Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/StaticAnalyzer/Core/PathSensitive/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/include/clang/StaticAnalyzer/Core/PathSensitive/SVals.h |
//== SVals.h - Abstract Values for Static Analysis ---------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SVal, Loc, and NonLoc, classes that represent // abstract r-values for use with path-sensitive value tracking. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_GR_RVALUE_H #define LLVM_CLANG_GR_RVALUE_H #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "llvm/ADT/ImmutableList.h" //==------------------------------------------------------------------------==// // Base SVal types. //==------------------------------------------------------------------------==// namespace clang { namespace ento { class CompoundValData; class LazyCompoundValData; class ProgramState; class BasicValueFactory; class MemRegion; class TypedRegion; class MemRegionManager; class ProgramStateManager; class SValBuilder; /// SVal - This represents a symbolic expression, which can be either /// an L-value or an R-value. /// class SVal { public: enum BaseKind { // The enumerators must be representable using 2 bits. UndefinedKind = 0, // for subclass UndefinedVal (an uninitialized value) UnknownKind = 1, // for subclass UnknownVal (a void value) LocKind = 2, // for subclass Loc (an L-value) NonLocKind = 3 // for subclass NonLoc (an R-value that's not // an L-value) }; enum { BaseBits = 2, BaseMask = 0x3 }; protected: const void *Data; /// The lowest 2 bits are a BaseKind (0 -- 3). /// The higher bits are an unsigned "kind" value. unsigned Kind; explicit SVal(const void *d, bool isLoc, unsigned ValKind) : Data(d), Kind((isLoc ? LocKind : NonLocKind) | (ValKind << BaseBits)) {} explicit SVal(BaseKind k, const void *D = NULL) : Data(D), Kind(k) {} public: explicit SVal() : Data(0), Kind(0) {} ~SVal() {} /// BufferTy - A temporary buffer to hold a set of SVals. typedef SmallVector<SVal,5> BufferTy; inline unsigned getRawKind() const { return Kind; } inline BaseKind getBaseKind() const { return (BaseKind) (Kind & BaseMask); } inline unsigned getSubKind() const { return (Kind & ~BaseMask) >> BaseBits; } // This method is required for using SVal in a FoldingSetNode. It // extracts a unique signature for this SVal object. inline void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddInteger((unsigned) getRawKind()); ID.AddPointer(Data); } inline bool operator==(const SVal& R) const { return getRawKind() == R.getRawKind() && Data == R.Data; } inline bool operator!=(const SVal& R) const { return !(*this == R); } inline bool isUnknown() const { return getRawKind() == UnknownKind; } inline bool isUndef() const { return getRawKind() == UndefinedKind; } inline bool isUnknownOrUndef() const { return getRawKind() <= UnknownKind; } inline bool isValid() const { return getRawKind() > UnknownKind; } bool isConstant() const; bool isConstant(int I) const; bool isZeroConstant() const; /// hasConjuredSymbol - If this SVal wraps a conjured symbol, return true; bool hasConjuredSymbol() const; /// getAsFunctionDecl - If this SVal is a MemRegionVal and wraps a /// CodeTextRegion wrapping a FunctionDecl, return that FunctionDecl. /// Otherwise return 0. const FunctionDecl *getAsFunctionDecl() const; /// If this SVal is a location (subclasses Loc) and /// wraps a symbol, return that SymbolRef. Otherwise return 0. SymbolRef getAsLocSymbol() const; /// Get the symbol in the SVal or its base region. SymbolRef getLocSymbolInBase() const; /// If this SVal wraps a symbol return that SymbolRef. /// Otherwise, return 0. SymbolRef getAsSymbol() const; /// getAsSymbolicExpression - If this Sval wraps a symbolic expression then /// return that expression. Otherwise return NULL. const SymExpr *getAsSymbolicExpression() const; const SymExpr* getAsSymExpr() const; const MemRegion *getAsRegion() const; void dumpToStream(raw_ostream &OS) const; void dump() const; SymExpr::symbol_iterator symbol_begin() const { const SymExpr *SE = getAsSymbolicExpression(); if (SE) return SE->symbol_begin(); else return SymExpr::symbol_iterator(); } SymExpr::symbol_iterator symbol_end() const { return SymExpr::symbol_end(); } // Implement isa<T> support. static inline bool classof(const SVal*) { return true; } }; class UndefinedVal : public SVal { public: UndefinedVal() : SVal(UndefinedKind) {} UndefinedVal(const void *D) : SVal(UndefinedKind, D) {} static inline bool classof(const SVal* V) { return V->getBaseKind() == UndefinedKind; } const void *getData() const { return Data; } }; class DefinedOrUnknownSVal : public SVal { private: // Do not implement. We want calling these methods to be a compiler // error since they are tautologically false. bool isUndef() const; bool isValid() const; protected: explicit DefinedOrUnknownSVal(const void *d, bool isLoc, unsigned ValKind) : SVal(d, isLoc, ValKind) {} explicit DefinedOrUnknownSVal(BaseKind k, void *D = NULL) : SVal(k, D) {} public: // Implement isa<T> support. static inline bool classof(const SVal *V) { return !V->isUndef(); } }; class UnknownVal : public DefinedOrUnknownSVal { public: explicit UnknownVal() : DefinedOrUnknownSVal(UnknownKind) {} static inline bool classof(const SVal *V) { return V->getBaseKind() == UnknownKind; } }; class DefinedSVal : public DefinedOrUnknownSVal { private: // Do not implement. We want calling these methods to be a compiler // error since they are tautologically true/false. bool isUnknown() const; bool isUnknownOrUndef() const; bool isValid() const; protected: explicit DefinedSVal(const void *d, bool isLoc, unsigned ValKind) : DefinedOrUnknownSVal(d, isLoc, ValKind) {} public: // Implement isa<T> support. static inline bool classof(const SVal *V) { return !V->isUnknownOrUndef(); } }; class NonLoc : public DefinedSVal { protected: explicit NonLoc(unsigned SubKind, const void *d) : DefinedSVal(d, false, SubKind) {} public: void dumpToStream(raw_ostream &Out) const; // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == NonLocKind; } }; class Loc : public DefinedSVal { protected: explicit Loc(unsigned SubKind, const void *D) : DefinedSVal(const_cast<void*>(D), true, SubKind) {} public: void dumpToStream(raw_ostream &Out) const; Loc(const Loc& X) : DefinedSVal(X.Data, true, X.getSubKind()) {} // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == LocKind; } static inline bool isLocType(QualType T) { return T->isAnyPointerType() || T->isBlockPointerType() || T->isReferenceType(); } }; //==------------------------------------------------------------------------==// // Subclasses of NonLoc. //==------------------------------------------------------------------------==// namespace nonloc { enum Kind { ConcreteIntKind, SymbolValKind, SymExprValKind, LocAsIntegerKind, CompoundValKind, LazyCompoundValKind }; /// \brief Represents symbolic expression. class SymbolVal : public NonLoc { public: SymbolVal(SymbolRef sym) : NonLoc(SymbolValKind, sym) {} SymbolRef getSymbol() const { return (const SymExpr*) Data; } bool isExpression() { return !isa<SymbolData>(getSymbol()); } static inline bool classof(const SVal* V) { return V->getBaseKind() == NonLocKind && V->getSubKind() == SymbolValKind; } static inline bool classof(const NonLoc* V) { return V->getSubKind() == SymbolValKind; } }; /// \brief Value representing integer constant. class ConcreteInt : public NonLoc { public: explicit ConcreteInt(const llvm::APSInt& V) : NonLoc(ConcreteIntKind, &V) {} const llvm::APSInt& getValue() const { return *static_cast<const llvm::APSInt*>(Data); } // Transfer functions for binary/unary operations on ConcreteInts. SVal evalBinOp(SValBuilder &svalBuilder, BinaryOperator::Opcode Op, const ConcreteInt& R) const; ConcreteInt evalComplement(SValBuilder &svalBuilder) const; ConcreteInt evalMinus(SValBuilder &svalBuilder) const; // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == NonLocKind && V->getSubKind() == ConcreteIntKind; } static inline bool classof(const NonLoc* V) { return V->getSubKind() == ConcreteIntKind; } }; class LocAsInteger : public NonLoc { friend class ento::SValBuilder; explicit LocAsInteger(const std::pair<SVal, uintptr_t>& data) : NonLoc(LocAsIntegerKind, &data) { assert (isa<Loc>(data.first)); } public: Loc getLoc() const { return cast<Loc>(((std::pair<SVal, uintptr_t>*) Data)->first); } const Loc& getPersistentLoc() const { const SVal& V = ((std::pair<SVal, uintptr_t>*) Data)->first; return cast<Loc>(V); } unsigned getNumBits() const { return ((std::pair<SVal, unsigned>*) Data)->second; } // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == NonLocKind && V->getSubKind() == LocAsIntegerKind; } static inline bool classof(const NonLoc* V) { return V->getSubKind() == LocAsIntegerKind; } }; class CompoundVal : public NonLoc { friend class ento::SValBuilder; explicit CompoundVal(const CompoundValData* D) : NonLoc(CompoundValKind, D) {} public: const CompoundValData* getValue() const { return static_cast<const CompoundValData*>(Data); } typedef llvm::ImmutableList<SVal>::iterator iterator; iterator begin() const; iterator end() const; static bool classof(const SVal* V) { return V->getBaseKind() == NonLocKind && V->getSubKind() == CompoundValKind; } static bool classof(const NonLoc* V) { return V->getSubKind() == CompoundValKind; } }; class LazyCompoundVal : public NonLoc { friend class ento::SValBuilder; explicit LazyCompoundVal(const LazyCompoundValData *D) : NonLoc(LazyCompoundValKind, D) {} public: const LazyCompoundValData *getCVData() const { return static_cast<const LazyCompoundValData*>(Data); } const void *getStore() const; const TypedRegion *getRegion() const; static bool classof(const SVal *V) { return V->getBaseKind() == NonLocKind && V->getSubKind() == LazyCompoundValKind; } static bool classof(const NonLoc *V) { return V->getSubKind() == LazyCompoundValKind; } }; } // end namespace ento::nonloc //==------------------------------------------------------------------------==// // Subclasses of Loc. //==------------------------------------------------------------------------==// namespace loc { enum Kind { GotoLabelKind, MemRegionKind, ConcreteIntKind, ObjCPropRefKind }; class GotoLabel : public Loc { public: explicit GotoLabel(LabelDecl *Label) : Loc(GotoLabelKind, Label) {} const LabelDecl *getLabel() const { return static_cast<const LabelDecl*>(Data); } static inline bool classof(const SVal* V) { return V->getBaseKind() == LocKind && V->getSubKind() == GotoLabelKind; } static inline bool classof(const Loc* V) { return V->getSubKind() == GotoLabelKind; } }; class MemRegionVal : public Loc { public: explicit MemRegionVal(const MemRegion* r) : Loc(MemRegionKind, r) {} /// \brief Get the underlining region. const MemRegion* getRegion() const { return static_cast<const MemRegion*>(Data); } /// \brief Get the underlining region and strip casts. const MemRegion* stripCasts() const; template <typename REGION> const REGION* getRegionAs() const { return llvm::dyn_cast<REGION>(getRegion()); } inline bool operator==(const MemRegionVal& R) const { return getRegion() == R.getRegion(); } inline bool operator!=(const MemRegionVal& R) const { return getRegion() != R.getRegion(); } // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == LocKind && V->getSubKind() == MemRegionKind; } static inline bool classof(const Loc* V) { return V->getSubKind() == MemRegionKind; } }; class ConcreteInt : public Loc { public: explicit ConcreteInt(const llvm::APSInt& V) : Loc(ConcreteIntKind, &V) {} const llvm::APSInt& getValue() const { return *static_cast<const llvm::APSInt*>(Data); } // Transfer functions for binary/unary operations on ConcreteInts. SVal evalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op, const ConcreteInt& R) const; // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == LocKind && V->getSubKind() == ConcreteIntKind; } static inline bool classof(const Loc* V) { return V->getSubKind() == ConcreteIntKind; } }; /// \brief Pseudo-location SVal used by the ExprEngine to simulate a "load" or /// "store" of an ObjC property for the dot syntax. class ObjCPropRef : public Loc { public: explicit ObjCPropRef(const ObjCPropertyRefExpr *E) : Loc(ObjCPropRefKind, E) {} const ObjCPropertyRefExpr *getPropRefExpr() const { return static_cast<const ObjCPropertyRefExpr *>(Data); } // Implement isa<T> support. static inline bool classof(const SVal* V) { return V->getBaseKind() == LocKind && V->getSubKind() == ObjCPropRefKind; } static inline bool classof(const Loc* V) { return V->getSubKind() == ObjCPropRefKind; } }; } // end ento::loc namespace } // end GR namespace } // end clang namespace namespace llvm { static inline raw_ostream &operator<<(raw_ostream &os, clang::ento::SVal V) { V.dumpToStream(os); return os; } } // end llvm namespace #endif