing the qualified version of the type (unless the client // subclasses TraverseQualifiedTypeLoc themselves). It's not a // perfect solution. A perfect solution probably requires making // QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a // wrapper around Type* -- rather than being its own class in the // type hierarchy. return TraverseTypeLoc(TL.getUnqualifiedLoc()); } DEF_TRAVERSE_TYPELOC(BuiltinType, { }) // FIXME: ComplexTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(ComplexType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) DEF_TRAVERSE_TYPELOC(PointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(BlockPointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(LValueReferenceType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(RValueReferenceType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) // FIXME: location of base class? // We traverse this in the type case as well, but how is it not reached through // the pointee type? DEF_TRAVERSE_TYPELOC(MemberPointerType, { TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0))); TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) { // This isn't available for ArrayType, but is for the ArrayTypeLoc. TRY_TO(TraverseStmt(TL.getSizeExpr())); return true; } DEF_TRAVERSE_TYPELOC(ConstantArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) DEF_TRAVERSE_TYPELOC(IncompleteArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) DEF_TRAVERSE_TYPELOC(VariableArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) // FIXME: order? why not size expr first? // FIXME: base VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, { if (TL.getTypePtr()->getSizeExpr()) TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr())); TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) // FIXME: VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(VectorType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) // FIXME: size and attributes // FIXME: base VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(ExtVectorType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, { TRY_TO(TraverseTypeLoc(TL.getResultLoc())); }) // FIXME: location of exception specifications (attributes?) DEF_TRAVERSE_TYPELOC(FunctionProtoType, { TRY_TO(TraverseTypeLoc(TL.getResultLoc())); const FunctionProtoType *T = TL.getTypePtr(); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { if (TL.getArg(I)) { TRY_TO(TraverseDecl(TL.getArg(I))); } else if (I < T->getNumArgs()) { TRY_TO(TraverseType(T->getArgType(I))); } } for (FunctionProtoType::exception_iterator E = T->exception_begin(), EEnd = T->exception_end(); E != EEnd; ++E) { TRY_TO(TraverseType(*E)); } }) DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { }) DEF_TRAVERSE_TYPELOC(TypedefType, { }) DEF_TRAVERSE_TYPELOC(TypeOfExprType, { TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); }) DEF_TRAVERSE_TYPELOC(TypeOfType, { TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); }) // FIXME: location of underlying expr DEF_TRAVERSE_TYPELOC(DecltypeType, { TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr())); }) DEF_TRAVERSE_TYPELOC(UnaryTransformType, { TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); }) DEF_TRAVERSE_TYPELOC(AutoType, { TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType())); }) DEF_TRAVERSE_TYPELOC(RecordType, { }) DEF_TRAVERSE_TYPELOC(EnumType, { }) DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { }) DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { }) DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { }) // FIXME: use the loc for the template name? DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, { TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName())); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); } }) DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { }) DEF_TRAVERSE_TYPELOC(ParenType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); }) DEF_TRAVERSE_TYPELOC(AttributedType, { TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); }) DEF_TRAVERSE_TYPELOC(ElaboratedType, { if (TL.getQualifierLoc()) { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); } TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc())); }) DEF_TRAVERSE_TYPELOC(DependentNameType, { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); }) DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, { if (TL.getQualifierLoc()) { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); } for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); } }) DEF_TRAVERSE_TYPELOC(PackExpansionType, { TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); }) DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { }) DEF_TRAVERSE_TYPELOC(ObjCObjectType, { // We have to watch out here because an ObjCInterfaceType's base // type is itself. if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr()) TRY_TO(TraverseTypeLoc(TL.getBaseLoc())); }) DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(AtomicType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); }) #undef DEF_TRAVERSE_TYPELOC // ----------------- Decl traversal ----------------- // // For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing // the children that come from the DeclContext associated with it. // Therefore each Traverse* only needs to worry about children other // than those. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) { if (!DC) return true; for (DeclContext::decl_iterator Child = DC->decls_begin(), ChildEnd = DC->decls_end(); Child != ChildEnd; ++Child) { // BlockDecls are traversed through BlockExprs. if (!isa<BlockDecl>(*Child)) TRY_TO(TraverseDecl(*Child)); } return true; } // This macro makes available a variable D, the passed-in decl. #define DEF_TRAVERSE_DECL(DECL, CODE) \ template<typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##DECL (DECL *D) { \ TRY_TO(WalkUpFrom##DECL (D)); \ { CODE; } \ TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \ return true; \ } DEF_TRAVERSE_DECL(AccessSpecDecl, { }) DEF_TRAVERSE_DECL(BlockDecl, { TRY_TO(TraverseTypeLoc(D->getSignatureAsWritten()->getTypeLoc())); TRY_TO(TraverseStmt(D->getBody())); // This return statement makes sure the traversal of nodes in // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) // is skipped - don't remove it. return true; }) DEF_TRAVERSE_DECL(FileScopeAsmDecl, { TRY_TO(TraverseStmt(D->getAsmString())); }) DEF_TRAVERSE_DECL(ImportDecl, { }) DEF_TRAVERSE_DECL(FriendDecl, { // Friend is either decl or a type. if (D->getFriendType()) TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); else TRY_TO(TraverseDecl(D->getFriendDecl())); }) DEF_TRAVERSE_DECL(FriendTemplateDecl, { if (D->getFriendType()) TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); else TRY_TO(TraverseDecl(D->getFriendDecl())); for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) { TemplateParameterList *TPL = D->getTemplateParameterList(I); for (TemplateParameterList::iterator ITPL = TPL->begin(), ETPL = TPL->end(); ITPL != ETPL; ++ITPL) { TRY_TO(TraverseDecl(*ITPL)); } } }) DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, { TRY_TO(TraverseDecl(D->getSpecialization())); }) DEF_TRAVERSE_DECL(LinkageSpecDecl, { }) DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, { // FIXME: implement this }) DEF_TRAVERSE_DECL(StaticAssertDecl, { TRY_TO(TraverseStmt(D->getAssertExpr())); TRY_TO(TraverseStmt(D->getMessage())); }) DEF_TRAVERSE_DECL(TranslationUnitDecl, { // Code in an unnamed namespace shows up automatically in // decls_begin()/decls_end(). Thus we don't need to recurse on // D->getAnonymousNamespace(). }) DEF_TRAVERSE_DECL(NamespaceAliasDecl, { // We shouldn't traverse an aliased namespace, since it will be // defined (and, therefore, traversed) somewhere else. // // This return statement makes sure the traversal of nodes in // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) // is skipped - don't remove it. return true; }) DEF_TRAVERSE_DECL(LabelDecl, { // There is no code in a LabelDecl. }) DEF_TRAVERSE_DECL(NamespaceDecl, { // Code in an unnamed namespace shows up automatically in // decls_begin()/decls_end(). Thus we don't need to recurse on // D->getAnonymousNamespace(). }) DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCCategoryDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCImplementationDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCInterfaceDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCProtocolDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCMethodDecl, { if (D->getResultTypeSourceInfo()) { TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc())); } for (ObjCMethodDecl::param_iterator I = D->param_begin(), E = D->param_end(); I != E; ++I) { TRY_TO(TraverseDecl(*I)); } if (D->isThisDeclarationADefinition()) { TRY_TO(TraverseStmt(D->getBody())); } return true; }) DEF_TRAVERSE_DECL(ObjCPropertyDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(UsingDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); }) DEF_TRAVERSE_DECL(UsingDirectiveDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); }) DEF_TRAVERSE_DECL(UsingShadowDecl, { }) // A helper method for TemplateDecl's children. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper( TemplateParameterList *TPL) { if (TPL) { for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); I != E; ++I) { TRY_TO(TraverseDecl(*I)); } } return true; } // A helper method for traversing the implicit instantiations of a // class. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations( ClassTemplateDecl* D, Decl *Pattern) { assert(isa<ClassTemplateDecl>(Pattern) || isa<ClassTemplatePartialSpecializationDecl>(Pattern)); ClassTemplateDecl::spec_iterator end = D->spec_end(); for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) { ClassTemplateSpecializationDecl* SD = *it; switch (SD->getSpecializationKind()) { // Visit the implicit instantiations with the requested pattern. case TSK_ImplicitInstantiation: { llvm::PointerUnion<ClassTemplateDecl *, ClassTemplatePartialSpecializationDecl *> U = SD->getInstantiatedFrom(); bool ShouldVisit; if (U.is<ClassTemplateDecl*>()) ShouldVisit = (U.get<ClassTemplateDecl*>() == Pattern); else ShouldVisit = (U.get<ClassTemplatePartialSpecializationDecl*>() == Pattern); if (ShouldVisit) TRY_TO(TraverseDecl(SD)); break; } // We don't need to do anything on an explicit instantiation // or explicit specialization because there will be an explicit // node for it elsewhere. case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitSpecialization: break; // We don't need to do anything for an uninstantiated // specialization. case TSK_Undeclared: break; } } return true; } DEF_TRAVERSE_DECL(ClassTemplateDecl, { CXXRecordDecl* TempDecl = D->getTemplatedDecl(); TRY_TO(TraverseDecl(TempDecl)); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); // By default, we do not traverse the instantiations of // class templates since they do not appear in the user code. The // following code optionally traverses them. if (getDerived().shouldVisitTemplateInstantiations()) { // If this is the definition of the primary template, visit // instantiations which were formed from this pattern. if (D->isThisDeclarationADefinition()) TRY_TO(TraverseClassInstantiations(D, D)); } // Note that getInstantiatedFromMemberTemplate() is just a link // from a template instantiation back to the template from which // it was instantiated, and thus should not be traversed. }) // A helper method for traversing the instantiations of a // function while skipping its specializations. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations( FunctionTemplateDecl* D) { FunctionTemplateDecl::spec_iterator end = D->spec_end(); for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) { FunctionDecl* FD = *it; switch (FD->getTemplateSpecializationKind()) { case TSK_ImplicitInstantiation: // We don't know what kind of FunctionDecl this is. TRY_TO(TraverseDecl(FD)); break; // No need to visit explicit instantiations, we'll find the node // eventually. case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: break; case TSK_Undeclared: // Declaration of the template definition. case TSK_ExplicitSpecialization: break; } } return true; } DEF_TRAVERSE_DECL(FunctionTemplateDecl, { TRY_TO(TraverseDecl(D->getTemplatedDecl())); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); // By default, we do not traverse the instantiations of // function templates since they do not apprear in the user code. The // following code optionally traverses them. if (getDerived().shouldVisitTemplateInstantiations()) { // Explicit function specializations will be traversed from the // context of their declaration. There is therefore no need to // traverse them for here. // // In addition, we only traverse the function instantiations when // the function template is a function template definition. if (D->isThisDeclarationADefinition()) { TRY_TO(TraverseFunctionInstantiations(D)); } } }) DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, { // D is the "T" in something like // template <template <typename> class T> class container { }; TRY_TO(TraverseDecl(D->getTemplatedDecl())); if (D->hasDefaultArgument()) { TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument())); } TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); }) DEF_TRAVERSE_DECL(TemplateTypeParmDecl, { // D is the "T" in something like "template<typename T> class vector;" if (D->getTypeForDecl()) TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); if (D->hasDefaultArgument()) TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc())); }) DEF_TRAVERSE_DECL(TypedefDecl, { TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the typedef, not something that was written in the // source. }) DEF_TRAVERSE_DECL(TypeAliasDecl, { TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type alias, not something that was written in the // source. }) DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, { TRY_TO(TraverseDecl(D->getTemplatedDecl())); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); }) DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, { // A dependent using declaration which was marked with 'typename'. // template<class T> class A : public B<T> { using typename B<T>::foo; }; TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type, not something that was written in the // source. }) DEF_TRAVERSE_DECL(EnumDecl, { if (D->getTypeForDecl()) TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); // The enumerators are already traversed by // decls_begin()/decls_end(). }) // Helper methods for RecordDecl and its children. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseRecordHelper( RecordDecl *D) { // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type, not something that was written in the source. TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); return true; } template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper( CXXRecordDecl *D) { if (!TraverseRecordHelper(D)) return false; if (D->hasDefinition()) { for (CXXRecordDecl::base_class_iterator I = D->bases_begin(), E = D->bases_end(); I != E; ++I) { TRY_TO(TraverseTypeLoc(I->getTypeSourceInfo()->getTypeLoc())); } // We don't traverse the friends or the conversions, as they are // already in decls_begin()/decls_end(). } return true; } DEF_TRAVERSE_DECL(RecordDecl, { TRY_TO(TraverseRecordHelper(D)); }) DEF_TRAVERSE_DECL(CXXRecordDecl, { TRY_TO(TraverseCXXRecordHelper(D)); }) DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, { // For implicit instantiations ("set<int> x;"), we don't want to // recurse at all, since the instatiated class isn't written in // the source code anywhere. (Note the instatiated *type* -- // set<int> -- is written, and will still get a callback of // TemplateSpecializationType). For explicit instantiations // ("template set<int>;"), we do need a callback, since this // is the only callback that's made for this instantiation. // We use getTypeAsWritten() to distinguish. if (TypeSourceInfo *TSI = D->getTypeAsWritten()) TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); if (!getDerived().shouldVisitTemplateInstantiations() && D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) // Returning from here skips traversing the // declaration context of the ClassTemplateSpecializationDecl // (embedded in the DEF_TRAVERSE_DECL() macro) // which contains the instantiated members of the class. return true; }) template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper( const TemplateArgumentLoc *TAL, unsigned Count) { for (unsigned I = 0; I < Count; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TAL[I])); } return true; } DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, { // The partial specialization. if (TemplateParameterList *TPL = D->getTemplateParameters()) { for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); I != E; ++I) { TRY_TO(TraverseDecl(*I)); } } // The args that remains unspecialized. TRY_TO(TraverseTemplateArgumentLocsHelper( D->getTemplateArgsAsWritten(), D->getNumTemplateArgsAsWritten())); // Don't need the ClassTemplatePartialSpecializationHelper, even // though that's our parent class -- we already visit all the // template args here. TRY_TO(TraverseCXXRecordHelper(D)); // If we're visiting instantiations, visit the instantiations of // this template now. if (getDerived().shouldVisitTemplateInstantiations() && D->isThisDeclarationADefinition()) TRY_TO(TraverseClassInstantiations(D->getSpecializedTemplate(), D)); }) DEF_TRAVERSE_DECL(EnumConstantDecl, { TRY_TO(TraverseStmt(D->getInitExpr())); }) DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, { // Like UnresolvedUsingTypenameDecl, but without the 'typename': // template <class T> Class A : public Base<T> { using Base<T>::foo; }; TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); }) DEF_TRAVERSE_DECL(IndirectFieldDecl, {}) template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); if (D->getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); else TRY_TO(TraverseType(D->getType())); return true; } DEF_TRAVERSE_DECL(FieldDecl, { TRY_TO(TraverseDeclaratorHelper(D)); if (D->isBitField()) TRY_TO(TraverseStmt(D->getBitWidth())); else if (D->hasInClassInitializer()) TRY_TO(TraverseStmt(D->getInClassInitializer())); }) DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, { TRY_TO(TraverseDeclaratorHelper(D)); if (D->isBitField()) TRY_TO(TraverseStmt(D->getBitWidth())); // FIXME: implement the rest. }) DEF_TRAVERSE_DECL(ObjCIvarDecl, { TRY_TO(TraverseDeclaratorHelper(D)); if (D->isBitField()) TRY_TO(TraverseStmt(D->getBitWidth())); // FIXME: implement the rest. }) template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); // If we're an explicit template specialization, iterate over the // template args that were explicitly specified. If we were doing // this in typing order, we'd do it between the return type and // the function args, but both are handled by the FunctionTypeLoc // above, so we have to choose one side. I've decided to do before. if (const FunctionTemplateSpecializationInfo *FTSI = D->getTemplateSpecializationInfo()) { if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared && FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { // A specialization might not have explicit template arguments if it has // a templated return type and concrete arguments. if (const ASTTemplateArgumentListInfo *TALI = FTSI->TemplateArgumentsAsWritten) { TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(), TALI->NumTemplateArgs)); } } } // Visit the function type itself, which can be either // FunctionNoProtoType or FunctionProtoType, or a typedef. This // also covers the return type and the function parameters, // including exception specifications. TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) { // Constructor initializers. for (CXXConstructorDecl::init_iterator I = Ctor->init_begin(), E = Ctor->init_end(); I != E; ++I) { TRY_TO(TraverseConstructorInitializer(*I)); } } if (D->isThisDeclarationADefinition()) { TRY_TO(TraverseStmt(D->getBody())); // Function body. } return true; } DEF_TRAVERSE_DECL(FunctionDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). return TraverseFunctionHelper(D); }) DEF_TRAVERSE_DECL(CXXMethodDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). return TraverseFunctionHelper(D); }) DEF_TRAVERSE_DECL(CXXConstructorDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). return TraverseFunctionHelper(D); }) // CXXConversionDecl is the declaration of a type conversion operator. // It's not a cast expression. DEF_TRAVERSE_DECL(CXXConversionDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). return TraverseFunctionHelper(D); }) DEF_TRAVERSE_DECL(CXXDestructorDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). return TraverseFunctionHelper(D); }) template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) { TRY_TO(TraverseDeclaratorHelper(D)); // Default params are taken care of when we traverse the ParmVarDecl. if (!isa<ParmVarDecl>(D)) TRY_TO(TraverseStmt(D->getInit())); return true; } DEF_TRAVERSE_DECL(VarDecl, { TRY_TO(TraverseVarHelper(D)); }) DEF_TRAVERSE_DECL(ImplicitParamDecl, { TRY_TO(TraverseVarHelper(D)); }) DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, { // A non-type template parameter, e.g. "S" in template<int S> class Foo ... TRY_TO(TraverseDeclaratorHelper(D)); TRY_TO(TraverseStmt(D->getDefaultArgument())); }) DEF_TRAVERSE_DECL(ParmVarDecl, { TRY_TO(TraverseVarHelper(D)); if (D->hasDefaultArg() && D->hasUninstantiatedDefaultArg() && !D->hasUnparsedDefaultArg()) TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg())); if (D->hasDefaultArg() && !D->hasUninstantiatedDefaultArg() && !D->hasUnparsedDefaultArg()) TRY_TO(TraverseStmt(D->getDefaultArg())); }) #undef DEF_TRAVERSE_DECL // ----------------- Stmt traversal ----------------- // // For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating // over the children defined in children() (every stmt defines these, // though sometimes the range is empty). Each individual Traverse* // method only needs to worry about children other than those. To see // what children() does for a given class, see, e.g., // http://clang.llvm.org/doxygen/Stmt_8cpp_source.html // This macro makes available a variable S, the passed-in stmt. #define DEF_TRAVERSE_STMT(STMT, CODE) \ template<typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##STMT (STMT *S) { \ TRY_TO(WalkUpFrom##STMT(S)); \ { CODE; } \ for (Stmt::child_range range = S->children(); range; ++range) { \ TRY_TO(TraverseStmt(*range)); \ } \ return true; \ } DEF_TRAVERSE_STMT(AsmStmt, { TRY_TO(TraverseStmt(S->getAsmString())); for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) { TRY_TO(TraverseStmt(S->getInputConstraintLiteral(I))); } for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) { TRY_TO(TraverseStmt(S->getOutputConstraintLiteral(I))); } for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) { TRY_TO(TraverseStmt(S->getClobber(I))); } // children() iterates over inputExpr and outputExpr. }) DEF_TRAVERSE_STMT(CXXCatchStmt, { TRY_TO(TraverseDecl(S->getExceptionDecl())); // children() iterates over the handler block. }) DEF_TRAVERSE_STMT(DeclStmt, { for (DeclStmt::decl_iterator I = S->decl_begin(), E = S->decl_end(); I != E; ++I) { TRY_TO(TraverseDecl(*I)); } // Suppress the default iteration over children() by // returning. Here's why: A DeclStmt looks like 'type var [= // initializer]'. The decls above already traverse over the // initializers, so we don't have to do it again (which // children() would do). return true; }) // These non-expr stmts (most of them), do not need any action except // iterating over the children. DEF_TRAVERSE_STMT(BreakStmt, { }) DEF_TRAVERSE_STMT(CXXTryStmt, { }) DEF_TRAVERSE_STMT(CaseStmt, { }) DEF_TRAVERSE_STMT(CompoundStmt, { }) DEF_TRAVERSE_STMT(ContinueStmt, { }) DEF_TRAVERSE_STMT(DefaultStmt, { }) DEF_TRAVERSE_STMT(DoStmt, { }) DEF_TRAVERSE_STMT(ForStmt, { }) DEF_TRAVERSE_STMT(GotoStmt, { }) DEF_TRAVERSE_STMT(IfStmt, { }) DEF_TRAVERSE_STMT(IndirectGotoStmt, { }) DEF_TRAVERSE_STMT(LabelStmt, { }) DEF_TRAVERSE_STMT(AttributedStmt, { }) DEF_TRAVERSE_STMT(NullStmt, { }) DEF_TRAVERSE_STMT(ObjCAtCatchStmt, { }) DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, { }) DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, { }) DEF_TRAVERSE_STMT(ObjCAtThrowStmt, { }) DEF_TRAVERSE_STMT(ObjCAtTryStmt, { }) DEF_TRAVERSE_STMT(ObjCForCollectionStmt, { }) DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, { }) DEF_TRAVERSE_STMT(CXXForRangeStmt, { }) DEF_TRAVERSE_STMT(MSDependentExistsStmt, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); }) DEF_TRAVERSE_STMT(ReturnStmt, { }) DEF_TRAVERSE_STMT(SwitchStmt, { }) DEF_TRAVERSE_STMT(WhileStmt, { }) DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper( S->getTemplateArgs(), S->getNumTemplateArgs())); } }) DEF_TRAVERSE_STMT(DeclRefExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); TRY_TO(TraverseTemplateArgumentLocsHelper( S->getTemplateArgs(), S->getNumTemplateArgs())); }) DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper( S->getExplicitTemplateArgs().getTemplateArgs(), S->getNumTemplateArgs())); } }) DEF_TRAVERSE_STMT(MemberExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); TRY_TO(TraverseTemplateArgumentLocsHelper( S->getTemplateArgs(), S->getNumTemplateArgs())); }) DEF_TRAVERSE_STMT(ImplicitCastExpr, { // We don't traverse the cast type, as it's not written in the // source code. }) DEF_TRAVERSE_STMT(CStyleCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXConstCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXDynamicCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXStaticCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) // InitListExpr is a tricky one, because we want to do all our work on // the syntactic form of the listexpr, but this method takes the // semantic form by default. We can't use the macro helper because it // calls WalkUp*() on the semantic form, before our code can convert // to the syntactic form. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) { if (InitListExpr *Syn = S->getSyntacticForm()) S = Syn; TRY_TO(WalkUpFromInitListExpr(S)); // All we need are the default actions. FIXME: use a helper function. for (Stmt::child_range range = S->children(); range; ++range) { TRY_TO(TraverseStmt(*range)); } return true; } // GenericSelectionExpr is a special case because the types and expressions // are interleaved. We also need to watch out for null types (default // generic associations). template<typename Derived> bool RecursiveASTVisitor<Derived>:: TraverseGenericSelectionExpr(GenericSelectionExpr *S) { TRY_TO(WalkUpFromGenericSelectionExpr(S)); TRY_TO(TraverseStmt(S->getControllingExpr())); for (unsigned i = 0; i != S->getNumAssocs(); ++i) { if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i)) TRY_TO(TraverseTypeLoc(TS->getTypeLoc())); TRY_TO(TraverseStmt(S->getAssocExpr(i))); } return true; } // PseudoObjectExpr is a special case because of the wierdness with // syntactic expressions and opaque values. template<typename Derived> bool RecursiveASTVisitor<Derived>:: TraversePseudoObjectExpr(PseudoObjectExpr *S) { TRY_TO(WalkUpFromPseudoObjectExpr(S)); TRY_TO(TraverseStmt(S->getSyntacticForm())); for (PseudoObjectExpr::semantics_iterator i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) { Expr *sub = *i; if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub)) sub = OVE->getSourceExpr(); TRY_TO(TraverseStmt(sub)); } return true; } DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, { // This is called for code like 'return T()' where T is a built-in // (i.e. non-class) type. TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXNewExpr, { // The child-iterator will pick up the other arguments. TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(OffsetOfExpr, { // The child-iterator will pick up the expression representing // the field. // FIMXE: for code like offsetof(Foo, a.b.c), should we get // making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c? TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, { // The child-iterator will pick up the arg if it's an expression, // but not if it's a type. if (S->isArgumentType()) TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXTypeidExpr, { // The child-iterator will pick up the arg if it's an expression, // but not if it's a type. if (S->isTypeOperand()) TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXUuidofExpr, { // The child-iterator will pick up the arg if it's an expression, // but not if it's a type. if (S->isTypeOperand()) TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(UnaryTypeTraitExpr, { TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(BinaryTypeTraitExpr, { TRY_TO(TraverseTypeLoc(S->getLhsTypeSourceInfo()->getTypeLoc())); TRY_TO(TraverseTypeLoc(S->getRhsTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(TypeTraitExpr, { for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I) TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc())); }) DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, { TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(ExpressionTraitExpr, { TRY_TO(TraverseStmt(S->getQueriedExpression())); }) DEF_TRAVERSE_STMT(VAArgExpr, { // The child-iterator will pick up the expression argument. TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, { // This is called for code like 'return T()' where T is a class type. TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); }) // Walk only the visible parts of lambda expressions. template<typename Derived> bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) { for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(), CEnd = S->explicit_capture_end(); C != CEnd; ++C) { TRY_TO(TraverseLambdaCapture(*C)); } if (S->hasExplicitParameters() || S->hasExplicitResultType()) { TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); if (S->hasExplicitParameters() && S->hasExplicitResultType()) { // Visit the whole type. TRY_TO(TraverseTypeLoc(TL)); } else if (isa<FunctionProtoTypeLoc>(TL)) { FunctionProtoTypeLoc Proto = cast<FunctionProtoTypeLoc>(TL); if (S->hasExplicitParameters()) { // Visit parameters. for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) { TRY_TO(TraverseDecl(Proto.getArg(I))); } } else { TRY_TO(TraverseTypeLoc(Proto.getResultLoc())); } } } TRY_TO(TraverseStmt(S->getBody())); return true; } DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, { // This is called for code like 'T()', where T is a template argument. TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); }) // These expressions all might take explicit template arguments. // We traverse those if so. FIXME: implement these. DEF_TRAVERSE_STMT(CXXConstructExpr, { }) DEF_TRAVERSE_STMT(CallExpr, { }) DEF_TRAVERSE_STMT(CXXMemberCallExpr, { }) // These exprs (most of them), do not need any action except iterating // over the children. DEF_TRAVERSE_STMT(AddrLabelExpr, { }) DEF_TRAVERSE_STMT(ArraySubscriptExpr, { }) DEF_TRAVERSE_STMT(BlockExpr, { TRY_TO(TraverseDecl(S->getBlockDecl())); return true; // no child statements to loop through. }) DEF_TRAVERSE_STMT(ChooseExpr, { }) DEF_TRAVERSE_STMT(CompoundLiteralExpr, { }) DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, { }) DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, { }) DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { }) DEF_TRAVERSE_STMT(CXXDeleteExpr, { }) DEF_TRAVERSE_STMT(ExprWithCleanups, { }) DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, { }) DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo()) TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc())); if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo()) TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXThisExpr, { }) DEF_TRAVERSE_STMT(CXXThrowExpr, { }) DEF_TRAVERSE_STMT(UserDefinedLiteral, { }) DEF_TRAVERSE_STMT(DesignatedInitExpr, { }) DEF_TRAVERSE_STMT(ExtVectorElementExpr, { }) DEF_TRAVERSE_STMT(GNUNullExpr, { }) DEF_TRAVERSE_STMT(ImplicitValueInitExpr, { }) DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, { }) DEF_TRAVERSE_STMT(ObjCEncodeExpr, { }) DEF_TRAVERSE_STMT(ObjCIsaExpr, { }) DEF_TRAVERSE_STMT(ObjCIvarRefExpr, { }) DEF_TRAVERSE_STMT(ObjCMessageExpr, { }) DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { }) DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, { }) DEF_TRAVERSE_STMT(ObjCProtocolExpr, { }) DEF_TRAVERSE_STMT(ObjCSelectorExpr, { }) DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, { }) DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); }) DEF_TRAVERSE_STMT(ParenExpr, { }) DEF_TRAVERSE_STMT(ParenListExpr, { }) DEF_TRAVERSE_STMT(PredefinedExpr, { }) DEF_TRAVERSE_STMT(ShuffleVectorExpr, { }) DEF_TRAVERSE_STMT(StmtExpr, { }) DEF_TRAVERSE_STMT(UnresolvedLookupExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); } }) DEF_TRAVERSE_STMT(UnresolvedMemberExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); } }) DEF_TRAVERSE_STMT(SEHTryStmt, {}) DEF_TRAVERSE_STMT(SEHExceptStmt, {}) DEF_TRAVERSE_STMT(SEHFinallyStmt,{}) DEF_TRAVERSE_STMT(CXXOperatorCallExpr, { }) DEF_TRAVERSE_STMT(OpaqueValueExpr, { }) DEF_TRAVERSE_STMT(CUDAKernelCallExpr, { }) // These operators (all of them) do not need any action except // iterating over the children. DEF_TRAVERSE_STMT(BinaryConditionalOperator, { }) DEF_TRAVERSE_STMT(ConditionalOperator, { }) DEF_TRAVERSE_STMT(UnaryOperator, { }) DEF_TRAVERSE_STMT(BinaryOperator, { }) DEF_TRAVERSE_STMT(CompoundAssignOperator, { }) DEF_TRAVERSE_STMT(CXXNoexceptExpr, { }) DEF_TRAVERSE_STMT(PackExpansionExpr, { }) DEF_TRAVERSE_STMT(SizeOfPackExpr, { }) DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, { }) DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, { }) DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { }) DEF_TRAVERSE_STMT(AtomicExpr, { }) // These literals (all of them) do not need any action. DEF_TRAVERSE_STMT(IntegerLiteral, { }) DEF_TRAVERSE_STMT(CharacterLiteral, { }) DEF_TRAVERSE_STMT(FloatingLiteral, { }) DEF_TRAVERSE_STMT(ImaginaryLiteral, { }) DEF_TRAVERSE_STMT(StringLiteral, { }) DEF_TRAVERSE_STMT(ObjCStringLiteral, { }) DEF_TRAVERSE_STMT(ObjCNumericLiteral, { }) DEF_TRAVERSE_STMT(ObjCArrayLiteral, { }) DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, { }) // Traverse OpenCL: AsType, Convert. DEF_TRAVERSE_STMT(AsTypeExpr, { }) // FIXME: look at the following tricky-seeming exprs to see if we // need to recurse on anything. These are ones that have methods // returning decls or qualtypes or nestednamespecifier -- though I'm // not sure if they own them -- or just seemed very complicated, or // had lots of sub-types to explore. // // VisitOverloadExpr and its children: recurse on template args? etc? // FIXME: go through all the stmts and exprs again, and see which of them // create new types, and recurse on the types (TypeLocs?) of those. // Candidates: // // http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html // http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html // http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html // Every class that has getQualifier. #undef DEF_TRAVERSE_STMT #undef TRY_TO } // end namespace clang #endif // LLVM_CLANG_AST_RECURSIVEASTVISITOR_H