Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/AST/ASTImporter.cpp |
//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTImporter class which imports AST nodes from one // context into another context. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTImporter.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeVisitor.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "llvm/Support/MemoryBuffer.h" #include <deque> namespace clang { class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>, public DeclVisitor<ASTNodeImporter, Decl *>, public StmtVisitor<ASTNodeImporter, Stmt *> { ASTImporter &Importer; public: explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { } using TypeVisitor<ASTNodeImporter, QualType>::Visit; using DeclVisitor<ASTNodeImporter, Decl *>::Visit; using StmtVisitor<ASTNodeImporter, Stmt *>::Visit; // Importing types QualType VisitType(const Type *T); QualType VisitBuiltinType(const BuiltinType *T); QualType VisitComplexType(const ComplexType *T); QualType VisitPointerType(const PointerType *T); QualType VisitBlockPointerType(const BlockPointerType *T); QualType VisitLValueReferenceType(const LValueReferenceType *T); QualType VisitRValueReferenceType(const RValueReferenceType *T); QualType VisitMemberPointerType(const MemberPointerType *T); QualType VisitConstantArrayType(const ConstantArrayType *T); QualType VisitIncompleteArrayType(const IncompleteArrayType *T); QualType VisitVariableArrayType(const VariableArrayType *T); // FIXME: DependentSizedArrayType // FIXME: DependentSizedExtVectorType QualType VisitVectorType(const VectorType *T); QualType VisitExtVectorType(const ExtVectorType *T); QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T); QualType VisitFunctionProtoType(const FunctionProtoType *T); // FIXME: UnresolvedUsingType QualType VisitParenType(const ParenType *T); QualType VisitTypedefType(const TypedefType *T); QualType VisitTypeOfExprType(const TypeOfExprType *T); // FIXME: DependentTypeOfExprType QualType VisitTypeOfType(const TypeOfType *T); QualType VisitDecltypeType(const DecltypeType *T); QualType VisitUnaryTransformType(const UnaryTransformType *T); QualType VisitAutoType(const AutoType *T); // FIXME: DependentDecltypeType QualType VisitRecordType(const RecordType *T); QualType VisitEnumType(const EnumType *T); // FIXME: TemplateTypeParmType // FIXME: SubstTemplateTypeParmType QualType VisitTemplateSpecializationType(const TemplateSpecializationType *T); QualType VisitElaboratedType(const ElaboratedType *T); // FIXME: DependentNameType // FIXME: DependentTemplateSpecializationType QualType VisitObjCInterfaceType(const ObjCInterfaceType *T); QualType VisitObjCObjectType(const ObjCObjectType *T); QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T); // Importing declarations bool ImportDeclParts(NamedDecl *D, DeclContext *&DC, DeclContext *&LexicalDC, DeclarationName &Name, SourceLocation &Loc); void ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD = 0); void ImportDeclarationNameLoc(const DeclarationNameInfo &From, DeclarationNameInfo& To); void ImportDeclContext(DeclContext *FromDC, bool ForceImport = false); /// \brief What we should import from the definition. enum ImportDefinitionKind { /// \brief Import the default subset of the definition, which might be /// nothing (if minimal import is set) or might be everything (if minimal /// import is not set). IDK_Default, /// \brief Import everything. IDK_Everything, /// \brief Import only the bare bones needed to establish a valid /// DeclContext. IDK_Basic }; bool shouldForceImportDeclContext(ImportDefinitionKind IDK) { return IDK == IDK_Everything || (IDK == IDK_Default && !Importer.isMinimalImport()); } bool ImportDefinition(RecordDecl *From, RecordDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(EnumDecl *From, EnumDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To, ImportDefinitionKind Kind = IDK_Default); TemplateParameterList *ImportTemplateParameterList( TemplateParameterList *Params); TemplateArgument ImportTemplateArgument(const TemplateArgument &From); bool ImportTemplateArguments(const TemplateArgument *FromArgs, unsigned NumFromArgs, SmallVectorImpl<TemplateArgument> &ToArgs); bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord); bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord); bool IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To); Decl *VisitDecl(Decl *D); Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D); Decl *VisitNamespaceDecl(NamespaceDecl *D); Decl *VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias); Decl *VisitTypedefDecl(TypedefDecl *D); Decl *VisitTypeAliasDecl(TypeAliasDecl *D); Decl *VisitEnumDecl(EnumDecl *D); Decl *VisitRecordDecl(RecordDecl *D); Decl *VisitEnumConstantDecl(EnumConstantDecl *D); Decl *VisitFunctionDecl(FunctionDecl *D); Decl *VisitCXXMethodDecl(CXXMethodDecl *D); Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D); Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D); Decl *VisitCXXConversionDecl(CXXConversionDecl *D); Decl *VisitFieldDecl(FieldDecl *D); Decl *VisitIndirectFieldDecl(IndirectFieldDecl *D); Decl *VisitObjCIvarDecl(ObjCIvarDecl *D); Decl *VisitVarDecl(VarDecl *D); Decl *VisitImplicitParamDecl(ImplicitParamDecl *D); Decl *VisitParmVarDecl(ParmVarDecl *D); Decl *VisitObjCMethodDecl(ObjCMethodDecl *D); Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D); Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D); Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); Decl *VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); Decl *VisitObjCImplementationDecl(ObjCImplementationDecl *D); Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D); Decl *VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D); Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D); Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D); Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D); Decl *VisitClassTemplateDecl(ClassTemplateDecl *D); Decl *VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D); // Importing statements Stmt *VisitStmt(Stmt *S); // Importing expressions Expr *VisitExpr(Expr *E); Expr *VisitDeclRefExpr(DeclRefExpr *E); Expr *VisitIntegerLiteral(IntegerLiteral *E); Expr *VisitCharacterLiteral(CharacterLiteral *E); Expr *VisitParenExpr(ParenExpr *E); Expr *VisitUnaryOperator(UnaryOperator *E); Expr *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E); Expr *VisitBinaryOperator(BinaryOperator *E); Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E); Expr *VisitImplicitCastExpr(ImplicitCastExpr *E); Expr *VisitCStyleCastExpr(CStyleCastExpr *E); }; } using namespace clang; //---------------------------------------------------------------------------- // Structural Equivalence //---------------------------------------------------------------------------- namespace { struct StructuralEquivalenceContext { /// \brief AST contexts for which we are checking structural equivalence. ASTContext &C1, &C2; /// \brief The set of "tentative" equivalences between two canonical /// declarations, mapping from a declaration in the first context to the /// declaration in the second context that we believe to be equivalent. llvm::DenseMap<Decl *, Decl *> TentativeEquivalences; /// \brief Queue of declarations in the first context whose equivalence /// with a declaration in the second context still needs to be verified. std::deque<Decl *> DeclsToCheck; /// \brief Declaration (from, to) pairs that are known not to be equivalent /// (which we have already complained about). llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls; /// \brief Whether we're being strict about the spelling of types when /// unifying two types. bool StrictTypeSpelling; StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2, llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls, bool StrictTypeSpelling = false) : C1(C1), C2(C2), NonEquivalentDecls(NonEquivalentDecls), StrictTypeSpelling(StrictTypeSpelling) { } /// \brief Determine whether the two declarations are structurally /// equivalent. bool IsStructurallyEquivalent(Decl *D1, Decl *D2); /// \brief Determine whether the two types are structurally equivalent. bool IsStructurallyEquivalent(QualType T1, QualType T2); private: /// \brief Finish checking all of the structural equivalences. /// /// \returns true if an error occurred, false otherwise. bool Finish(); public: DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) { return C1.getDiagnostics().Report(Loc, DiagID); } DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) { return C2.getDiagnostics().Report(Loc, DiagID); } }; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2); /// \brief Determine if two APInts have the same value, after zero-extending /// one of them (if needed!) to ensure that the bit-widths match. static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) { if (I1.getBitWidth() == I2.getBitWidth()) return I1 == I2; if (I1.getBitWidth() > I2.getBitWidth()) return I1 == I2.zext(I1.getBitWidth()); return I1.zext(I2.getBitWidth()) == I2; } /// \brief Determine if two APSInts have the same value, zero- or sign-extending /// as needed. static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) { if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned()) return I1 == I2; // Check for a bit-width mismatch. if (I1.getBitWidth() > I2.getBitWidth()) return IsSameValue(I1, I2.extend(I1.getBitWidth())); else if (I2.getBitWidth() > I1.getBitWidth()) return IsSameValue(I1.extend(I2.getBitWidth()), I2); // We have a signedness mismatch. Turn the signed value into an unsigned // value. if (I1.isSigned()) { if (I1.isNegative()) return false; return llvm::APSInt(I1, true) == I2; } if (I2.isNegative()) return false; return I1 == llvm::APSInt(I2, true); } /// \brief Determine structural equivalence of two expressions. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Expr *E1, Expr *E2) { if (!E1 || !E2) return E1 == E2; // FIXME: Actually perform a structural comparison! return true; } /// \brief Determine whether two identifiers are equivalent. static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, const IdentifierInfo *Name2) { if (!Name1 || !Name2) return Name1 == Name2; return Name1->getName() == Name2->getName(); } /// \brief Determine whether two nested-name-specifiers are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NestedNameSpecifier *NNS1, NestedNameSpecifier *NNS2) { // FIXME: Implement! return true; } /// \brief Determine whether two template arguments are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgument &Arg1, const TemplateArgument &Arg2) { if (Arg1.getKind() != Arg2.getKind()) return false; switch (Arg1.getKind()) { case TemplateArgument::Null: return true; case TemplateArgument::Type: return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType()); case TemplateArgument::Integral: if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(), Arg2.getIntegralType())) return false; return IsSameValue(*Arg1.getAsIntegral(), *Arg2.getAsIntegral()); case TemplateArgument::Declaration: if (!Arg1.getAsDecl() || !Arg2.getAsDecl()) return !Arg1.getAsDecl() && !Arg2.getAsDecl(); return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl()); case TemplateArgument::Template: return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), Arg2.getAsTemplate()); case TemplateArgument::TemplateExpansion: return IsStructurallyEquivalent(Context, Arg1.getAsTemplateOrTemplatePattern(), Arg2.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), Arg2.getAsExpr()); case TemplateArgument::Pack: if (Arg1.pack_size() != Arg2.pack_size()) return false; for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I], Arg2.pack_begin()[I])) return false; return true; } llvm_unreachable("Invalid template argument kind"); } /// \brief Determine structural equivalence for the common part of array /// types. static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, const ArrayType *Array1, const ArrayType *Array2) { if (!IsStructurallyEquivalent(Context, Array1->getElementType(), Array2->getElementType())) return false; if (Array1->getSizeModifier() != Array2->getSizeModifier()) return false; if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) return false; return true; } /// \brief Determine structural equivalence of two types. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2) { if (T1.isNull() || T2.isNull()) return T1.isNull() && T2.isNull(); if (!Context.StrictTypeSpelling) { // We aren't being strict about token-to-token equivalence of types, // so map down to the canonical type. T1 = Context.C1.getCanonicalType(T1); T2 = Context.C2.getCanonicalType(T2); } if (T1.getQualifiers() != T2.getQualifiers()) return false; Type::TypeClass TC = T1->getTypeClass(); if (T1->getTypeClass() != T2->getTypeClass()) { // Compare function types with prototypes vs. without prototypes as if // both did not have prototypes. if (T1->getTypeClass() == Type::FunctionProto && T2->getTypeClass() == Type::FunctionNoProto) TC = Type::FunctionNoProto; else if (T1->getTypeClass() == Type::FunctionNoProto && T2->getTypeClass() == Type::FunctionProto) TC = Type::FunctionNoProto; else return false; } switch (TC) { case Type::Builtin: // FIXME: Deal with Char_S/Char_U. if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) return false; break; case Type::Complex: if (!IsStructurallyEquivalent(Context, cast<ComplexType>(T1)->getElementType(), cast<ComplexType>(T2)->getElementType())) return false; break; case Type::Pointer: if (!IsStructurallyEquivalent(Context, cast<PointerType>(T1)->getPointeeType(), cast<PointerType>(T2)->getPointeeType())) return false; break; case Type::BlockPointer: if (!IsStructurallyEquivalent(Context, cast<BlockPointerType>(T1)->getPointeeType(), cast<BlockPointerType>(T2)->getPointeeType())) return false; break; case Type::LValueReference: case Type::RValueReference: { const ReferenceType *Ref1 = cast<ReferenceType>(T1); const ReferenceType *Ref2 = cast<ReferenceType>(T2); if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) return false; if (Ref1->isInnerRef() != Ref2->isInnerRef()) return false; if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), Ref2->getPointeeTypeAsWritten())) return false; break; } case Type::MemberPointer: { const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1); const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2); if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), MemPtr2->getPointeeType())) return false; if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), QualType(MemPtr2->getClass(), 0))) return false; break; } case Type::ConstantArray: { const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1); const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2); if (!IsSameValue(Array1->getSize(), Array2->getSize())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::IncompleteArray: if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1), cast<ArrayType>(T2))) return false; break; case Type::VariableArray: { const VariableArrayType *Array1 = cast<VariableArrayType>(T1); const VariableArrayType *Array2 = cast<VariableArrayType>(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentSizedArray: { const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1); const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentSizedExtVector: { const DependentSizedExtVectorType *Vec1 = cast<DependentSizedExtVectorType>(T1); const DependentSizedExtVectorType *Vec2 = cast<DependentSizedExtVectorType>(T2); if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), Vec2->getSizeExpr())) return false; if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; break; } case Type::Vector: case Type::ExtVector: { const VectorType *Vec1 = cast<VectorType>(T1); const VectorType *Vec2 = cast<VectorType>(T2); if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; if (Vec1->getNumElements() != Vec2->getNumElements()) return false; if (Vec1->getVectorKind() != Vec2->getVectorKind()) return false; break; } case Type::FunctionProto: { const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1); const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2); if (Proto1->getNumArgs() != Proto2->getNumArgs()) return false; for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getArgType(I), Proto2->getArgType(I))) return false; } if (Proto1->isVariadic() != Proto2->isVariadic()) return false; if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType()) return false; if (Proto1->getExceptionSpecType() == EST_Dynamic) { if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) return false; for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), Proto2->getExceptionType(I))) return false; } } else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) { if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), Proto2->getNoexceptExpr())) return false; } if (Proto1->getTypeQuals() != Proto2->getTypeQuals()) return false; // Fall through to check the bits common with FunctionNoProtoType. } case Type::FunctionNoProto: { const FunctionType *Function1 = cast<FunctionType>(T1); const FunctionType *Function2 = cast<FunctionType>(T2); if (!IsStructurallyEquivalent(Context, Function1->getResultType(), Function2->getResultType())) return false; if (Function1->getExtInfo() != Function2->getExtInfo()) return false; break; } case Type::UnresolvedUsing: if (!IsStructurallyEquivalent(Context, cast<UnresolvedUsingType>(T1)->getDecl(), cast<UnresolvedUsingType>(T2)->getDecl())) return false; break; case Type::Attributed: if (!IsStructurallyEquivalent(Context, cast<AttributedType>(T1)->getModifiedType(), cast<AttributedType>(T2)->getModifiedType())) return false; if (!IsStructurallyEquivalent(Context, cast<AttributedType>(T1)->getEquivalentType(), cast<AttributedType>(T2)->getEquivalentType())) return false; break; case Type::Paren: if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(), cast<ParenType>(T2)->getInnerType())) return false; break; case Type::Typedef: if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(), cast<TypedefType>(T2)->getDecl())) return false; break; case Type::TypeOfExpr: if (!IsStructurallyEquivalent(Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(), cast<TypeOfExprType>(T2)->getUnderlyingExpr())) return false; break; case Type::TypeOf: if (!IsStructurallyEquivalent(Context, cast<TypeOfType>(T1)->getUnderlyingType(), cast<TypeOfType>(T2)->getUnderlyingType())) return false; break; case Type::UnaryTransform: if (!IsStructurallyEquivalent(Context, cast<UnaryTransformType>(T1)->getUnderlyingType(), cast<UnaryTransformType>(T1)->getUnderlyingType())) return false; break; case Type::Decltype: if (!IsStructurallyEquivalent(Context, cast<DecltypeType>(T1)->getUnderlyingExpr(), cast<DecltypeType>(T2)->getUnderlyingExpr())) return false; break; case Type::Auto: if (!IsStructurallyEquivalent(Context, cast<AutoType>(T1)->getDeducedType(), cast<AutoType>(T2)->getDeducedType())) return false; break; case Type::Record: case Type::Enum: if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(), cast<TagType>(T2)->getDecl())) return false; break; case Type::TemplateTypeParm: { const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1); const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2); if (Parm1->getDepth() != Parm2->getDepth()) return false; if (Parm1->getIndex() != Parm2->getIndex()) return false; if (Parm1->isParameterPack() != Parm2->isParameterPack()) return false; // Names of template type parameters are never significant. break; } case Type::SubstTemplateTypeParm: { const SubstTemplateTypeParmType *Subst1 = cast<SubstTemplateTypeParmType>(T1); const SubstTemplateTypeParmType *Subst2 = cast<SubstTemplateTypeParmType>(T2); if (!IsStructurallyEquivalent(Context, QualType(Subst1->getReplacedParameter(), 0), QualType(Subst2->getReplacedParameter(), 0))) return false; if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), Subst2->getReplacementType())) return false; break; } case Type::SubstTemplateTypeParmPack: { const SubstTemplateTypeParmPackType *Subst1 = cast<SubstTemplateTypeParmPackType>(T1); const SubstTemplateTypeParmPackType *Subst2 = cast<SubstTemplateTypeParmPackType>(T2); if (!IsStructurallyEquivalent(Context, QualType(Subst1->getReplacedParameter(), 0), QualType(Subst2->getReplacedParameter(), 0))) return false; if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), Subst2->getArgumentPack())) return false; break; } case Type::TemplateSpecialization: { const TemplateSpecializationType *Spec1 = cast<TemplateSpecializationType>(T1); const TemplateSpecializationType *Spec2 = cast<TemplateSpecializationType>(T2); if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), Spec2->getTemplateName())) return false; if (Spec1->getNumArgs() != Spec2->getNumArgs()) return false; for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), Spec2->getArg(I))) return false; } break; } case Type::Elaborated: { const ElaboratedType *Elab1 = cast<ElaboratedType>(T1); const ElaboratedType *Elab2 = cast<ElaboratedType>(T2); // CHECKME: what if a keyword is ETK_None or ETK_typename ? if (Elab1->getKeyword() != Elab2->getKeyword()) return false; if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), Elab2->getQualifier())) return false; if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), Elab2->getNamedType())) return false; break; } case Type::InjectedClassName: { const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1); const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2); if (!IsStructurallyEquivalent(Context, Inj1->getInjectedSpecializationType(), Inj2->getInjectedSpecializationType())) return false; break; } case Type::DependentName: { const DependentNameType *Typename1 = cast<DependentNameType>(T1); const DependentNameType *Typename2 = cast<DependentNameType>(T2); if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), Typename2->getQualifier())) return false; if (!IsStructurallyEquivalent(Typename1->getIdentifier(), Typename2->getIdentifier())) return false; break; } case Type::DependentTemplateSpecialization: { const DependentTemplateSpecializationType *Spec1 = cast<DependentTemplateSpecializationType>(T1); const DependentTemplateSpecializationType *Spec2 = cast<DependentTemplateSpecializationType>(T2); if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), Spec2->getQualifier())) return false; if (!IsStructurallyEquivalent(Spec1->getIdentifier(), Spec2->getIdentifier())) return false; if (Spec1->getNumArgs() != Spec2->getNumArgs()) return false; for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), Spec2->getArg(I))) return false; } break; } case Type::PackExpansion: if (!IsStructurallyEquivalent(Context, cast<PackExpansionType>(T1)->getPattern(), cast<PackExpansionType>(T2)->getPattern())) return false; break; case Type::ObjCInterface: { const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1); const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2); if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), Iface2->getDecl())) return false; break; } case Type::ObjCObject: { const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1); const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2); if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), Obj2->getBaseType())) return false; if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) return false; for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), Obj2->getProtocol(I))) return false; } break; } case Type::ObjCObjectPointer: { const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1); const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2); if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), Ptr2->getPointeeType())) return false; break; } case Type::Atomic: { if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(), cast<AtomicType>(T2)->getValueType())) return false; break; } } // end switch return true; } /// \brief Determine structural equivalence of two fields. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FieldDecl *Field1, FieldDecl *Field2) { RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext()); if (!IsStructurallyEquivalent(Context, Field1->getType(), Field2->getType())) { Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); return false; } if (Field1->isBitField() != Field2->isBitField()) { Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(Owner2); if (Field1->isBitField()) { Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) << Field1->getDeclName() << Field1->getType() << Field1->getBitWidthValue(Context.C1); Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field) << Field2->getDeclName(); } else { Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) << Field2->getDeclName() << Field2->getType() << Field2->getBitWidthValue(Context.C2); Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field) << Field1->getDeclName(); } return false; } if (Field1->isBitField()) { // Make sure that the bit-fields are the same length. unsigned Bits1 = Field1->getBitWidthValue(Context.C1); unsigned Bits2 = Field2->getBitWidthValue(Context.C2); if (Bits1 != Bits2) { Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) << Field2->getDeclName() << Field2->getType() << Bits2; Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) << Field1->getDeclName() << Field1->getType() << Bits1; return false; } } return true; } /// \brief Determine structural equivalence of two records. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, RecordDecl *D1, RecordDecl *D2) { if (D1->isUnion() != D2->isUnion()) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) << D1->getDeclName() << (unsigned)D1->getTagKind(); return false; } // If both declarations are class template specializations, we know // the ODR applies, so check the template and template arguments. ClassTemplateSpecializationDecl *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1); ClassTemplateSpecializationDecl *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2); if (Spec1 && Spec2) { // Check that the specialized templates are the same. if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), Spec2->getSpecializedTemplate())) return false; // Check that the template arguments are the same. if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) return false; for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), Spec2->getTemplateArgs().get(I))) return false; } // If one is a class template specialization and the other is not, these // structures are different. else if (Spec1 || Spec2) return false; // Compare the definitions of these two records. If either or both are // incomplete, we assume that they are equivalent. D1 = D1->getDefinition(); D2 = D2->getDefinition(); if (!D1 || !D2) return true; if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { if (D1CXX->getNumBases() != D2CXX->getNumBases()) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) << D2CXX->getNumBases(); Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) << D1CXX->getNumBases(); return false; } // Check the base classes. for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), BaseEnd1 = D1CXX->bases_end(), Base2 = D2CXX->bases_begin(); Base1 != BaseEnd1; ++Base1, ++Base2) { if (!IsStructurallyEquivalent(Context, Base1->getType(), Base2->getType())) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(Base2->getLocStart(), diag::note_odr_base) << Base2->getType() << Base2->getSourceRange(); Context.Diag1(Base1->getLocStart(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); return false; } // Check virtual vs. non-virtual inheritance mismatch. if (Base1->isVirtual() != Base2->isVirtual()) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(Base2->getLocStart(), diag::note_odr_virtual_base) << Base2->isVirtual() << Base2->getSourceRange(); Context.Diag1(Base1->getLocStart(), diag::note_odr_base) << Base1->isVirtual() << Base1->getSourceRange(); return false; } } } else if (D1CXX->getNumBases() > 0) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); Context.Diag1(Base1->getLocStart(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); return false; } } // Check the fields for consistency. CXXRecordDecl::field_iterator Field2 = D2->field_begin(), Field2End = D2->field_end(); for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(), Field1End = D1->field_end(); Field1 != Field1End; ++Field1, ++Field2) { if (Field2 == Field2End) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); return false; } if (!IsStructurallyEquivalent(Context, *Field1, *Field2)) return false; } if (Field2 != Field2End) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); return false; } return true; } /// \brief Determine structural equivalence of two enums. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, EnumDecl *D1, EnumDecl *D2) { EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), EC2End = D2->enumerator_end(); for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), EC1End = D1->enumerator_end(); EC1 != EC1End; ++EC1, ++EC2) { if (EC2 == EC2End) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << EC1->getInitVal().toString(10); Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); return false; } llvm::APSInt Val1 = EC1->getInitVal(); llvm::APSInt Val2 = EC2->getInitVal(); if (!IsSameValue(Val1, Val2) || !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << EC2->getInitVal().toString(10); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << EC1->getInitVal().toString(10); return false; } } if (EC2 != EC2End) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << EC2->getInitVal().toString(10); Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateParameterList *Params1, TemplateParameterList *Params2) { if (Params1->size() != Params2->size()) { Context.Diag2(Params2->getTemplateLoc(), diag::err_odr_different_num_template_parameters) << Params1->size() << Params2->size(); Context.Diag1(Params1->getTemplateLoc(), diag::note_odr_template_parameter_list); return false; } for (unsigned I = 0, N = Params1->size(); I != N; ++I) { if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { Context.Diag2(Params2->getParam(I)->getLocation(), diag::err_odr_different_template_parameter_kind); Context.Diag1(Params1->getParam(I)->getLocation(), diag::note_odr_template_parameter_here); return false; } if (!Context.IsStructurallyEquivalent(Params1->getParam(I), Params2->getParam(I))) { return false; } } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTypeParmDecl *D1, TemplateTypeParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NonTypeTemplateParmDecl *D1, NonTypeTemplateParmDecl *D2) { // FIXME: Enable once we have variadic templates. #if 0 if (D1->isParameterPack() != D2->isParameterPack()) { Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); return false; } #endif // Check types. if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) { Context.Diag2(D2->getLocation(), diag::err_odr_non_type_parameter_type_inconsistent) << D2->getType() << D1->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_value_here) << D1->getType(); return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTemplateParmDecl *D1, TemplateTemplateParmDecl *D2) { // FIXME: Enable once we have variadic templates. #if 0 if (D1->isParameterPack() != D2->isParameterPack()) { Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); return false; } #endif // Check template parameter lists. return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), D2->getTemplateParameters()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ClassTemplateDecl *D1, ClassTemplateDecl *D2) { // Check template parameters. if (!IsStructurallyEquivalent(Context, D1->getTemplateParameters(), D2->getTemplateParameters())) return false; // Check the templated declaration. return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(), D2->getTemplatedDecl()); } /// \brief Determine structural equivalence of two declarations. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2) { // FIXME: Check for known structural equivalences via a callback of some sort. // Check whether we already know that these two declarations are not // structurally equivalent. if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl()))) return false; // Determine whether we've already produced a tentative equivalence for D1. Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()]; if (EquivToD1) return EquivToD1 == D2->getCanonicalDecl(); // Produce a tentative equivalence D1 <-> D2, which will be checked later. EquivToD1 = D2->getCanonicalDecl(); Context.DeclsToCheck.push_back(D1->getCanonicalDecl()); return true; } bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1, Decl *D2) { if (!::IsStructurallyEquivalent(*this, D1, D2)) return false; return !Finish(); } bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1, QualType T2) { if (!::IsStructurallyEquivalent(*this, T1, T2)) return false; return !Finish(); } bool StructuralEquivalenceContext::Finish() { while (!DeclsToCheck.empty()) { // Check the next declaration. Decl *D1 = DeclsToCheck.front(); DeclsToCheck.pop_front(); Decl *D2 = TentativeEquivalences[D1]; assert(D2 && "Unrecorded tentative equivalence?"); bool Equivalent = true; // FIXME: Switch on all declaration kinds. For now, we're just going to // check the obvious ones. if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) { if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) { // Check for equivalent structure names. IdentifierInfo *Name1 = Record1->getIdentifier(); if (!Name1 && Record1->getTypedefNameForAnonDecl()) Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier(); IdentifierInfo *Name2 = Record2->getIdentifier(); if (!Name2 && Record2->getTypedefNameForAnonDecl()) Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2) || !::IsStructurallyEquivalent(*this, Record1, Record2)) Equivalent = false; } else { // Record/non-record mismatch. Equivalent = false; } } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) { if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) { // Check for equivalent enum names. IdentifierInfo *Name1 = Enum1->getIdentifier(); if (!Name1 && Enum1->getTypedefNameForAnonDecl()) Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier(); IdentifierInfo *Name2 = Enum2->getIdentifier(); if (!Name2 && Enum2->getTypedefNameForAnonDecl()) Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2) || !::IsStructurallyEquivalent(*this, Enum1, Enum2)) Equivalent = false; } else { // Enum/non-enum mismatch Equivalent = false; } } else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) { if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) { if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(), Typedef2->getIdentifier()) || !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(), Typedef2->getUnderlyingType())) Equivalent = false; } else { // Typedef/non-typedef mismatch. Equivalent = false; } } else if (ClassTemplateDecl *ClassTemplate1 = dyn_cast<ClassTemplateDecl>(D1)) { if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) { if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(), ClassTemplate2->getIdentifier()) || !::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2)) Equivalent = false; } else { // Class template/non-class-template mismatch. Equivalent = false; } } else if (TemplateTypeParmDecl *TTP1= dyn_cast<TemplateTypeParmDecl>(D1)) { if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) { if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) Equivalent = false; } else { // Kind mismatch. Equivalent = false; } } else if (NonTypeTemplateParmDecl *NTTP1 = dyn_cast<NonTypeTemplateParmDecl>(D1)) { if (NonTypeTemplateParmDecl *NTTP2 = dyn_cast<NonTypeTemplateParmDecl>(D2)) { if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2)) Equivalent = false; } else { // Kind mismatch. Equivalent = false; } } else if (TemplateTemplateParmDecl *TTP1 = dyn_cast<TemplateTemplateParmDecl>(D1)) { if (TemplateTemplateParmDecl *TTP2 = dyn_cast<TemplateTemplateParmDecl>(D2)) { if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) Equivalent = false; } else { // Kind mismatch. Equivalent = false; } } if (!Equivalent) { // Note that these two declarations are not equivalent (and we already // know about it). NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl())); return true; } // FIXME: Check other declaration kinds! } return false; } //---------------------------------------------------------------------------- // Import Types //---------------------------------------------------------------------------- QualType ASTNodeImporter::VisitType(const Type *T) { Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node) << T->getTypeClassName(); return QualType(); } QualType ASTNodeImporter::VisitBuiltinType(const BuiltinType *T) { switch (T->getKind()) { #define SHARED_SINGLETON_TYPE(Expansion) #define BUILTIN_TYPE(Id, SingletonId) \ case BuiltinType::Id: return Importer.getToContext().SingletonId; #include "clang/AST/BuiltinTypes.def" // FIXME: for Char16, Char32, and NullPtr, make sure that the "to" // context supports C++. // FIXME: for ObjCId, ObjCClass, and ObjCSel, make sure that the "to" // context supports ObjC. case BuiltinType::Char_U: // The context we're importing from has an unsigned 'char'. If we're // importing into a context with a signed 'char', translate to // 'unsigned char' instead. if (Importer.getToContext().getLangOpts().CharIsSigned) return Importer.getToContext().UnsignedCharTy; return Importer.getToContext().CharTy; case BuiltinType::Char_S: // The context we're importing from has an unsigned 'char'. If we're // importing into a context with a signed 'char', translate to // 'unsigned char' instead. if (!Importer.getToContext().getLangOpts().CharIsSigned) return Importer.getToContext().SignedCharTy; return Importer.getToContext().CharTy; case BuiltinType::WChar_S: case BuiltinType::WChar_U: // FIXME: If not in C++, shall we translate to the C equivalent of // wchar_t? return Importer.getToContext().WCharTy; } llvm_unreachable("Invalid BuiltinType Kind!"); } QualType ASTNodeImporter::VisitComplexType(const ComplexType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getComplexType(ToElementType); } QualType ASTNodeImporter::VisitPointerType(const PointerType *T) { QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getPointerType(ToPointeeType); } QualType ASTNodeImporter::VisitBlockPointerType(const BlockPointerType *T) { // FIXME: Check for blocks support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getBlockPointerType(ToPointeeType); } QualType ASTNodeImporter::VisitLValueReferenceType(const LValueReferenceType *T) { // FIXME: Check for C++ support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getLValueReferenceType(ToPointeeType); } QualType ASTNodeImporter::VisitRValueReferenceType(const RValueReferenceType *T) { // FIXME: Check for C++0x support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getRValueReferenceType(ToPointeeType); } QualType ASTNodeImporter::VisitMemberPointerType(const MemberPointerType *T) { // FIXME: Check for C++ support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); QualType ClassType = Importer.Import(QualType(T->getClass(), 0)); return Importer.getToContext().getMemberPointerType(ToPointeeType, ClassType.getTypePtr()); } QualType ASTNodeImporter::VisitConstantArrayType(const ConstantArrayType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getConstantArrayType(ToElementType, T->getSize(), T->getSizeModifier(), T->getIndexTypeCVRQualifiers()); } QualType ASTNodeImporter::VisitIncompleteArrayType(const IncompleteArrayType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getIncompleteArrayType(ToElementType, T->getSizeModifier(), T->getIndexTypeCVRQualifiers()); } QualType ASTNodeImporter::VisitVariableArrayType(const VariableArrayType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); Expr *Size = Importer.Import(T->getSizeExpr()); if (!Size) return QualType(); SourceRange Brackets = Importer.Import(T->getBracketsRange()); return Importer.getToContext().getVariableArrayType(ToElementType, Size, T->getSizeModifier(), T->getIndexTypeCVRQualifiers(), Brackets); } QualType ASTNodeImporter::VisitVectorType(const VectorType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getVectorType(ToElementType, T->getNumElements(), T->getVectorKind()); } QualType ASTNodeImporter::VisitExtVectorType(const ExtVectorType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getExtVectorType(ToElementType, T->getNumElements()); } QualType ASTNodeImporter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) { // FIXME: What happens if we're importing a function without a prototype // into C++? Should we make it variadic? QualType ToResultType = Importer.Import(T->getResultType()); if (ToResultType.isNull()) return QualType(); return Importer.getToContext().getFunctionNoProtoType(ToResultType, T->getExtInfo()); } QualType ASTNodeImporter::VisitFunctionProtoType(const FunctionProtoType *T) { QualType ToResultType = Importer.Import(T->getResultType()); if (ToResultType.isNull()) return QualType(); // Import argument types SmallVector<QualType, 4> ArgTypes; for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), AEnd = T->arg_type_end(); A != AEnd; ++A) { QualType ArgType = Importer.Import(*A); if (ArgType.isNull()) return QualType(); ArgTypes.push_back(ArgType); } // Import exception types SmallVector<QualType, 4> ExceptionTypes; for (FunctionProtoType::exception_iterator E = T->exception_begin(), EEnd = T->exception_end(); E != EEnd; ++E) { QualType ExceptionType = Importer.Import(*E); if (ExceptionType.isNull()) return QualType(); ExceptionTypes.push_back(ExceptionType); } FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo(); EPI.Exceptions = ExceptionTypes.data(); return Importer.getToContext().getFunctionType(ToResultType, ArgTypes.data(), ArgTypes.size(), EPI); } QualType ASTNodeImporter::VisitParenType(const ParenType *T) { QualType ToInnerType = Importer.Import(T->getInnerType()); if (ToInnerType.isNull()) return QualType(); return Importer.getToContext().getParenType(ToInnerType); } QualType ASTNodeImporter::VisitTypedefType(const TypedefType *T) { TypedefNameDecl *ToDecl = dyn_cast_or_null<TypedefNameDecl>(Importer.Import(T->getDecl())); if (!ToDecl) return QualType(); return Importer.getToContext().getTypeDeclType(ToDecl); } QualType ASTNodeImporter::VisitTypeOfExprType(const TypeOfExprType *T) { Expr *ToExpr = Importer.Import(T->getUnderlyingExpr()); if (!ToExpr) return QualType(); return Importer.getToContext().getTypeOfExprType(ToExpr); } QualType ASTNodeImporter::VisitTypeOfType(const TypeOfType *T) { QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType()); if (ToUnderlyingType.isNull()) return QualType(); return Importer.getToContext().getTypeOfType(ToUnderlyingType); } QualType ASTNodeImporter::VisitDecltypeType(const DecltypeType *T) { // FIXME: Make sure that the "to" context supports C++0x! Expr *ToExpr = Importer.Import(T->getUnderlyingExpr()); if (!ToExpr) return QualType(); QualType UnderlyingType = Importer.Import(T->getUnderlyingType()); if (UnderlyingType.isNull()) return QualType(); return Importer.getToContext().getDecltypeType(ToExpr, UnderlyingType); } QualType ASTNodeImporter::VisitUnaryTransformType(const UnaryTransformType *T) { QualType ToBaseType = Importer.Import(T->getBaseType()); QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType()); if (ToBaseType.isNull() || ToUnderlyingType.isNull()) return QualType(); return Importer.getToContext().getUnaryTransformType(ToBaseType, ToUnderlyingType, T->getUTTKind()); } QualType ASTNodeImporter::VisitAutoType(const AutoType *T) { // FIXME: Make sure that the "to" context supports C++0x! QualType FromDeduced = T->getDeducedType(); QualType ToDeduced; if (!FromDeduced.isNull()) { ToDeduced = Importer.Import(FromDeduced); if (ToDeduced.isNull()) return QualType(); } return Importer.getToContext().getAutoType(ToDeduced); } QualType ASTNodeImporter::VisitRecordType(const RecordType *T) { RecordDecl *ToDecl = dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl())); if (!ToDecl) return QualType(); return Importer.getToContext().getTagDeclType(ToDecl); } QualType ASTNodeImporter::VisitEnumType(const EnumType *T) { EnumDecl *ToDecl = dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl())); if (!ToDecl) return QualType(); return Importer.getToContext().getTagDeclType(ToDecl); } QualType ASTNodeImporter::VisitTemplateSpecializationType( const TemplateSpecializationType *T) { TemplateName ToTemplate = Importer.Import(T->getTemplateName()); if (ToTemplate.isNull()) return QualType(); SmallVector<TemplateArgument, 2> ToTemplateArgs; if (ImportTemplateArguments(T->getArgs(), T->getNumArgs(), ToTemplateArgs)) return QualType(); QualType ToCanonType; if (!QualType(T, 0).isCanonical()) { QualType FromCanonType = Importer.getFromContext().getCanonicalType(QualType(T, 0)); ToCanonType =Importer.Import(FromCanonType); if (ToCanonType.isNull()) return QualType(); } return Importer.getToContext().getTemplateSpecializationType(ToTemplate, ToTemplateArgs.data(), ToTemplateArgs.size(), ToCanonType); } QualType ASTNodeImporter::VisitElaboratedType(const ElaboratedType *T) { NestedNameSpecifier *ToQualifier = 0; // Note: the qualifier in an ElaboratedType is optional. if (T->getQualifier()) { ToQualifier = Importer.Import(T->getQualifier()); if (!ToQualifier) return QualType(); } QualType ToNamedType = Importer.Import(T->getNamedType()); if (ToNamedType.isNull()) return QualType(); return Importer.getToContext().getElaboratedType(T->getKeyword(), ToQualifier, ToNamedType); } QualType ASTNodeImporter::VisitObjCInterfaceType(const ObjCInterfaceType *T) { ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl())); if (!Class) return QualType(); return Importer.getToContext().getObjCInterfaceType(Class); } QualType ASTNodeImporter::VisitObjCObjectType(const ObjCObjectType *T) { QualType ToBaseType = Importer.Import(T->getBaseType()); if (ToBaseType.isNull()) return QualType(); SmallVector<ObjCProtocolDecl *, 4> Protocols; for (ObjCObjectType::qual_iterator P = T->qual_begin(), PEnd = T->qual_end(); P != PEnd; ++P) { ObjCProtocolDecl *Protocol = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P)); if (!Protocol) return QualType(); Protocols.push_back(Protocol); } return Importer.getToContext().getObjCObjectType(ToBaseType, Protocols.data(), Protocols.size()); } QualType ASTNodeImporter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getObjCObjectPointerType(ToPointeeType); } //---------------------------------------------------------------------------- // Import Declarations //---------------------------------------------------------------------------- bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC, DeclContext *&LexicalDC, DeclarationName &Name, SourceLocation &Loc) { // Import the context of this declaration. DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return true; LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return true; } // Import the name of this declaration. Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return true; // Import the location of this declaration. Loc = Importer.Import(D->getLocation()); return false; } void ASTNodeImporter::ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD) { if (!FromD) return; if (!ToD) { ToD = Importer.Import(FromD); if (!ToD) return; } if (RecordDecl *FromRecord = dyn_cast<RecordDecl>(FromD)) { if (RecordDecl *ToRecord = cast_or_null<RecordDecl>(ToD)) { if (FromRecord->getDefinition() && !ToRecord->getDefinition()) { ImportDefinition(FromRecord, ToRecord); } } return; } if (EnumDecl *FromEnum = dyn_cast<EnumDecl>(FromD)) { if (EnumDecl *ToEnum = cast_or_null<EnumDecl>(ToD)) { if (FromEnum->getDefinition() && !ToEnum->getDefinition()) { ImportDefinition(FromEnum, ToEnum); } } return; } } void ASTNodeImporter::ImportDeclarationNameLoc(const DeclarationNameInfo &From, DeclarationNameInfo& To) { // NOTE: To.Name and To.Loc are already imported. // We only have to import To.LocInfo. switch (To.getName().getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: return; case DeclarationName::CXXOperatorName: { SourceRange Range = From.getCXXOperatorNameRange(); To.setCXXOperatorNameRange(Importer.Import(Range)); return; } case DeclarationName::CXXLiteralOperatorName: { SourceLocation Loc = From.getCXXLiteralOperatorNameLoc(); To.setCXXLiteralOperatorNameLoc(Importer.Import(Loc)); return; } case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: { TypeSourceInfo *FromTInfo = From.getNamedTypeInfo(); To.setNamedTypeInfo(Importer.Import(FromTInfo)); return; } } llvm_unreachable("Unknown name kind."); } void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC, bool ForceImport) { if (Importer.isMinimalImport() && !ForceImport) { Importer.ImportContext(FromDC); return; } for (DeclContext::decl_iterator From = FromDC->decls_begin(), FromEnd = FromDC->decls_end(); From != FromEnd; ++From) Importer.Import(*From); } bool ASTNodeImporter::ImportDefinition(RecordDecl *From, RecordDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition() || To->isBeingDefined()) { if (Kind == IDK_Everything) ImportDeclContext(From, /*ForceImport=*/true); return false; } To->startDefinition(); // Add base classes. if (CXXRecordDecl *ToCXX = dyn_cast<CXXRecordDecl>(To)) { CXXRecordDecl *FromCXX = cast<CXXRecordDecl>(From); struct CXXRecordDecl::DefinitionData &ToData = ToCXX->data(); struct CXXRecordDecl::DefinitionData &FromData = FromCXX->data(); ToData.UserDeclaredConstructor = FromData.UserDeclaredConstructor; ToData.UserDeclaredCopyConstructor = FromData.UserDeclaredCopyConstructor; ToData.UserDeclaredMoveConstructor = FromData.UserDeclaredMoveConstructor; ToData.UserDeclaredCopyAssignment = FromData.UserDeclaredCopyAssignment; ToData.UserDeclaredMoveAssignment = FromData.UserDeclaredMoveAssignment; ToData.UserDeclaredDestructor = FromData.UserDeclaredDestructor; ToData.Aggregate = FromData.Aggregate; ToData.PlainOldData = FromData.PlainOldData; ToData.Empty = FromData.Empty; ToData.Polymorphic = FromData.Polymorphic; ToData.Abstract = FromData.Abstract; ToData.IsStandardLayout = FromData.IsStandardLayout; ToData.HasNoNonEmptyBases = FromData.HasNoNonEmptyBases; ToData.HasPrivateFields = FromData.HasPrivateFields; ToData.HasProtectedFields = FromData.HasProtectedFields; ToData.HasPublicFields = FromData.HasPublicFields; ToData.HasMutableFields = FromData.HasMutableFields; ToData.HasOnlyCMembers = FromData.HasOnlyCMembers; ToData.HasTrivialDefaultConstructor = FromData.HasTrivialDefaultConstructor; ToData.HasConstexprNonCopyMoveConstructor = FromData.HasConstexprNonCopyMoveConstructor; ToData.DefaultedDefaultConstructorIsConstexpr = FromData.DefaultedDefaultConstructorIsConstexpr; ToData.DefaultedCopyConstructorIsConstexpr = FromData.DefaultedCopyConstructorIsConstexpr; ToData.DefaultedMoveConstructorIsConstexpr = FromData.DefaultedMoveConstructorIsConstexpr; ToData.HasConstexprDefaultConstructor = FromData.HasConstexprDefaultConstructor; ToData.HasConstexprCopyConstructor = FromData.HasConstexprCopyConstructor; ToData.HasConstexprMoveConstructor = FromData.HasConstexprMoveConstructor; ToData.HasTrivialCopyConstructor = FromData.HasTrivialCopyConstructor; ToData.HasTrivialMoveConstructor = FromData.HasTrivialMoveConstructor; ToData.HasTrivialCopyAssignment = FromData.HasTrivialCopyAssignment; ToData.HasTrivialMoveAssignment = FromData.HasTrivialMoveAssignment; ToData.HasTrivialDestructor = FromData.HasTrivialDestructor; ToData.HasIrrelevantDestructor = FromData.HasIrrelevantDestructor; ToData.HasNonLiteralTypeFieldsOrBases = FromData.HasNonLiteralTypeFieldsOrBases; // ComputedVisibleConversions not imported. ToData.UserProvidedDefaultConstructor = FromData.UserProvidedDefaultConstructor; ToData.DeclaredDefaultConstructor = FromData.DeclaredDefaultConstructor; ToData.DeclaredCopyConstructor = FromData.DeclaredCopyConstructor; ToData.DeclaredMoveConstructor = FromData.DeclaredMoveConstructor; ToData.DeclaredCopyAssignment = FromData.DeclaredCopyAssignment; ToData.DeclaredMoveAssignment = FromData.DeclaredMoveAssignment; ToData.DeclaredDestructor = FromData.DeclaredDestructor; ToData.FailedImplicitMoveConstructor = FromData.FailedImplicitMoveConstructor; ToData.FailedImplicitMoveAssignment = FromData.FailedImplicitMoveAssignment; ToData.IsLambda = FromData.IsLambda; SmallVector<CXXBaseSpecifier *, 4> Bases; for (CXXRecordDecl::base_class_iterator Base1 = FromCXX->bases_begin(), FromBaseEnd = FromCXX->bases_end(); Base1 != FromBaseEnd; ++Base1) { QualType T = Importer.Import(Base1->getType()); if (T.isNull()) return true; SourceLocation EllipsisLoc; if (Base1->isPackExpansion()) EllipsisLoc = Importer.Import(Base1->getEllipsisLoc()); // Ensure that we have a definition for the base. ImportDefinitionIfNeeded(Base1->getType()->getAsCXXRecordDecl()); Bases.push_back( new (Importer.getToContext()) CXXBaseSpecifier(Importer.Import(Base1->getSourceRange()), Base1->isVirtual(), Base1->isBaseOfClass(), Base1->getAccessSpecifierAsWritten(), Importer.Import(Base1->getTypeSourceInfo()), EllipsisLoc)); } if (!Bases.empty()) ToCXX->setBases(Bases.data(), Bases.size()); } if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From, /*ForceImport=*/true); To->completeDefinition(); return false; } bool ASTNodeImporter::ImportDefinition(EnumDecl *From, EnumDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition() || To->isBeingDefined()) { if (Kind == IDK_Everything) ImportDeclContext(From, /*ForceImport=*/true); return false; } To->startDefinition(); QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(From)); if (T.isNull()) return true; QualType ToPromotionType = Importer.Import(From->getPromotionType()); if (ToPromotionType.isNull()) return true; if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From, /*ForceImport=*/true); // FIXME: we might need to merge the number of positive or negative bits // if the enumerator lists don't match. To->completeDefinition(T, ToPromotionType, From->getNumPositiveBits(), From->getNumNegativeBits()); return false; } TemplateParameterList *ASTNodeImporter::ImportTemplateParameterList( TemplateParameterList *Params) { SmallVector<NamedDecl *, 4> ToParams; ToParams.reserve(Params->size()); for (TemplateParameterList::iterator P = Params->begin(), PEnd = Params->end(); P != PEnd; ++P) { Decl *To = Importer.Import(*P); if (!To) return 0; ToParams.push_back(cast<NamedDecl>(To)); } return TemplateParameterList::Create(Importer.getToContext(), Importer.Import(Params->getTemplateLoc()), Importer.Import(Params->getLAngleLoc()), ToParams.data(), ToParams.size(), Importer.Import(Params->getRAngleLoc())); } TemplateArgument ASTNodeImporter::ImportTemplateArgument(const TemplateArgument &From) { switch (From.getKind()) { case TemplateArgument::Null: return TemplateArgument(); case TemplateArgument::Type: { QualType ToType = Importer.Import(From.getAsType()); if (ToType.isNull()) return TemplateArgument(); return TemplateArgument(ToType); } case TemplateArgument::Integral: { QualType ToType = Importer.Import(From.getIntegralType()); if (ToType.isNull()) return TemplateArgument(); return TemplateArgument(*From.getAsIntegral(), ToType); } case TemplateArgument::Declaration: if (Decl *To = Importer.Import(From.getAsDecl())) return TemplateArgument(To); return TemplateArgument(); case TemplateArgument::Template: { TemplateName ToTemplate = Importer.Import(From.getAsTemplate()); if (ToTemplate.isNull()) return TemplateArgument(); return TemplateArgument(ToTemplate); } case TemplateArgument::TemplateExpansion: { TemplateName ToTemplate = Importer.Import(From.getAsTemplateOrTemplatePattern()); if (ToTemplate.isNull()) return TemplateArgument(); return TemplateArgument(ToTemplate, From.getNumTemplateExpansions()); } case TemplateArgument::Expression: if (Expr *ToExpr = Importer.Import(From.getAsExpr())) return TemplateArgument(ToExpr); return TemplateArgument(); case TemplateArgument::Pack: { SmallVector<TemplateArgument, 2> ToPack; ToPack.reserve(From.pack_size()); if (ImportTemplateArguments(From.pack_begin(), From.pack_size(), ToPack)) return TemplateArgument(); TemplateArgument *ToArgs = new (Importer.getToContext()) TemplateArgument[ToPack.size()]; std::copy(ToPack.begin(), ToPack.end(), ToArgs); return TemplateArgument(ToArgs, ToPack.size()); } } llvm_unreachable("Invalid template argument kind"); } bool ASTNodeImporter::ImportTemplateArguments(const TemplateArgument *FromArgs, unsigned NumFromArgs, SmallVectorImpl<TemplateArgument> &ToArgs) { for (unsigned I = 0; I != NumFromArgs; ++I) { TemplateArgument To = ImportTemplateArgument(FromArgs[I]); if (To.isNull() && !FromArgs[I].isNull()) return true; ToArgs.push_back(To); } return false; } bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord) { StructuralEquivalenceContext Ctx(Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls()); return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord); } bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) { StructuralEquivalenceContext Ctx(Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls()); return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum); } bool ASTNodeImporter::IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To) { StructuralEquivalenceContext Ctx(Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls()); return Ctx.IsStructurallyEquivalent(From, To); } Decl *ASTNodeImporter::VisitDecl(Decl *D) { Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node) << D->getDeclKindName(); return 0; } Decl *ASTNodeImporter::VisitTranslationUnitDecl(TranslationUnitDecl *D) { TranslationUnitDecl *ToD = Importer.getToContext().getTranslationUnitDecl(); Importer.Imported(D, ToD); return ToD; } Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) { // Import the major distinguishing characteristics of this namespace. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; NamespaceDecl *MergeWithNamespace = 0; if (!Name) { // This is an anonymous namespace. Adopt an existing anonymous // namespace if we can. // FIXME: Not testable. if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC)) MergeWithNamespace = TU->getAnonymousNamespace(); else MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace(); } else { SmallVector<NamedDecl *, 4> ConflictingDecls; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Namespace)) continue; if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(FoundDecls[I])) { MergeWithNamespace = FoundNS; ConflictingDecls.clear(); break; } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Namespace, ConflictingDecls.data(), ConflictingDecls.size()); } } // Create the "to" namespace, if needed. NamespaceDecl *ToNamespace = MergeWithNamespace; if (!ToNamespace) { ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC, D->isInline(), Importer.Import(D->getLocStart()), Loc, Name.getAsIdentifierInfo(), /*PrevDecl=*/0); ToNamespace->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToNamespace); // If this is an anonymous namespace, register it as the anonymous // namespace within its context. if (!Name) { if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC)) TU->setAnonymousNamespace(ToNamespace); else cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace); } } Importer.Imported(D, ToNamespace); ImportDeclContext(D); return ToNamespace; } Decl *ASTNodeImporter::VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias) { // Import the major distinguishing characteristics of this typedef. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // If this typedef is not in block scope, determine whether we've // seen a typedef with the same name (that we can merge with) or any // other entity by that name (which name lookup could conflict with). if (!DC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (TypedefNameDecl *FoundTypedef = dyn_cast<TypedefNameDecl>(FoundDecls[I])) { if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(), FoundTypedef->getUnderlyingType())) return Importer.Imported(D, FoundTypedef); } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return 0; } } // Import the underlying type of this typedef; QualType T = Importer.Import(D->getUnderlyingType()); if (T.isNull()) return 0; // Create the new typedef node. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); SourceLocation StartL = Importer.Import(D->getLocStart()); TypedefNameDecl *ToTypedef; if (IsAlias) ToTypedef = TypeAliasDecl::Create(Importer.getToContext(), DC, StartL, Loc, Name.getAsIdentifierInfo(), TInfo); else ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC, StartL, Loc, Name.getAsIdentifierInfo(), TInfo); ToTypedef->setAccess(D->getAccess()); ToTypedef->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToTypedef); LexicalDC->addDeclInternal(ToTypedef); return ToTypedef; } Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) { return VisitTypedefNameDecl(D, /*IsAlias=*/false); } Decl *ASTNodeImporter::VisitTypeAliasDecl(TypeAliasDecl *D) { return VisitTypedefNameDecl(D, /*IsAlias=*/true); } Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) { // Import the major distinguishing characteristics of this enum. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Figure out what enum name we're looking for. unsigned IDNS = Decl::IDNS_Tag; DeclarationName SearchName = Name; if (!SearchName && D->getTypedefNameForAnonDecl()) { SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName()); IDNS = Decl::IDNS_Ordinary; } else if (Importer.getToContext().getLangOpts().CPlusPlus) IDNS |= Decl::IDNS_Ordinary; // We may already have an enum of the same name; try to find and match it. if (!DC->isFunctionOrMethod() && SearchName) { SmallVector<NamedDecl *, 4> ConflictingDecls; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(SearchName, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; Decl *Found = FoundDecls[I]; if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) { if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>()) Found = Tag->getDecl(); } if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) { if (IsStructuralMatch(D, FoundEnum)) return Importer.Imported(D, FoundEnum); } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); } } // Create the enum declaration. EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getLocStart()), Loc, Name.getAsIdentifierInfo(), 0, D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); // Import the qualifier, if any. D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); D2->setAccess(D->getAccess()); D2->setLexicalDeclContext(LexicalDC); Importer.Imported(D, D2); LexicalDC->addDeclInternal(D2); // Import the integer type. QualType ToIntegerType = Importer.Import(D->getIntegerType()); if (ToIntegerType.isNull()) return 0; D2->setIntegerType(ToIntegerType); // Import the definition if (D->isCompleteDefinition() && ImportDefinition(D, D2)) return 0; return D2; } Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. TagDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return 0; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of this record. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Figure out what structure name we're looking for. unsigned IDNS = Decl::IDNS_Tag; DeclarationName SearchName = Name; if (!SearchName && D->getTypedefNameForAnonDecl()) { SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName()); IDNS = Decl::IDNS_Ordinary; } else if (Importer.getToContext().getLangOpts().CPlusPlus) IDNS |= Decl::IDNS_Ordinary; // We may already have a record of the same name; try to find and match it. RecordDecl *AdoptDecl = 0; if (!DC->isFunctionOrMethod() && SearchName) { SmallVector<NamedDecl *, 4> ConflictingDecls; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(SearchName, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; Decl *Found = FoundDecls[I]; if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) { if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>()) Found = Tag->getDecl(); } if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) { if (RecordDecl *FoundDef = FoundRecord->getDefinition()) { if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) { // The record types structurally match, or the "from" translation // unit only had a forward declaration anyway; call it the same // function. // FIXME: For C++, we should also merge methods here. return Importer.Imported(D, FoundDef); } } else { // We have a forward declaration of this type, so adopt that forward // declaration rather than building a new one. AdoptDecl = FoundRecord; continue; } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); } } // Create the record declaration. RecordDecl *D2 = AdoptDecl; SourceLocation StartLoc = Importer.Import(D->getLocStart()); if (!D2) { if (isa<CXXRecordDecl>(D)) { CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(), D->getTagKind(), DC, StartLoc, Loc, Name.getAsIdentifierInfo()); D2 = D2CXX; D2->setAccess(D->getAccess()); } else { D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(), DC, StartLoc, Loc, Name.getAsIdentifierInfo()); } D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); } Importer.Imported(D, D2); if (D->isCompleteDefinition() && ImportDefinition(D, D2, IDK_Default)) return 0; return D2; } Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) { // Import the major distinguishing characteristics of this enumerator. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; // Determine whether there are any other declarations with the same name and // in the same context. if (!LexicalDC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return 0; } } Expr *Init = Importer.Import(D->getInitExpr()); if (D->getInitExpr() && !Init) return 0; EnumConstantDecl *ToEnumerator = EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc, Name.getAsIdentifierInfo(), T, Init, D->getInitVal()); ToEnumerator->setAccess(D->getAccess()); ToEnumerator->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToEnumerator); LexicalDC->addDeclInternal(ToEnumerator); return ToEnumerator; } Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) { // Import the major distinguishing characteristics of this function. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Try to find a function in our own ("to") context with the same name, same // type, and in the same context as the function we're importing. if (!LexicalDC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(FoundDecls[I])) { if (isExternalLinkage(FoundFunction->getLinkage()) && isExternalLinkage(D->getLinkage())) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundFunction->getType())) { // FIXME: Actually try to merge the body and other attributes. return Importer.Imported(D, FoundFunction); } // FIXME: Check for overloading more carefully, e.g., by boosting // Sema::IsOverload out to the AST library. // Function overloading is okay in C++. if (Importer.getToContext().getLangOpts().CPlusPlus) continue; // Complain about inconsistent function types. Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent) << Name << D->getType() << FoundFunction->getType(); Importer.ToDiag(FoundFunction->getLocation(), diag::note_odr_value_here) << FoundFunction->getType(); } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return 0; } } DeclarationNameInfo NameInfo(Name, Loc); // Import additional name location/type info. ImportDeclarationNameLoc(D->getNameInfo(), NameInfo); // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; // Import the function parameters. SmallVector<ParmVarDecl *, 8> Parameters; for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end(); P != PEnd; ++P) { ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*P)); if (!ToP) return 0; Parameters.push_back(ToP); } // Create the imported function. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); FunctionDecl *ToFunction = 0; if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) { ToFunction = CXXConstructorDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), D->getInnerLocStart(), NameInfo, T, TInfo, FromConstructor->isExplicit(), D->isInlineSpecified(), D->isImplicit(), D->isConstexpr()); } else if (isa<CXXDestructorDecl>(D)) { ToFunction = CXXDestructorDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), D->getInnerLocStart(), NameInfo, T, TInfo, D->isInlineSpecified(), D->isImplicit()); } else if (CXXConversionDecl *FromConversion = dyn_cast<CXXConversionDecl>(D)) { ToFunction = CXXConversionDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), D->getInnerLocStart(), NameInfo, T, TInfo, D->isInlineSpecified(), FromConversion->isExplicit(), D->isConstexpr(), Importer.Import(D->getLocEnd())); } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { ToFunction = CXXMethodDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), D->getInnerLocStart(), NameInfo, T, TInfo, Method->isStatic(), Method->getStorageClassAsWritten(), Method->isInlineSpecified(), D->isConstexpr(), Importer.Import(D->getLocEnd())); } else { ToFunction = FunctionDecl::Create(Importer.getToContext(), DC, D->getInnerLocStart(), NameInfo, T, TInfo, D->getStorageClass(), D->getStorageClassAsWritten(), D->isInlineSpecified(), D->hasWrittenPrototype(), D->isConstexpr()); } // Import the qualifier, if any. ToFunction->setQualifierInfo(Importer.Import(D->getQualifierLoc())); ToFunction->setAccess(D->getAccess()); ToFunction->setLexicalDeclContext(LexicalDC); ToFunction->setVirtualAsWritten(D->isVirtualAsWritten()); ToFunction->setTrivial(D->isTrivial()); ToFunction->setPure(D->isPure()); Importer.Imported(D, ToFunction); // Set the parameters. for (unsigned I = 0, N = Parameters.size(); I != N; ++I) { Parameters[I]->setOwningFunction(ToFunction); ToFunction->addDeclInternal(Parameters[I]); } ToFunction->setParams(Parameters); // FIXME: Other bits to merge? // Add this function to the lexical context. LexicalDC->addDeclInternal(ToFunction); return ToFunction; } Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) { return VisitFunctionDecl(D); } Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) { return VisitCXXMethodDecl(D); } Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) { // Import the major distinguishing characteristics of a variable. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Determine whether we've already imported this field. llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (FieldDecl *FoundField = dyn_cast<FieldDecl>(FoundDecls[I])) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundField->getType())) { Importer.Imported(D, FoundField); return FoundField; } Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent) << Name << D->getType() << FoundField->getType(); Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here) << FoundField->getType(); return 0; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); Expr *BitWidth = Importer.Import(D->getBitWidth()); if (!BitWidth && D->getBitWidth()) return 0; FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, BitWidth, D->isMutable(), D->hasInClassInitializer()); ToField->setAccess(D->getAccess()); ToField->setLexicalDeclContext(LexicalDC); if (ToField->hasInClassInitializer()) ToField->setInClassInitializer(D->getInClassInitializer()); Importer.Imported(D, ToField); LexicalDC->addDeclInternal(ToField); return ToField; } Decl *ASTNodeImporter::VisitIndirectFieldDecl(IndirectFieldDecl *D) { // Import the major distinguishing characteristics of a variable. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Determine whether we've already imported this field. llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (IndirectFieldDecl *FoundField = dyn_cast<IndirectFieldDecl>(FoundDecls[I])) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundField->getType())) { Importer.Imported(D, FoundField); return FoundField; } Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent) << Name << D->getType() << FoundField->getType(); Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here) << FoundField->getType(); return 0; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; NamedDecl **NamedChain = new (Importer.getToContext())NamedDecl*[D->getChainingSize()]; unsigned i = 0; for (IndirectFieldDecl::chain_iterator PI = D->chain_begin(), PE = D->chain_end(); PI != PE; ++PI) { Decl* D = Importer.Import(*PI); if (!D) return 0; NamedChain[i++] = cast<NamedDecl>(D); } IndirectFieldDecl *ToIndirectField = IndirectFieldDecl::Create( Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), T, NamedChain, D->getChainingSize()); ToIndirectField->setAccess(D->getAccess()); ToIndirectField->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToIndirectField); LexicalDC->addDeclInternal(ToIndirectField); return ToIndirectField; } Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) { // Import the major distinguishing characteristics of an ivar. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Determine whether we've already imported this ivar llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(FoundDecls[I])) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundIvar->getType())) { Importer.Imported(D, FoundIvar); return FoundIvar; } Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent) << Name << D->getType() << FoundIvar->getType(); Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here) << FoundIvar->getType(); return 0; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); Expr *BitWidth = Importer.Import(D->getBitWidth()); if (!BitWidth && D->getBitWidth()) return 0; ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(), cast<ObjCContainerDecl>(DC), Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, D->getAccessControl(), BitWidth, D->getSynthesize()); ToIvar->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToIvar); LexicalDC->addDeclInternal(ToIvar); return ToIvar; } Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) { // Import the major distinguishing characteristics of a variable. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Try to find a variable in our own ("to") context with the same name and // in the same context as the variable we're importing. if (D->isFileVarDecl()) { VarDecl *MergeWithVar = 0; SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (VarDecl *FoundVar = dyn_cast<VarDecl>(FoundDecls[I])) { // We have found a variable that we may need to merge with. Check it. if (isExternalLinkage(FoundVar->getLinkage()) && isExternalLinkage(D->getLinkage())) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundVar->getType())) { MergeWithVar = FoundVar; break; } const ArrayType *FoundArray = Importer.getToContext().getAsArrayType(FoundVar->getType()); const ArrayType *TArray = Importer.getToContext().getAsArrayType(D->getType()); if (FoundArray && TArray) { if (isa<IncompleteArrayType>(FoundArray) && isa<ConstantArrayType>(TArray)) { // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; FoundVar->setType(T); MergeWithVar = FoundVar; break; } else if (isa<IncompleteArrayType>(TArray) && isa<ConstantArrayType>(FoundArray)) { MergeWithVar = FoundVar; break; } } Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent) << Name << D->getType() << FoundVar->getType(); Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here) << FoundVar->getType(); } } ConflictingDecls.push_back(FoundDecls[I]); } if (MergeWithVar) { // An equivalent variable with external linkage has been found. Link // the two declarations, then merge them. Importer.Imported(D, MergeWithVar); if (VarDecl *DDef = D->getDefinition()) { if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) { Importer.ToDiag(ExistingDef->getLocation(), diag::err_odr_variable_multiple_def) << Name; Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here); } else { Expr *Init = Importer.Import(DDef->getInit()); MergeWithVar->setInit(Init); if (DDef->isInitKnownICE()) { EvaluatedStmt *Eval = MergeWithVar->ensureEvaluatedStmt(); Eval->CheckedICE = true; Eval->IsICE = DDef->isInitICE(); } } } return MergeWithVar; } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return 0; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; // Create the imported variable. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, D->getStorageClass(), D->getStorageClassAsWritten()); ToVar->setQualifierInfo(Importer.Import(D->getQualifierLoc())); ToVar->setAccess(D->getAccess()); ToVar->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToVar); LexicalDC->addDeclInternal(ToVar); // Merge the initializer. // FIXME: Can we really import any initializer? Alternatively, we could force // ourselves to import every declaration of a variable and then only use // getInit() here. ToVar->setInit(Importer.Import(const_cast<Expr *>(D->getAnyInitializer()))); // FIXME: Other bits to merge? return ToVar; } Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) { // Parameters are created in the translation unit's context, then moved // into the function declaration's context afterward. DeclContext *DC = Importer.getToContext().getTranslationUnitDecl(); // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return 0; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import the parameter's type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; // Create the imported parameter. ImplicitParamDecl *ToParm = ImplicitParamDecl::Create(Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), T); return Importer.Imported(D, ToParm); } Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) { // Parameters are created in the translation unit's context, then moved // into the function declaration's context afterward. DeclContext *DC = Importer.getToContext().getTranslationUnitDecl(); // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return 0; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import the parameter's type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; // Create the imported parameter. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, D->getStorageClass(), D->getStorageClassAsWritten(), /*FIXME: Default argument*/ 0); ToParm->setHasInheritedDefaultArg(D->hasInheritedDefaultArg()); return Importer.Imported(D, ToParm); } Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) { // Import the major distinguishing characteristics of a method. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(FoundDecls[I])) { if (FoundMethod->isInstanceMethod() != D->isInstanceMethod()) continue; // Check return types. if (!Importer.IsStructurallyEquivalent(D->getResultType(), FoundMethod->getResultType())) { Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent) << D->isInstanceMethod() << Name << D->getResultType() << FoundMethod->getResultType(); Importer.ToDiag(FoundMethod->getLocation(), diag::note_odr_objc_method_here) << D->isInstanceMethod() << Name; return 0; } // Check the number of parameters. if (D->param_size() != FoundMethod->param_size()) { Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent) << D->isInstanceMethod() << Name << D->param_size() << FoundMethod->param_size(); Importer.ToDiag(FoundMethod->getLocation(), diag::note_odr_objc_method_here) << D->isInstanceMethod() << Name; return 0; } // Check parameter types. for (ObjCMethodDecl::param_iterator P = D->param_begin(), PEnd = D->param_end(), FoundP = FoundMethod->param_begin(); P != PEnd; ++P, ++FoundP) { if (!Importer.IsStructurallyEquivalent((*P)->getType(), (*FoundP)->getType())) { Importer.FromDiag((*P)->getLocation(), diag::err_odr_objc_method_param_type_inconsistent) << D->isInstanceMethod() << Name << (*P)->getType() << (*FoundP)->getType(); Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here) << (*FoundP)->getType(); return 0; } } // Check variadic/non-variadic. // Check the number of parameters. if (D->isVariadic() != FoundMethod->isVariadic()) { Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent) << D->isInstanceMethod() << Name; Importer.ToDiag(FoundMethod->getLocation(), diag::note_odr_objc_method_here) << D->isInstanceMethod() << Name; return 0; } // FIXME: Any other bits we need to merge? return Importer.Imported(D, FoundMethod); } } // Import the result type. QualType ResultTy = Importer.Import(D->getResultType()); if (ResultTy.isNull()) return 0; TypeSourceInfo *ResultTInfo = Importer.Import(D->getResultTypeSourceInfo()); ObjCMethodDecl *ToMethod = ObjCMethodDecl::Create(Importer.getToContext(), Loc, Importer.Import(D->getLocEnd()), Name.getObjCSelector(), ResultTy, ResultTInfo, DC, D->isInstanceMethod(), D->isVariadic(), D->isSynthesized(), D->isImplicit(), D->isDefined(), D->getImplementationControl(), D->hasRelatedResultType()); // FIXME: When we decide to merge method definitions, we'll need to // deal with implicit parameters. // Import the parameters SmallVector<ParmVarDecl *, 5> ToParams; for (ObjCMethodDecl::param_iterator FromP = D->param_begin(), FromPEnd = D->param_end(); FromP != FromPEnd; ++FromP) { ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*FromP)); if (!ToP) return 0; ToParams.push_back(ToP); } // Set the parameters. for (unsigned I = 0, N = ToParams.size(); I != N; ++I) { ToParams[I]->setOwningFunction(ToMethod); ToMethod->addDeclInternal(ToParams[I]); } SmallVector<SourceLocation, 12> SelLocs; D->getSelectorLocs(SelLocs); ToMethod->setMethodParams(Importer.getToContext(), ToParams, SelLocs); ToMethod->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToMethod); LexicalDC->addDeclInternal(ToMethod); return ToMethod; } Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) { // Import the major distinguishing characteristics of a category. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; ObjCInterfaceDecl *ToInterface = cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface())); if (!ToInterface) return 0; // Determine if we've already encountered this category. ObjCCategoryDecl *MergeWithCategory = ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo()); ObjCCategoryDecl *ToCategory = MergeWithCategory; if (!ToCategory) { ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getAtStartLoc()), Loc, Importer.Import(D->getCategoryNameLoc()), Name.getAsIdentifierInfo(), ToInterface, Importer.Import(D->getIvarLBraceLoc()), Importer.Import(D->getIvarRBraceLoc())); ToCategory->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToCategory); Importer.Imported(D, ToCategory); // Import protocols SmallVector<ObjCProtocolDecl *, 4> Protocols; SmallVector<SourceLocation, 4> ProtocolLocs; ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc = D->protocol_loc_begin(); for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(), FromProtoEnd = D->protocol_end(); FromProto != FromProtoEnd; ++FromProto, ++FromProtoLoc) { ObjCProtocolDecl *ToProto = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); if (!ToProto) return 0; Protocols.push_back(ToProto); ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); } // FIXME: If we're merging, make sure that the protocol list is the same. ToCategory->setProtocolList(Protocols.data(), Protocols.size(), ProtocolLocs.data(), Importer.getToContext()); } else { Importer.Imported(D, ToCategory); } // Import all of the members of this category. ImportDeclContext(D); // If we have an implementation, import it as well. if (D->getImplementation()) { ObjCCategoryImplDecl *Impl = cast_or_null<ObjCCategoryImplDecl>( Importer.Import(D->getImplementation())); if (!Impl) return 0; ToCategory->setImplementation(Impl); } return ToCategory; } bool ASTNodeImporter::ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition()) { if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From); return false; } // Start the protocol definition To->startDefinition(); // Import protocols SmallVector<ObjCProtocolDecl *, 4> Protocols; SmallVector<SourceLocation, 4> ProtocolLocs; ObjCProtocolDecl::protocol_loc_iterator FromProtoLoc = From->protocol_loc_begin(); for (ObjCProtocolDecl::protocol_iterator FromProto = From->protocol_begin(), FromProtoEnd = From->protocol_end(); FromProto != FromProtoEnd; ++FromProto, ++FromProtoLoc) { ObjCProtocolDecl *ToProto = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); if (!ToProto) return true; Protocols.push_back(ToProto); ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); } // FIXME: If we're merging, make sure that the protocol list is the same. To->setProtocolList(Protocols.data(), Protocols.size(), ProtocolLocs.data(), Importer.getToContext()); if (shouldForceImportDeclContext(Kind)) { // Import all of the members of this protocol. ImportDeclContext(From, /*ForceImport=*/true); } return false; } Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) { // If this protocol has a definition in the translation unit we're coming // from, but this particular declaration is not that definition, import the // definition and map to that. ObjCProtocolDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return 0; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of a protocol. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; ObjCProtocolDecl *MergeWithProtocol = 0; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol)) continue; if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(FoundDecls[I]))) break; } ObjCProtocolDecl *ToProto = MergeWithProtocol; if (!ToProto) { ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC, Name.getAsIdentifierInfo(), Loc, Importer.Import(D->getAtStartLoc()), /*PrevDecl=*/0); ToProto->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToProto); } Importer.Imported(D, ToProto); if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToProto)) return 0; return ToProto; } bool ASTNodeImporter::ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition()) { // Check consistency of superclass. ObjCInterfaceDecl *FromSuper = From->getSuperClass(); if (FromSuper) { FromSuper = cast_or_null<ObjCInterfaceDecl>(Importer.Import(FromSuper)); if (!FromSuper) return true; } ObjCInterfaceDecl *ToSuper = To->getSuperClass(); if ((bool)FromSuper != (bool)ToSuper || (FromSuper && !declaresSameEntity(FromSuper, ToSuper))) { Importer.ToDiag(To->getLocation(), diag::err_odr_objc_superclass_inconsistent) << To->getDeclName(); if (ToSuper) Importer.ToDiag(To->getSuperClassLoc(), diag::note_odr_objc_superclass) << To->getSuperClass()->getDeclName(); else Importer.ToDiag(To->getLocation(), diag::note_odr_objc_missing_superclass); if (From->getSuperClass()) Importer.FromDiag(From->getSuperClassLoc(), diag::note_odr_objc_superclass) << From->getSuperClass()->getDeclName(); else Importer.FromDiag(From->getLocation(), diag::note_odr_objc_missing_superclass); } if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From); return false; } // Start the definition. To->startDefinition(); // If this class has a superclass, import it. if (From->getSuperClass()) { ObjCInterfaceDecl *Super = cast_or_null<ObjCInterfaceDecl>( Importer.Import(From->getSuperClass())); if (!Super) return true; To->setSuperClass(Super); To->setSuperClassLoc(Importer.Import(From->getSuperClassLoc())); } // Import protocols SmallVector<ObjCProtocolDecl *, 4> Protocols; SmallVector<SourceLocation, 4> ProtocolLocs; ObjCInterfaceDecl::protocol_loc_iterator FromProtoLoc = From->protocol_loc_begin(); for (ObjCInterfaceDecl::protocol_iterator FromProto = From->protocol_begin(), FromProtoEnd = From->protocol_end(); FromProto != FromProtoEnd; ++FromProto, ++FromProtoLoc) { ObjCProtocolDecl *ToProto = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); if (!ToProto) return true; Protocols.push_back(ToProto); ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); } // FIXME: If we're merging, make sure that the protocol list is the same. To->setProtocolList(Protocols.data(), Protocols.size(), ProtocolLocs.data(), Importer.getToContext()); // Import categories. When the categories themselves are imported, they'll // hook themselves into this interface. for (ObjCCategoryDecl *FromCat = From->getCategoryList(); FromCat; FromCat = FromCat->getNextClassCategory()) Importer.Import(FromCat); // If we have an @implementation, import it as well. if (From->getImplementation()) { ObjCImplementationDecl *Impl = cast_or_null<ObjCImplementationDecl>( Importer.Import(From->getImplementation())); if (!Impl) return true; To->setImplementation(Impl); } if (shouldForceImportDeclContext(Kind)) { // Import all of the members of this class. ImportDeclContext(From, /*ForceImport=*/true); } return false; } Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { // If this class has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. ObjCInterfaceDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return 0; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of an @interface. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Look for an existing interface with the same name. ObjCInterfaceDecl *MergeWithIface = 0; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary)) continue; if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(FoundDecls[I]))) break; } // Create an interface declaration, if one does not already exist. ObjCInterfaceDecl *ToIface = MergeWithIface; if (!ToIface) { ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getAtStartLoc()), Name.getAsIdentifierInfo(), /*PrevDecl=*/0,Loc, D->isImplicitInterfaceDecl()); ToIface->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToIface); } Importer.Imported(D, ToIface); if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToIface)) return 0; return ToIface; } Decl *ASTNodeImporter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { ObjCCategoryDecl *Category = cast_or_null<ObjCCategoryDecl>( Importer.Import(D->getCategoryDecl())); if (!Category) return 0; ObjCCategoryImplDecl *ToImpl = Category->getImplementation(); if (!ToImpl) { DeclContext *DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return 0; SourceLocation CategoryNameLoc = Importer.Import(D->getCategoryNameLoc()); ToImpl = ObjCCategoryImplDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getIdentifier()), Category->getClassInterface(), Importer.Import(D->getLocation()), Importer.Import(D->getAtStartLoc()), CategoryNameLoc); DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return 0; ToImpl->setLexicalDeclContext(LexicalDC); } LexicalDC->addDeclInternal(ToImpl); Category->setImplementation(ToImpl); } Importer.Imported(D, ToImpl); ImportDeclContext(D); return ToImpl; } Decl *ASTNodeImporter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { // Find the corresponding interface. ObjCInterfaceDecl *Iface = cast_or_null<ObjCInterfaceDecl>( Importer.Import(D->getClassInterface())); if (!Iface) return 0; // Import the superclass, if any. ObjCInterfaceDecl *Super = 0; if (D->getSuperClass()) { Super = cast_or_null<ObjCInterfaceDecl>( Importer.Import(D->getSuperClass())); if (!Super) return 0; } ObjCImplementationDecl *Impl = Iface->getImplementation(); if (!Impl) { // We haven't imported an implementation yet. Create a new @implementation // now. Impl = ObjCImplementationDecl::Create(Importer.getToContext(), Importer.ImportContext(D->getDeclContext()), Iface, Super, Importer.Import(D->getLocation()), Importer.Import(D->getAtStartLoc()), Importer.Import(D->getIvarLBraceLoc()), Importer.Import(D->getIvarRBraceLoc())); if (D->getDeclContext() != D->getLexicalDeclContext()) { DeclContext *LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return 0; Impl->setLexicalDeclContext(LexicalDC); } // Associate the implementation with the class it implements. Iface->setImplementation(Impl); Importer.Imported(D, Iface->getImplementation()); } else { Importer.Imported(D, Iface->getImplementation()); // Verify that the existing @implementation has the same superclass. if ((Super && !Impl->getSuperClass()) || (!Super && Impl->getSuperClass()) || (Super && Impl->getSuperClass() && !declaresSameEntity(Super->getCanonicalDecl(), Impl->getSuperClass()))) { Importer.ToDiag(Impl->getLocation(), diag::err_odr_objc_superclass_inconsistent) << Iface->getDeclName(); // FIXME: It would be nice to have the location of the superclass // below. if (Impl->getSuperClass()) Importer.ToDiag(Impl->getLocation(), diag::note_odr_objc_superclass) << Impl->getSuperClass()->getDeclName(); else Importer.ToDiag(Impl->getLocation(), diag::note_odr_objc_missing_superclass); if (D->getSuperClass()) Importer.FromDiag(D->getLocation(), diag::note_odr_objc_superclass) << D->getSuperClass()->getDeclName(); else Importer.FromDiag(D->getLocation(), diag::note_odr_objc_missing_superclass); return 0; } } // Import all of the members of this @implementation. ImportDeclContext(D); return Impl; } Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) { // Import the major distinguishing characteristics of an @property. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // Check whether we have already imported this property. llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (ObjCPropertyDecl *FoundProp = dyn_cast<ObjCPropertyDecl>(FoundDecls[I])) { // Check property types. if (!Importer.IsStructurallyEquivalent(D->getType(), FoundProp->getType())) { Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent) << Name << D->getType() << FoundProp->getType(); Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here) << FoundProp->getType(); return 0; } // FIXME: Check property attributes, getters, setters, etc.? // Consider these properties to be equivalent. Importer.Imported(D, FoundProp); return FoundProp; } } // Import the type. TypeSourceInfo *T = Importer.Import(D->getTypeSourceInfo()); if (!T) return 0; // Create the new property. ObjCPropertyDecl *ToProperty = ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), Importer.Import(D->getAtLoc()), Importer.Import(D->getLParenLoc()), T, D->getPropertyImplementation()); Importer.Imported(D, ToProperty); ToProperty->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToProperty); ToProperty->setPropertyAttributes(D->getPropertyAttributes()); ToProperty->setPropertyAttributesAsWritten( D->getPropertyAttributesAsWritten()); ToProperty->setGetterName(Importer.Import(D->getGetterName())); ToProperty->setSetterName(Importer.Import(D->getSetterName())); ToProperty->setGetterMethodDecl( cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl()))); ToProperty->setSetterMethodDecl( cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl()))); ToProperty->setPropertyIvarDecl( cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl()))); return ToProperty; } Decl *ASTNodeImporter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) { ObjCPropertyDecl *Property = cast_or_null<ObjCPropertyDecl>( Importer.Import(D->getPropertyDecl())); if (!Property) return 0; DeclContext *DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return 0; // Import the lexical declaration context. DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return 0; } ObjCImplDecl *InImpl = dyn_cast<ObjCImplDecl>(LexicalDC); if (!InImpl) return 0; // Import the ivar (for an @synthesize). ObjCIvarDecl *Ivar = 0; if (D->getPropertyIvarDecl()) { Ivar = cast_or_null<ObjCIvarDecl>( Importer.Import(D->getPropertyIvarDecl())); if (!Ivar) return 0; } ObjCPropertyImplDecl *ToImpl = InImpl->FindPropertyImplDecl(Property->getIdentifier()); if (!ToImpl) { ToImpl = ObjCPropertyImplDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getLocStart()), Importer.Import(D->getLocation()), Property, D->getPropertyImplementation(), Ivar, Importer.Import(D->getPropertyIvarDeclLoc())); ToImpl->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToImpl); LexicalDC->addDeclInternal(ToImpl); } else { // Check that we have the same kind of property implementation (@synthesize // vs. @dynamic). if (D->getPropertyImplementation() != ToImpl->getPropertyImplementation()) { Importer.ToDiag(ToImpl->getLocation(), diag::err_odr_objc_property_impl_kind_inconsistent) << Property->getDeclName() << (ToImpl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); Importer.FromDiag(D->getLocation(), diag::note_odr_objc_property_impl_kind) << D->getPropertyDecl()->getDeclName() << (D->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); return 0; } // For @synthesize, check that we have the same if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize && Ivar != ToImpl->getPropertyIvarDecl()) { Importer.ToDiag(ToImpl->getPropertyIvarDeclLoc(), diag::err_odr_objc_synthesize_ivar_inconsistent) << Property->getDeclName() << ToImpl->getPropertyIvarDecl()->getDeclName() << Ivar->getDeclName(); Importer.FromDiag(D->getPropertyIvarDeclLoc(), diag::note_odr_objc_synthesize_ivar_here) << D->getPropertyIvarDecl()->getDeclName(); return 0; } // Merge the existing implementation with the new implementation. Importer.Imported(D, ToImpl); } return ToImpl; } Decl *ASTNodeImporter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { // For template arguments, we adopt the translation unit as our declaration // context. This context will be fixed when the actual template declaration // is created. // FIXME: Import default argument. return TemplateTypeParmDecl::Create(Importer.getToContext(), Importer.getToContext().getTranslationUnitDecl(), Importer.Import(D->getLocStart()), Importer.Import(D->getLocation()), D->getDepth(), D->getIndex(), Importer.Import(D->getIdentifier()), D->wasDeclaredWithTypename(), D->isParameterPack()); } Decl * ASTNodeImporter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return 0; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import the type of this declaration. QualType T = Importer.Import(D->getType()); if (T.isNull()) return 0; // Import type-source information. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); if (D->getTypeSourceInfo() && !TInfo) return 0; // FIXME: Import default argument. return NonTypeTemplateParmDecl::Create(Importer.getToContext(), Importer.getToContext().getTranslationUnitDecl(), Importer.Import(D->getInnerLocStart()), Loc, D->getDepth(), D->getPosition(), Name.getAsIdentifierInfo(), T, D->isParameterPack(), TInfo); } Decl * ASTNodeImporter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return 0; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import template parameters. TemplateParameterList *TemplateParams = ImportTemplateParameterList(D->getTemplateParameters()); if (!TemplateParams) return 0; // FIXME: Import default argument. return TemplateTemplateParmDecl::Create(Importer.getToContext(), Importer.getToContext().getTranslationUnitDecl(), Loc, D->getDepth(), D->getPosition(), D->isParameterPack(), Name.getAsIdentifierInfo(), TemplateParams); } Decl *ASTNodeImporter::VisitClassTemplateDecl(ClassTemplateDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. CXXRecordDecl *Definition = cast_or_null<CXXRecordDecl>(D->getTemplatedDecl()->getDefinition()); if (Definition && Definition != D->getTemplatedDecl()) { Decl *ImportedDef = Importer.Import(Definition->getDescribedClassTemplate()); if (!ImportedDef) return 0; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of this class template. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) return 0; // We may already have a template of the same name; try to find and match it. if (!DC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; llvm::SmallVector<NamedDecl *, 2> FoundDecls; DC->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary)) continue; Decl *Found = FoundDecls[I]; if (ClassTemplateDecl *FoundTemplate = dyn_cast<ClassTemplateDecl>(Found)) { if (IsStructuralMatch(D, FoundTemplate)) { // The class templates structurally match; call it the same template. // FIXME: We may be filling in a forward declaration here. Handle // this case! Importer.Imported(D->getTemplatedDecl(), FoundTemplate->getTemplatedDecl()); return Importer.Imported(D, FoundTemplate); } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary, ConflictingDecls.data(), ConflictingDecls.size()); } if (!Name) return 0; } CXXRecordDecl *DTemplated = D->getTemplatedDecl(); // Create the declaration that is being templated. SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart()); SourceLocation IdLoc = Importer.Import(DTemplated->getLocation()); CXXRecordDecl *D2Templated = CXXRecordDecl::Create(Importer.getToContext(), DTemplated->getTagKind(), DC, StartLoc, IdLoc, Name.getAsIdentifierInfo()); D2Templated->setAccess(DTemplated->getAccess()); D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc())); D2Templated->setLexicalDeclContext(LexicalDC); // Create the class template declaration itself. TemplateParameterList *TemplateParams = ImportTemplateParameterList(D->getTemplateParameters()); if (!TemplateParams) return 0; ClassTemplateDecl *D2 = ClassTemplateDecl::Create(Importer.getToContext(), DC, Loc, Name, TemplateParams, D2Templated, /*PrevDecl=*/0); D2Templated->setDescribedClassTemplate(D2); D2->setAccess(D->getAccess()); D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); // Note the relationship between the class templates. Importer.Imported(D, D2); Importer.Imported(DTemplated, D2Templated); if (DTemplated->isCompleteDefinition() && !D2Templated->isCompleteDefinition()) { // FIXME: Import definition! } return D2; } Decl *ASTNodeImporter::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. TagDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return 0; return Importer.Imported(D, ImportedDef); } ClassTemplateDecl *ClassTemplate = cast_or_null<ClassTemplateDecl>(Importer.Import( D->getSpecializedTemplate())); if (!ClassTemplate) return 0; // Import the context of this declaration. DeclContext *DC = ClassTemplate->getDeclContext(); if (!DC) return 0; DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return 0; } // Import the location of this declaration. SourceLocation StartLoc = Importer.Import(D->getLocStart()); SourceLocation IdLoc = Importer.Import(D->getLocation()); // Import template arguments. SmallVector<TemplateArgument, 2> TemplateArgs; if (ImportTemplateArguments(D->getTemplateArgs().data(), D->getTemplateArgs().size(), TemplateArgs)) return 0; // Try to find an existing specialization with these template arguments. void *InsertPos = 0; ClassTemplateSpecializationDecl *D2 = ClassTemplate->findSpecialization(TemplateArgs.data(), TemplateArgs.size(), InsertPos); if (D2) { // We already have a class template specialization with these template // arguments. // FIXME: Check for specialization vs. instantiation errors. if (RecordDecl *FoundDef = D2->getDefinition()) { if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) { // The record types structurally match, or the "from" translation // unit only had a forward declaration anyway; call it the same // function. return Importer.Imported(D, FoundDef); } } } else { // Create a new specialization. D2 = ClassTemplateSpecializationDecl::Create(Importer.getToContext(), D->getTagKind(), DC, StartLoc, IdLoc, ClassTemplate, TemplateArgs.data(), TemplateArgs.size(), /*PrevDecl=*/0); D2->setSpecializationKind(D->getSpecializationKind()); // Add this specialization to the class template. ClassTemplate->AddSpecialization(D2, InsertPos); // Import the qualifier, if any. D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); // Add the specialization to this context. D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); } Importer.Imported(D, D2); if (D->isCompleteDefinition() && ImportDefinition(D, D2)) return 0; return D2; } //---------------------------------------------------------------------------- // Import Statements //---------------------------------------------------------------------------- Stmt *ASTNodeImporter::VisitStmt(Stmt *S) { Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node) << S->getStmtClassName(); return 0; } //---------------------------------------------------------------------------- // Import Expressions //---------------------------------------------------------------------------- Expr *ASTNodeImporter::VisitExpr(Expr *E) { Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node) << E->getStmtClassName(); return 0; } Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) { ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl())); if (!ToD) return 0; NamedDecl *FoundD = 0; if (E->getDecl() != E->getFoundDecl()) { FoundD = cast_or_null<NamedDecl>(Importer.Import(E->getFoundDecl())); if (!FoundD) return 0; } QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; DeclRefExpr *DRE = DeclRefExpr::Create(Importer.getToContext(), Importer.Import(E->getQualifierLoc()), Importer.Import(E->getTemplateKeywordLoc()), ToD, E->refersToEnclosingLocal(), Importer.Import(E->getLocation()), T, E->getValueKind(), FoundD, /*FIXME:TemplateArgs=*/0); if (E->hadMultipleCandidates()) DRE->setHadMultipleCandidates(true); return DRE; } Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; return IntegerLiteral::Create(Importer.getToContext(), E->getValue(), T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; return new (Importer.getToContext()) CharacterLiteral(E->getValue(), E->getKind(), T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) { Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return 0; return new (Importer.getToContext()) ParenExpr(Importer.Import(E->getLParen()), Importer.Import(E->getRParen()), SubExpr); } Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return 0; return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(), T, E->getValueKind(), E->getObjectKind(), Importer.Import(E->getOperatorLoc())); } Expr *ASTNodeImporter::VisitUnaryExprOrTypeTraitExpr( UnaryExprOrTypeTraitExpr *E) { QualType ResultType = Importer.Import(E->getType()); if (E->isArgumentType()) { TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo()); if (!TInfo) return 0; return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(), TInfo, ResultType, Importer.Import(E->getOperatorLoc()), Importer.Import(E->getRParenLoc())); } Expr *SubExpr = Importer.Import(E->getArgumentExpr()); if (!SubExpr) return 0; return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(), SubExpr, ResultType, Importer.Import(E->getOperatorLoc()), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; Expr *LHS = Importer.Import(E->getLHS()); if (!LHS) return 0; Expr *RHS = Importer.Import(E->getRHS()); if (!RHS) return 0; return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(), T, E->getValueKind(), E->getObjectKind(), Importer.Import(E->getOperatorLoc())); } Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; QualType CompLHSType = Importer.Import(E->getComputationLHSType()); if (CompLHSType.isNull()) return 0; QualType CompResultType = Importer.Import(E->getComputationResultType()); if (CompResultType.isNull()) return 0; Expr *LHS = Importer.Import(E->getLHS()); if (!LHS) return 0; Expr *RHS = Importer.Import(E->getRHS()); if (!RHS) return 0; return new (Importer.getToContext()) CompoundAssignOperator(LHS, RHS, E->getOpcode(), T, E->getValueKind(), E->getObjectKind(), CompLHSType, CompResultType, Importer.Import(E->getOperatorLoc())); } static bool ImportCastPath(CastExpr *E, CXXCastPath &Path) { if (E->path_empty()) return false; // TODO: import cast paths return true; } Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return 0; CXXCastPath BasePath; if (ImportCastPath(E, BasePath)) return 0; return ImplicitCastExpr::Create(Importer.getToContext(), T, E->getCastKind(), SubExpr, &BasePath, E->getValueKind()); } Expr *ASTNodeImporter::VisitCStyleCastExpr(CStyleCastExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return 0; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return 0; TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten()); if (!TInfo && E->getTypeInfoAsWritten()) return 0; CXXCastPath BasePath; if (ImportCastPath(E, BasePath)) return 0; return CStyleCastExpr::Create(Importer.getToContext(), T, E->getValueKind(), E->getCastKind(), SubExpr, &BasePath, TInfo, Importer.Import(E->getLParenLoc()), Importer.Import(E->getRParenLoc())); } ASTImporter::ASTImporter(ASTContext &ToContext, FileManager &ToFileManager, ASTContext &FromContext, FileManager &FromFileManager, bool MinimalImport) : ToContext(ToContext), FromContext(FromContext), ToFileManager(ToFileManager), FromFileManager(FromFileManager), Minimal(MinimalImport) { ImportedDecls[FromContext.getTranslationUnitDecl()] = ToContext.getTranslationUnitDecl(); } ASTImporter::~ASTImporter() { } QualType ASTImporter::Import(QualType FromT) { if (FromT.isNull()) return QualType(); const Type *fromTy = FromT.getTypePtr(); // Check whether we've already imported this type. llvm::DenseMap<const Type *, const Type *>::iterator Pos = ImportedTypes.find(fromTy); if (Pos != ImportedTypes.end()) return ToContext.getQualifiedType(Pos->second, FromT.getLocalQualifiers()); // Import the type ASTNodeImporter Importer(*this); QualType ToT = Importer.Visit(fromTy); if (ToT.isNull()) return ToT; // Record the imported type. ImportedTypes[fromTy] = ToT.getTypePtr(); return ToContext.getQualifiedType(ToT, FromT.getLocalQualifiers()); } TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) { if (!FromTSI) return FromTSI; // FIXME: For now we just create a "trivial" type source info based // on the type and a single location. Implement a real version of this. QualType T = Import(FromTSI->getType()); if (T.isNull()) return 0; return ToContext.getTrivialTypeSourceInfo(T, FromTSI->getTypeLoc().getLocStart()); } Decl *ASTImporter::Import(Decl *FromD) { if (!FromD) return 0; ASTNodeImporter Importer(*this); // Check whether we've already imported this declaration. llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD); if (Pos != ImportedDecls.end()) { Decl *ToD = Pos->second; Importer.ImportDefinitionIfNeeded(FromD, ToD); return ToD; } // Import the type Decl *ToD = Importer.Visit(FromD); if (!ToD) return 0; // Record the imported declaration. ImportedDecls[FromD] = ToD; if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) { // Keep track of anonymous tags that have an associated typedef. if (FromTag->getTypedefNameForAnonDecl()) AnonTagsWithPendingTypedefs.push_back(FromTag); } else if (TypedefNameDecl *FromTypedef = dyn_cast<TypedefNameDecl>(FromD)) { // When we've finished transforming a typedef, see whether it was the // typedef for an anonymous tag. for (SmallVector<TagDecl *, 4>::iterator FromTag = AnonTagsWithPendingTypedefs.begin(), FromTagEnd = AnonTagsWithPendingTypedefs.end(); FromTag != FromTagEnd; ++FromTag) { if ((*FromTag)->getTypedefNameForAnonDecl() == FromTypedef) { if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) { // We found the typedef for an anonymous tag; link them. ToTag->setTypedefNameForAnonDecl(cast<TypedefNameDecl>(ToD)); AnonTagsWithPendingTypedefs.erase(FromTag); break; } } } } return ToD; } DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) { if (!FromDC) return FromDC; DeclContext *ToDC = cast_or_null<DeclContext>(Import(cast<Decl>(FromDC))); if (!ToDC) return 0; // When we're using a record/enum/Objective-C class/protocol as a context, we // need it to have a definition. if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(ToDC)) { RecordDecl *FromRecord = cast<RecordDecl>(FromDC); if (ToRecord->isCompleteDefinition()) { // Do nothing. } else if (FromRecord->isCompleteDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromRecord, ToRecord, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToRecord); } } else if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(ToDC)) { EnumDecl *FromEnum = cast<EnumDecl>(FromDC); if (ToEnum->isCompleteDefinition()) { // Do nothing. } else if (FromEnum->isCompleteDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromEnum, ToEnum, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToEnum); } } else if (ObjCInterfaceDecl *ToClass = dyn_cast<ObjCInterfaceDecl>(ToDC)) { ObjCInterfaceDecl *FromClass = cast<ObjCInterfaceDecl>(FromDC); if (ToClass->getDefinition()) { // Do nothing. } else if (ObjCInterfaceDecl *FromDef = FromClass->getDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromDef, ToClass, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToClass); } } else if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(ToDC)) { ObjCProtocolDecl *FromProto = cast<ObjCProtocolDecl>(FromDC); if (ToProto->getDefinition()) { // Do nothing. } else if (ObjCProtocolDecl *FromDef = FromProto->getDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromDef, ToProto, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToProto); } } return ToDC; } Expr *ASTImporter::Import(Expr *FromE) { if (!FromE) return 0; return cast_or_null<Expr>(Import(cast<Stmt>(FromE))); } Stmt *ASTImporter::Import(Stmt *FromS) { if (!FromS) return 0; // Check whether we've already imported this declaration. llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS); if (Pos != ImportedStmts.end()) return Pos->second; // Import the type ASTNodeImporter Importer(*this); Stmt *ToS = Importer.Visit(FromS); if (!ToS) return 0; // Record the imported declaration. ImportedStmts[FromS] = ToS; return ToS; } NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) { if (!FromNNS) return 0; NestedNameSpecifier *prefix = Import(FromNNS->getPrefix()); switch (FromNNS->getKind()) { case NestedNameSpecifier::Identifier: if (IdentifierInfo *II = Import(FromNNS->getAsIdentifier())) { return NestedNameSpecifier::Create(ToContext, prefix, II); } return 0; case NestedNameSpecifier::Namespace: if (NamespaceDecl *NS = cast<NamespaceDecl>(Import(FromNNS->getAsNamespace()))) { return NestedNameSpecifier::Create(ToContext, prefix, NS); } return 0; case NestedNameSpecifier::NamespaceAlias: if (NamespaceAliasDecl *NSAD = cast<NamespaceAliasDecl>(Import(FromNNS->getAsNamespaceAlias()))) { return NestedNameSpecifier::Create(ToContext, prefix, NSAD); } return 0; case NestedNameSpecifier::Global: return NestedNameSpecifier::GlobalSpecifier(ToContext); case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { QualType T = Import(QualType(FromNNS->getAsType(), 0u)); if (!T.isNull()) { bool bTemplate = FromNNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate; return NestedNameSpecifier::Create(ToContext, prefix, bTemplate, T.getTypePtr()); } } return 0; } llvm_unreachable("Invalid nested name specifier kind"); } NestedNameSpecifierLoc ASTImporter::Import(NestedNameSpecifierLoc FromNNS) { // FIXME: Implement! return NestedNameSpecifierLoc(); } TemplateName ASTImporter::Import(TemplateName From) { switch (From.getKind()) { case TemplateName::Template: if (TemplateDecl *ToTemplate = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl()))) return TemplateName(ToTemplate); return TemplateName(); case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *FromStorage = From.getAsOverloadedTemplate(); UnresolvedSet<2> ToTemplates; for (OverloadedTemplateStorage::iterator I = FromStorage->begin(), E = FromStorage->end(); I != E; ++I) { if (NamedDecl *To = cast_or_null<NamedDecl>(Import(*I))) ToTemplates.addDecl(To); else return TemplateName(); } return ToContext.getOverloadedTemplateName(ToTemplates.begin(), ToTemplates.end()); } case TemplateName::QualifiedTemplate: { QualifiedTemplateName *QTN = From.getAsQualifiedTemplateName(); NestedNameSpecifier *Qualifier = Import(QTN->getQualifier()); if (!Qualifier) return TemplateName(); if (TemplateDecl *ToTemplate = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl()))) return ToContext.getQualifiedTemplateName(Qualifier, QTN->hasTemplateKeyword(), ToTemplate); return TemplateName(); } case TemplateName::DependentTemplate: { DependentTemplateName *DTN = From.getAsDependentTemplateName(); NestedNameSpecifier *Qualifier = Import(DTN->getQualifier()); if (!Qualifier) return TemplateName(); if (DTN->isIdentifier()) { return ToContext.getDependentTemplateName(Qualifier, Import(DTN->getIdentifier())); } return ToContext.getDependentTemplateName(Qualifier, DTN->getOperator()); } case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = From.getAsSubstTemplateTemplateParm(); TemplateTemplateParmDecl *param = cast_or_null<TemplateTemplateParmDecl>(Import(subst->getParameter())); if (!param) return TemplateName(); TemplateName replacement = Import(subst->getReplacement()); if (replacement.isNull()) return TemplateName(); return ToContext.getSubstTemplateTemplateParm(param, replacement); } case TemplateName::SubstTemplateTemplateParmPack: { SubstTemplateTemplateParmPackStorage *SubstPack = From.getAsSubstTemplateTemplateParmPack(); TemplateTemplateParmDecl *Param = cast_or_null<TemplateTemplateParmDecl>( Import(SubstPack->getParameterPack())); if (!Param) return TemplateName(); ASTNodeImporter Importer(*this); TemplateArgument ArgPack = Importer.ImportTemplateArgument(SubstPack->getArgumentPack()); if (ArgPack.isNull()) return TemplateName(); return ToContext.getSubstTemplateTemplateParmPack(Param, ArgPack); } } llvm_unreachable("Invalid template name kind"); } SourceLocation ASTImporter::Import(SourceLocation FromLoc) { if (FromLoc.isInvalid()) return SourceLocation(); SourceManager &FromSM = FromContext.getSourceManager(); // For now, map everything down to its spelling location, so that we // don't have to import macro expansions. // FIXME: Import macro expansions! FromLoc = FromSM.getSpellingLoc(FromLoc); std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc); SourceManager &ToSM = ToContext.getSourceManager(); return ToSM.getLocForStartOfFile(Import(Decomposed.first)) .getLocWithOffset(Decomposed.second); } SourceRange ASTImporter::Import(SourceRange FromRange) { return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd())); } FileID ASTImporter::Import(FileID FromID) { llvm::DenseMap<FileID, FileID>::iterator Pos = ImportedFileIDs.find(FromID); if (Pos != ImportedFileIDs.end()) return Pos->second; SourceManager &FromSM = FromContext.getSourceManager(); SourceManager &ToSM = ToContext.getSourceManager(); const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID); assert(FromSLoc.isFile() && "Cannot handle macro expansions yet"); // Include location of this file. SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc()); // Map the FileID for to the "to" source manager. FileID ToID; const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache(); if (Cache->OrigEntry) { // FIXME: We probably want to use getVirtualFile(), so we don't hit the // disk again // FIXME: We definitely want to re-use the existing MemoryBuffer, rather // than mmap the files several times. const FileEntry *Entry = ToFileManager.getFile(Cache->OrigEntry->getName()); ToID = ToSM.createFileID(Entry, ToIncludeLoc, FromSLoc.getFile().getFileCharacteristic()); } else { // FIXME: We want to re-use the existing MemoryBuffer! const llvm::MemoryBuffer * FromBuf = Cache->getBuffer(FromContext.getDiagnostics(), FromSM); llvm::MemoryBuffer *ToBuf = llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBuffer(), FromBuf->getBufferIdentifier()); ToID = ToSM.createFileIDForMemBuffer(ToBuf); } ImportedFileIDs[FromID] = ToID; return ToID; } void ASTImporter::ImportDefinition(Decl *From) { Decl *To = Import(From); if (!To) return; if (DeclContext *FromDC = cast<DeclContext>(From)) { ASTNodeImporter Importer(*this); if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(To)) { if (!ToRecord->getDefinition()) { Importer.ImportDefinition(cast<RecordDecl>(FromDC), ToRecord, ASTNodeImporter::IDK_Everything); return; } } if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(To)) { if (!ToEnum->getDefinition()) { Importer.ImportDefinition(cast<EnumDecl>(FromDC), ToEnum, ASTNodeImporter::IDK_Everything); return; } } if (ObjCInterfaceDecl *ToIFace = dyn_cast<ObjCInterfaceDecl>(To)) { if (!ToIFace->getDefinition()) { Importer.ImportDefinition(cast<ObjCInterfaceDecl>(FromDC), ToIFace, ASTNodeImporter::IDK_Everything); return; } } if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(To)) { if (!ToProto->getDefinition()) { Importer.ImportDefinition(cast<ObjCProtocolDecl>(FromDC), ToProto, ASTNodeImporter::IDK_Everything); return; } } Importer.ImportDeclContext(FromDC, true); } } DeclarationName ASTImporter::Import(DeclarationName FromName) { if (!FromName) return DeclarationName(); switch (FromName.getNameKind()) { case DeclarationName::Identifier: return Import(FromName.getAsIdentifierInfo()); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return Import(FromName.getObjCSelector()); case DeclarationName::CXXConstructorName: { QualType T = Import(FromName.getCXXNameType()); if (T.isNull()) return DeclarationName(); return ToContext.DeclarationNames.getCXXConstructorName( ToContext.getCanonicalType(T)); } case DeclarationName::CXXDestructorName: { QualType T = Import(FromName.getCXXNameType()); if (T.isNull()) return DeclarationName(); return ToContext.DeclarationNames.getCXXDestructorName( ToContext.getCanonicalType(T)); } case DeclarationName::CXXConversionFunctionName: { QualType T = Import(FromName.getCXXNameType()); if (T.isNull()) return DeclarationName(); return ToContext.DeclarationNames.getCXXConversionFunctionName( ToContext.getCanonicalType(T)); } case DeclarationName::CXXOperatorName: return ToContext.DeclarationNames.getCXXOperatorName( FromName.getCXXOverloadedOperator()); case DeclarationName::CXXLiteralOperatorName: return ToContext.DeclarationNames.getCXXLiteralOperatorName( Import(FromName.getCXXLiteralIdentifier())); case DeclarationName::CXXUsingDirective: // FIXME: STATICS! return DeclarationName::getUsingDirectiveName(); } llvm_unreachable("Invalid DeclarationName Kind!"); } IdentifierInfo *ASTImporter::Import(const IdentifierInfo *FromId) { if (!FromId) return 0; return &ToContext.Idents.get(FromId->getName()); } Selector ASTImporter::Import(Selector FromSel) { if (FromSel.isNull()) return Selector(); SmallVector<IdentifierInfo *, 4> Idents; Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0))); for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I) Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I))); return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data()); } DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name, DeclContext *DC, unsigned IDNS, NamedDecl **Decls, unsigned NumDecls) { return Name; } DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) { return ToContext.getDiagnostics().Report(Loc, DiagID); } DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) { return FromContext.getDiagnostics().Report(Loc, DiagID); } void ASTImporter::CompleteDecl (Decl *D) { if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) { if (!ID->getDefinition()) ID->startDefinition(); } else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) { if (!PD->getDefinition()) PD->startDefinition(); } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { if (!TD->getDefinition() && !TD->isBeingDefined()) { TD->startDefinition(); TD->setCompleteDefinition(true); } } else { assert (0 && "CompleteDecl called on a Decl that can't be completed"); } } Decl *ASTImporter::Imported(Decl *From, Decl *To) { ImportedDecls[From] = To; return To; } bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To) { llvm::DenseMap<const Type *, const Type *>::iterator Pos = ImportedTypes.find(From.getTypePtr()); if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To)) return true; StructuralEquivalenceContext Ctx(FromContext, ToContext, NonEquivalentDecls); return Ctx.IsStructurallyEquivalent(From, To); }