config root man

Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/AST/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/AST/TypePrinter.cpp

//===--- TypePrinter.cpp - Pretty-Print Clang Types -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to print types from Clang's type system.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;

namespace {
  /// \brief RAII object that enables printing of the ARC __strong lifetime
  /// qualifier.
  class IncludeStrongLifetimeRAII {
    PrintingPolicy &Policy;
    bool Old;
    
  public:
    explicit IncludeStrongLifetimeRAII(PrintingPolicy &Policy) 
      : Policy(Policy), Old(Policy.SuppressStrongLifetime) {
      Policy.SuppressStrongLifetime = false;
    }
    
    ~IncludeStrongLifetimeRAII() {
      Policy.SuppressStrongLifetime = Old;
    }
  };
  
  class TypePrinter {
    PrintingPolicy Policy;

  public:
    explicit TypePrinter(const PrintingPolicy &Policy) : Policy(Policy) { }

    void print(const Type *ty, Qualifiers qs, std::string &buffer);
    void print(QualType T, std::string &S);
    void AppendScope(DeclContext *DC, std::string &S);
    void printTag(TagDecl *T, std::string &S);
#define ABSTRACT_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) \
    void print##CLASS(const CLASS##Type *T, std::string &S);
#include "clang/AST/TypeNodes.def"
  };
}

static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
  if (TypeQuals & Qualifiers::Const) {
    if (!S.empty()) S += ' ';
    S += "const";
  }
  if (TypeQuals & Qualifiers::Volatile) {
    if (!S.empty()) S += ' ';
    S += "volatile";
  }
  if (TypeQuals & Qualifiers::Restrict) {
    if (!S.empty()) S += ' ';
    S += "restrict";
  }
}

void TypePrinter::print(QualType t, std::string &buffer) {
  SplitQualType split = t.split();
  print(split.Ty, split.Quals, buffer);
}

void TypePrinter::print(const Type *T, Qualifiers Quals, std::string &buffer) {
  if (!T) {
    buffer += "NULL TYPE";
    return;
  }
  
  if (Policy.SuppressSpecifiers && T->isSpecifierType())
    return;
  
  // Print qualifiers as appropriate.
  
  // CanPrefixQualifiers - We prefer to print type qualifiers before the type,
  // so that we get "const int" instead of "int const", but we can't do this if
  // the type is complex.  For example if the type is "int*", we *must* print
  // "int * const", printing "const int *" is different.  Only do this when the
  // type expands to a simple string.
  bool CanPrefixQualifiers = false;
  bool NeedARCStrongQualifier = false;
  Type::TypeClass TC = T->getTypeClass();
  if (const AutoType *AT = dyn_cast<AutoType>(T))
    TC = AT->desugar()->getTypeClass();
  if (const SubstTemplateTypeParmType *Subst
                                      = dyn_cast<SubstTemplateTypeParmType>(T))
    TC = Subst->getReplacementType()->getTypeClass();
  
  switch (TC) {
    case Type::Builtin:
    case Type::Complex:
    case Type::UnresolvedUsing:
    case Type::Typedef:
    case Type::TypeOfExpr:
    case Type::TypeOf:
    case Type::Decltype:
    case Type::UnaryTransform:
    case Type::Record:
    case Type::Enum:
    case Type::Elaborated:
    case Type::TemplateTypeParm:
    case Type::SubstTemplateTypeParmPack:
    case Type::TemplateSpecialization:
    case Type::InjectedClassName:
    case Type::DependentName:
    case Type::DependentTemplateSpecialization:
    case Type::ObjCObject:
    case Type::ObjCInterface:
    case Type::Atomic:
      CanPrefixQualifiers = true;
      break;
      
    case Type::ObjCObjectPointer:
      CanPrefixQualifiers = T->isObjCIdType() || T->isObjCClassType() ||
        T->isObjCQualifiedIdType() || T->isObjCQualifiedClassType();
      break;
      
    case Type::ConstantArray:
    case Type::IncompleteArray:
    case Type::VariableArray:
    case Type::DependentSizedArray:
      NeedARCStrongQualifier = true;
      // Fall through
      
    case Type::Pointer:
    case Type::BlockPointer:
    case Type::LValueReference:
    case Type::RValueReference:
    case Type::MemberPointer:
    case Type::DependentSizedExtVector:
    case Type::Vector:
    case Type::ExtVector:
    case Type::FunctionProto:
    case Type::FunctionNoProto:
    case Type::Paren:
    case Type::Attributed:
    case Type::PackExpansion:
    case Type::SubstTemplateTypeParm:
    case Type::Auto:
      CanPrefixQualifiers = false;
      break;
  }
  
  if (!CanPrefixQualifiers && !Quals.empty()) {
    std::string qualsBuffer;
    if (NeedARCStrongQualifier) {
      IncludeStrongLifetimeRAII Strong(Policy);
      Quals.getAsStringInternal(qualsBuffer, Policy);
    } else {
      Quals.getAsStringInternal(qualsBuffer, Policy);
    }
    
    if (!qualsBuffer.empty()) {
      if (!buffer.empty()) {
        qualsBuffer += ' ';
        qualsBuffer += buffer;
      }
      std::swap(buffer, qualsBuffer);
    }
  }
  
  switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) case Type::CLASS: \
    print##CLASS(cast<CLASS##Type>(T), buffer); \
    break;
#include "clang/AST/TypeNodes.def"
  }
  
  // If we're adding the qualifiers as a prefix, do it now.
  if (CanPrefixQualifiers && !Quals.empty()) {
    std::string qualsBuffer;
    if (NeedARCStrongQualifier) {
      IncludeStrongLifetimeRAII Strong(Policy);
      Quals.getAsStringInternal(qualsBuffer, Policy);
    } else {
      Quals.getAsStringInternal(qualsBuffer, Policy);
    }

    if (!qualsBuffer.empty()) {
      if (!buffer.empty()) {
        qualsBuffer += ' ';
        qualsBuffer += buffer;
      }
      std::swap(buffer, qualsBuffer);
    }
  }
}

void TypePrinter::printBuiltin(const BuiltinType *T, std::string &S) {
  if (S.empty()) {
    S = T->getName(Policy);
  } else {
    // Prefix the basic type, e.g. 'int X'.
    S = ' ' + S;
    S = T->getName(Policy) + S;
  }
}

void TypePrinter::printComplex(const ComplexType *T, std::string &S) {
  print(T->getElementType(), S);
  S = "_Complex " + S;
}

void TypePrinter::printPointer(const PointerType *T, std::string &S) { 
  S = '*' + S;
  
  // Handle things like 'int (*A)[4];' correctly.
  // FIXME: this should include vectors, but vectors use attributes I guess.
  if (isa<ArrayType>(T->getPointeeType()))
    S = '(' + S + ')';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getPointeeType(), S);
}

void TypePrinter::printBlockPointer(const BlockPointerType *T, std::string &S) {
  S = '^' + S;
  print(T->getPointeeType(), S);
}

void TypePrinter::printLValueReference(const LValueReferenceType *T, 
                                       std::string &S) { 
  S = '&' + S;
  
  // Handle things like 'int (&A)[4];' correctly.
  // FIXME: this should include vectors, but vectors use attributes I guess.
  if (isa<ArrayType>(T->getPointeeTypeAsWritten()))
    S = '(' + S + ')';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getPointeeTypeAsWritten(), S);
}

void TypePrinter::printRValueReference(const RValueReferenceType *T, 
                                       std::string &S) { 
  S = "&&" + S;
  
  // Handle things like 'int (&&A)[4];' correctly.
  // FIXME: this should include vectors, but vectors use attributes I guess.
  if (isa<ArrayType>(T->getPointeeTypeAsWritten()))
    S = '(' + S + ')';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getPointeeTypeAsWritten(), S);
}

void TypePrinter::printMemberPointer(const MemberPointerType *T, 
                                     std::string &S) { 
  PrintingPolicy InnerPolicy(Policy);
  Policy.SuppressTag = true;
  std::string C = QualType(T->getClass(), 0).getAsString(InnerPolicy);
  C += "::*";
  S = C + S;
  
  // Handle things like 'int (Cls::*A)[4];' correctly.
  // FIXME: this should include vectors, but vectors use attributes I guess.
  if (isa<ArrayType>(T->getPointeeType()))
    S = '(' + S + ')';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getPointeeType(), S);
}

void TypePrinter::printConstantArray(const ConstantArrayType *T, 
                                     std::string &S) {
  S += '[';
  S += llvm::utostr(T->getSize().getZExtValue());
  S += ']';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getElementType(), S);
}

void TypePrinter::printIncompleteArray(const IncompleteArrayType *T, 
                                       std::string &S) {
  S += "[]";
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getElementType(), S);
}

void TypePrinter::printVariableArray(const VariableArrayType *T, 
                                     std::string &S) { 
  S += '[';
  
  if (T->getIndexTypeQualifiers().hasQualifiers()) {
    AppendTypeQualList(S, T->getIndexTypeCVRQualifiers());
    S += ' ';
  }
  
  if (T->getSizeModifier() == VariableArrayType::Static)
    S += "static";
  else if (T->getSizeModifier() == VariableArrayType::Star)
    S += '*';
  
  if (T->getSizeExpr()) {
    std::string SStr;
    llvm::raw_string_ostream s(SStr);
    T->getSizeExpr()->printPretty(s, 0, Policy);
    S += s.str();
  }
  S += ']';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getElementType(), S);
}

void TypePrinter::printDependentSizedArray(const DependentSizedArrayType *T, 
                                           std::string &S) {  
  S += '[';
  
  if (T->getSizeExpr()) {
    std::string SStr;
    llvm::raw_string_ostream s(SStr);
    T->getSizeExpr()->printPretty(s, 0, Policy);
    S += s.str();
  }
  S += ']';
  
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getElementType(), S);
}

void TypePrinter::printDependentSizedExtVector(
                                          const DependentSizedExtVectorType *T, 
                                               std::string &S) { 
  print(T->getElementType(), S);
  
  S += " __attribute__((ext_vector_type(";
  if (T->getSizeExpr()) {
    std::string SStr;
    llvm::raw_string_ostream s(SStr);
    T->getSizeExpr()->printPretty(s, 0, Policy);
    S += s.str();
  }
  S += ")))";  
}

void TypePrinter::printVector(const VectorType *T, std::string &S) { 
  switch (T->getVectorKind()) {
  case VectorType::AltiVecPixel:
    S = "__vector __pixel " + S;
    break;
  case VectorType::AltiVecBool:
    print(T->getElementType(), S);
    S = "__vector __bool " + S;
    break;
  case VectorType::AltiVecVector:
    print(T->getElementType(), S);
    S = "__vector " + S;
    break;
  case VectorType::NeonVector:
    print(T->getElementType(), S);
    S = ("__attribute__((neon_vector_type(" +
         llvm::utostr_32(T->getNumElements()) + "))) " + S);
    break;
  case VectorType::NeonPolyVector:
    print(T->getElementType(), S);
    S = ("__attribute__((neon_polyvector_type(" +
         llvm::utostr_32(T->getNumElements()) + "))) " + S);
    break;
  case VectorType::GenericVector: {
    // FIXME: We prefer to print the size directly here, but have no way
    // to get the size of the type.
    print(T->getElementType(), S);
    std::string V = "__attribute__((__vector_size__(";
    V += llvm::utostr_32(T->getNumElements()); // convert back to bytes.
    std::string ET;
    print(T->getElementType(), ET);
    V += " * sizeof(" + ET + ")))) ";
    S = V + S;
    break;
  }
  }
}

void TypePrinter::printExtVector(const ExtVectorType *T, std::string &S) { 
  S += " __attribute__((ext_vector_type(";
  S += llvm::utostr_32(T->getNumElements());
  S += ")))";
  print(T->getElementType(), S);
}

void 
FunctionProtoType::printExceptionSpecification(std::string &S, 
                                               PrintingPolicy Policy) const {
  
  if (hasDynamicExceptionSpec()) {
    S += " throw(";
    if (getExceptionSpecType() == EST_MSAny)
      S += "...";
    else
      for (unsigned I = 0, N = getNumExceptions(); I != N; ++I) {
        if (I)
          S += ", ";
        
        S += getExceptionType(I).getAsString(Policy);
      }
    S += ")";
  } else if (isNoexceptExceptionSpec(getExceptionSpecType())) {
    S += " noexcept";
    if (getExceptionSpecType() == EST_ComputedNoexcept) {
      S += "(";
      llvm::raw_string_ostream EOut(S);
      getNoexceptExpr()->printPretty(EOut, 0, Policy);
      EOut.flush();
      S += EOut.str();
      S += ")";
    }
  }
}

void TypePrinter::printFunctionProto(const FunctionProtoType *T, 
                                     std::string &S) { 
  // If needed for precedence reasons, wrap the inner part in grouping parens.
  if (!S.empty())
    S = "(" + S + ")";
  
  S += "(";
  std::string Tmp;
  PrintingPolicy ParamPolicy(Policy);
  ParamPolicy.SuppressSpecifiers = false;
  for (unsigned i = 0, e = T->getNumArgs(); i != e; ++i) {
    if (i) S += ", ";
    print(T->getArgType(i), Tmp);
    S += Tmp;
    Tmp.clear();
  }
  
  if (T->isVariadic()) {
    if (T->getNumArgs())
      S += ", ";
    S += "...";
  } else if (T->getNumArgs() == 0 && !Policy.LangOpts.CPlusPlus) {
    // Do not emit int() if we have a proto, emit 'int(void)'.
    S += "void";
  }
  
  S += ")";

  FunctionType::ExtInfo Info = T->getExtInfo();
  switch(Info.getCC()) {
  case CC_Default: break;
  case CC_C:
    S += " __attribute__((cdecl))";
    break;
  case CC_X86StdCall:
    S += " __attribute__((stdcall))";
    break;
  case CC_X86FastCall:
    S += " __attribute__((fastcall))";
    break;
  case CC_X86ThisCall:
    S += " __attribute__((thiscall))";
    break;
  case CC_X86Pascal:
    S += " __attribute__((pascal))";
    break;
  case CC_AAPCS:
    S += " __attribute__((pcs(\"aapcs\")))";
    break;
  case CC_AAPCS_VFP:
    S += " __attribute__((pcs(\"aapcs-vfp\")))";
    break;
  }
  if (Info.getNoReturn())
    S += " __attribute__((noreturn))";
  if (Info.getRegParm())
    S += " __attribute__((regparm (" +
        llvm::utostr_32(Info.getRegParm()) + ")))";
  
  AppendTypeQualList(S, T->getTypeQuals());

  switch (T->getRefQualifier()) {
  case RQ_None:
    break;
    
  case RQ_LValue:
    S += " &";
    break;
    
  case RQ_RValue:
    S += " &&";
    break;
  }
  T->printExceptionSpecification(S, Policy);
  if (T->hasTrailingReturn()) {
    std::string ResultS;
    print(T->getResultType(), ResultS);
    S = "auto " + S + " -> " + ResultS;
  } else
    print(T->getResultType(), S);
}

void TypePrinter::printFunctionNoProto(const FunctionNoProtoType *T, 
                                       std::string &S) { 
  // If needed for precedence reasons, wrap the inner part in grouping parens.
  if (!S.empty())
    S = "(" + S + ")";
  
  S += "()";
  if (T->getNoReturnAttr())
    S += " __attribute__((noreturn))";
  print(T->getResultType(), S);
}

static void printTypeSpec(const NamedDecl *D, std::string &S) {
  IdentifierInfo *II = D->getIdentifier();
  if (S.empty())
    S = II->getName().str();
  else
    S = II->getName().str() + ' ' + S;
}

void TypePrinter::printUnresolvedUsing(const UnresolvedUsingType *T,
                                       std::string &S) {
  printTypeSpec(T->getDecl(), S);
}

void TypePrinter::printTypedef(const TypedefType *T, std::string &S) { 
  printTypeSpec(T->getDecl(), S);
}

void TypePrinter::printTypeOfExpr(const TypeOfExprType *T, std::string &S) {
  if (!S.empty())    // Prefix the basic type, e.g. 'typeof(e) X'.
    S = ' ' + S;
  std::string Str;
  llvm::raw_string_ostream s(Str);
  T->getUnderlyingExpr()->printPretty(s, 0, Policy);
  S = "typeof " + s.str() + S;
}

void TypePrinter::printTypeOf(const TypeOfType *T, std::string &S) { 
  if (!S.empty())    // Prefix the basic type, e.g. 'typeof(t) X'.
    S = ' ' + S;
  std::string Tmp;
  print(T->getUnderlyingType(), Tmp);
  S = "typeof(" + Tmp + ")" + S;
}

void TypePrinter::printDecltype(const DecltypeType *T, std::string &S) { 
  if (!S.empty())    // Prefix the basic type, e.g. 'decltype(t) X'.
    S = ' ' + S;
  std::string Str;
  llvm::raw_string_ostream s(Str);
  T->getUnderlyingExpr()->printPretty(s, 0, Policy);
  S = "decltype(" + s.str() + ")" + S;
}

void TypePrinter::printUnaryTransform(const UnaryTransformType *T,
                                           std::string &S) {
  if (!S.empty())
    S = ' ' + S;
  std::string Str;
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getBaseType(), Str);

  switch (T->getUTTKind()) {
    case UnaryTransformType::EnumUnderlyingType:
      S = "__underlying_type(" + Str + ")" + S;
      break;
  }
}

void TypePrinter::printAuto(const AutoType *T, std::string &S) { 
  // If the type has been deduced, do not print 'auto'.
  if (T->isDeduced()) {
    print(T->getDeducedType(), S);
  } else {
    if (!S.empty())    // Prefix the basic type, e.g. 'auto X'.
      S = ' ' + S;
    S = "auto" + S;
  }
}

void TypePrinter::printAtomic(const AtomicType *T, std::string &S) {
  if (!S.empty())
    S = ' ' + S;
  std::string Str;
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getValueType(), Str);

  S = "_Atomic(" + Str + ")" + S;
}

/// Appends the given scope to the end of a string.
void TypePrinter::AppendScope(DeclContext *DC, std::string &Buffer) {
  if (DC->isTranslationUnit()) return;
  AppendScope(DC->getParent(), Buffer);

  unsigned OldSize = Buffer.size();

  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(DC)) {
    if (Policy.SuppressUnwrittenScope && 
        (NS->isAnonymousNamespace() || NS->isInline()))
      return;
    if (NS->getIdentifier())
      Buffer += NS->getNameAsString();
    else
      Buffer += "<anonymous>";
  } else if (ClassTemplateSpecializationDecl *Spec
               = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
    IncludeStrongLifetimeRAII Strong(Policy);
    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
    std::string TemplateArgsStr
      = TemplateSpecializationType::PrintTemplateArgumentList(
                                            TemplateArgs.data(),
                                            TemplateArgs.size(),
                                            Policy);
    Buffer += Spec->getIdentifier()->getName();
    Buffer += TemplateArgsStr;
  } else if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
    if (TypedefNameDecl *Typedef = Tag->getTypedefNameForAnonDecl())
      Buffer += Typedef->getIdentifier()->getName();
    else if (Tag->getIdentifier())
      Buffer += Tag->getIdentifier()->getName();
    else
      return;
  }

  if (Buffer.size() != OldSize)
    Buffer += "::";
}

void TypePrinter::printTag(TagDecl *D, std::string &InnerString) {
  if (Policy.SuppressTag)
    return;

  std::string Buffer;
  bool HasKindDecoration = false;

  // bool SuppressTagKeyword
  //   = Policy.LangOpts.CPlusPlus || Policy.SuppressTagKeyword;

  // We don't print tags unless this is an elaborated type.
  // In C, we just assume every RecordType is an elaborated type.
  if (!(Policy.LangOpts.CPlusPlus || Policy.SuppressTagKeyword ||
        D->getTypedefNameForAnonDecl())) {
    HasKindDecoration = true;
    Buffer += D->getKindName();
    Buffer += ' ';
  }

  // Compute the full nested-name-specifier for this type.
  // In C, this will always be empty except when the type
  // being printed is anonymous within other Record.
  if (!Policy.SuppressScope)
    AppendScope(D->getDeclContext(), Buffer);

  if (const IdentifierInfo *II = D->getIdentifier())
    Buffer += II->getNameStart();
  else if (TypedefNameDecl *Typedef = D->getTypedefNameForAnonDecl()) {
    assert(Typedef->getIdentifier() && "Typedef without identifier?");
    Buffer += Typedef->getIdentifier()->getNameStart();
  } else {
    // Make an unambiguous representation for anonymous types, e.g.
    //   <anonymous enum at /usr/include/string.h:120:9>
    llvm::raw_string_ostream OS(Buffer);
    
    if (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda()) {
      OS << "<lambda";
      HasKindDecoration = true;
    } else {
      OS << "<anonymous";
    }
    
    if (Policy.AnonymousTagLocations) {
      // Suppress the redundant tag keyword if we just printed one.
      // We don't have to worry about ElaboratedTypes here because you can't
      // refer to an anonymous type with one.
      if (!HasKindDecoration)
        OS << " " << D->getKindName();

      PresumedLoc PLoc = D->getASTContext().getSourceManager().getPresumedLoc(
          D->getLocation());
      if (PLoc.isValid()) {
        OS << " at " << PLoc.getFilename()
           << ':' << PLoc.getLine()
           << ':' << PLoc.getColumn();
      }
    }
    
    OS << '>';
  }

  // If this is a class template specialization, print the template
  // arguments.
  if (ClassTemplateSpecializationDecl *Spec
        = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
    const TemplateArgument *Args;
    unsigned NumArgs;
    if (TypeSourceInfo *TAW = Spec->getTypeAsWritten()) {
      const TemplateSpecializationType *TST =
        cast<TemplateSpecializationType>(TAW->getType());
      Args = TST->getArgs();
      NumArgs = TST->getNumArgs();
    } else {
      const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
      Args = TemplateArgs.data();
      NumArgs = TemplateArgs.size();
    }
    IncludeStrongLifetimeRAII Strong(Policy);
    Buffer += TemplateSpecializationType::PrintTemplateArgumentList(Args,
                                                                    NumArgs,
                                                                    Policy);
  }

  if (!InnerString.empty()) {
    Buffer += ' ';
    Buffer += InnerString;
  }

  std::swap(Buffer, InnerString);
}

void TypePrinter::printRecord(const RecordType *T, std::string &S) {
  printTag(T->getDecl(), S);
}

void TypePrinter::printEnum(const EnumType *T, std::string &S) { 
  printTag(T->getDecl(), S);
}

void TypePrinter::printTemplateTypeParm(const TemplateTypeParmType *T, 
                                        std::string &S) { 
  if (!S.empty())    // Prefix the basic type, e.g. 'parmname X'.
    S = ' ' + S;

  if (IdentifierInfo *Id = T->getIdentifier())
    S = Id->getName().str() + S;
  else
    S = "type-parameter-" + llvm::utostr_32(T->getDepth()) + '-' +
        llvm::utostr_32(T->getIndex()) + S;
}

void TypePrinter::printSubstTemplateTypeParm(const SubstTemplateTypeParmType *T, 
                                             std::string &S) { 
  IncludeStrongLifetimeRAII Strong(Policy);
  print(T->getReplacementType(), S);
}

void TypePrinter::printSubstTemplateTypeParmPack(
                                        const SubstTemplateTypeParmPackType *T, 
                                             std::string &S) { 
  IncludeStrongLifetimeRAII Strong(Policy);
  printTemplateTypeParm(T->getReplacedParameter(), S);
}

void TypePrinter::printTemplateSpecialization(
                                            const TemplateSpecializationType *T, 
                                              std::string &S) { 
  IncludeStrongLifetimeRAII Strong(Policy);
  std::string SpecString;
  
  {
    llvm::raw_string_ostream OS(SpecString);
    T->getTemplateName().print(OS, Policy);
  }
  
  SpecString += TemplateSpecializationType::PrintTemplateArgumentList(
                                                                  T->getArgs(), 
                                                                T->getNumArgs(), 
                                                                      Policy);
  if (S.empty())
    S.swap(SpecString);
  else
    S = SpecString + ' ' + S;
}

void TypePrinter::printInjectedClassName(const InjectedClassNameType *T,
                                         std::string &S) {
  printTemplateSpecialization(T->getInjectedTST(), S);
}

void TypePrinter::printElaborated(const ElaboratedType *T, std::string &S) {
  std::string MyString;
  
  {
    llvm::raw_string_ostream OS(MyString);
    OS << TypeWithKeyword::getKeywordName(T->getKeyword());
    if (T->getKeyword() != ETK_None)
      OS << " ";
    NestedNameSpecifier* Qualifier = T->getQualifier();
    if (Qualifier)
      Qualifier->print(OS, Policy);
  }
  
  std::string TypeStr;
  PrintingPolicy InnerPolicy(Policy);
  InnerPolicy.SuppressTagKeyword = true;
  InnerPolicy.SuppressScope = true;
  TypePrinter(InnerPolicy).print(T->getNamedType(), TypeStr);
  
  MyString += TypeStr;
  if (S.empty())
    S.swap(MyString);
  else
    S = MyString + ' ' + S;  
}

void TypePrinter::printParen(const ParenType *T, std::string &S) {
  if (!S.empty() && !isa<FunctionType>(T->getInnerType()))
    S = '(' + S + ')';
  print(T->getInnerType(), S);
}

void TypePrinter::printDependentName(const DependentNameType *T, std::string &S) { 
  std::string MyString;
  
  {
    llvm::raw_string_ostream OS(MyString);
    OS << TypeWithKeyword::getKeywordName(T->getKeyword());
    if (T->getKeyword() != ETK_None)
      OS << " ";
    
    T->getQualifier()->print(OS, Policy);
    
    OS << T->getIdentifier()->getName();
  }
  
  if (S.empty())
    S.swap(MyString);
  else
    S = MyString + ' ' + S;
}

void TypePrinter::printDependentTemplateSpecialization(
        const DependentTemplateSpecializationType *T, std::string &S) { 
  IncludeStrongLifetimeRAII Strong(Policy);
  std::string MyString;
  {
    llvm::raw_string_ostream OS(MyString);
  
    OS << TypeWithKeyword::getKeywordName(T->getKeyword());
    if (T->getKeyword() != ETK_None)
      OS << " ";
    
    if (T->getQualifier())
      T->getQualifier()->print(OS, Policy);    
    OS << T->getIdentifier()->getName();
    OS << TemplateSpecializationType::PrintTemplateArgumentList(
                                                            T->getArgs(),
                                                            T->getNumArgs(),
                                                            Policy);
  }
  
  if (S.empty())
    S.swap(MyString);
  else
    S = MyString + ' ' + S;
}

void TypePrinter::printPackExpansion(const PackExpansionType *T, 
                                     std::string &S) {
  print(T->getPattern(), S);
  S += "...";
}

void TypePrinter::printAttributed(const AttributedType *T,
                                  std::string &S) {
  // Prefer the macro forms of the GC and ownership qualifiers.
  if (T->getAttrKind() == AttributedType::attr_objc_gc ||
      T->getAttrKind() == AttributedType::attr_objc_ownership)
    return print(T->getEquivalentType(), S);

  print(T->getModifiedType(), S);

  // TODO: not all attributes are GCC-style attributes.
  S += " __attribute__((";
  switch (T->getAttrKind()) {
  case AttributedType::attr_address_space:
    S += "address_space(";
    S += T->getEquivalentType().getAddressSpace();
    S += ")";
    break;

  case AttributedType::attr_vector_size: {
    S += "__vector_size__(";
    if (const VectorType *vector =T->getEquivalentType()->getAs<VectorType>()) {
      S += vector->getNumElements();
      S += " * sizeof(";

      std::string tmp;
      print(vector->getElementType(), tmp);
      S += tmp;
      S += ")";
    }
    S += ")";
    break;
  }

  case AttributedType::attr_neon_vector_type:
  case AttributedType::attr_neon_polyvector_type: {
    if (T->getAttrKind() == AttributedType::attr_neon_vector_type)
      S += "neon_vector_type(";
    else
      S += "neon_polyvector_type(";
    const VectorType *vector = T->getEquivalentType()->getAs<VectorType>();
    S += llvm::utostr_32(vector->getNumElements());
    S += ")";
    break;
  }

  case AttributedType::attr_regparm: {
    S += "regparm(";
    QualType t = T->getEquivalentType();
    while (!t->isFunctionType())
      t = t->getPointeeType();
    S += t->getAs<FunctionType>()->getRegParmType();
    S += ")";
    break;
  }

  case AttributedType::attr_objc_gc: {
    S += "objc_gc(";

    QualType tmp = T->getEquivalentType();
    while (tmp.getObjCGCAttr() == Qualifiers::GCNone) {
      QualType next = tmp->getPointeeType();
      if (next == tmp) break;
      tmp = next;
    }

    if (tmp.isObjCGCWeak())
      S += "weak";
    else
      S += "strong";
    S += ")";
    break;
  }

  case AttributedType::attr_objc_ownership:
    S += "objc_ownership(";
    switch (T->getEquivalentType().getObjCLifetime()) {
    case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
    case Qualifiers::OCL_ExplicitNone: S += "none"; break;
    case Qualifiers::OCL_Strong: S += "strong"; break;
    case Qualifiers::OCL_Weak: S += "weak"; break;
    case Qualifiers::OCL_Autoreleasing: S += "autoreleasing"; break;
    }
    S += ")";
    break;

  case AttributedType::attr_noreturn: S += "noreturn"; break;
  case AttributedType::attr_cdecl: S += "cdecl"; break;
  case AttributedType::attr_fastcall: S += "fastcall"; break;
  case AttributedType::attr_stdcall: S += "stdcall"; break;
  case AttributedType::attr_thiscall: S += "thiscall"; break;
  case AttributedType::attr_pascal: S += "pascal"; break;
  case AttributedType::attr_pcs: {
   S += "pcs(";
   QualType t = T->getEquivalentType();
   while (!t->isFunctionType())
     t = t->getPointeeType();
   S += (t->getAs<FunctionType>()->getCallConv() == CC_AAPCS ?
         "\"aapcs\"" : "\"aapcs-vfp\"");
   S += ")";
   break;
  }
  }
  S += "))";
}

void TypePrinter::printObjCInterface(const ObjCInterfaceType *T, 
                                     std::string &S) { 
  if (!S.empty())    // Prefix the basic type, e.g. 'typedefname X'.
    S = ' ' + S;

  std::string ObjCQIString = T->getDecl()->getNameAsString();
  S = ObjCQIString + S;
}

void TypePrinter::printObjCObject(const ObjCObjectType *T,
                                  std::string &S) {
  if (T->qual_empty())
    return print(T->getBaseType(), S);

  std::string tmp;
  print(T->getBaseType(), tmp);
  tmp += '<';
  bool isFirst = true;
  for (ObjCObjectType::qual_iterator
         I = T->qual_begin(), E = T->qual_end(); I != E; ++I) {
    if (isFirst)
      isFirst = false;
    else
      tmp += ',';
    tmp += (*I)->getNameAsString();
  }
  tmp += '>';

  if (!S.empty()) {
    tmp += ' ';
    tmp += S;
  }
  std::swap(tmp, S);
}

void TypePrinter::printObjCObjectPointer(const ObjCObjectPointerType *T, 
                                         std::string &S) { 
  std::string ObjCQIString;
  
  T->getPointeeType().getLocalQualifiers().getAsStringInternal(ObjCQIString, 
                                                               Policy);
  if (!ObjCQIString.empty())
    ObjCQIString += ' ';
    
  if (T->isObjCIdType() || T->isObjCQualifiedIdType())
    ObjCQIString += "id";
  else if (T->isObjCClassType() || T->isObjCQualifiedClassType())
    ObjCQIString += "Class";
  else if (T->isObjCSelType())
    ObjCQIString += "SEL";
  else
    ObjCQIString += T->getInterfaceDecl()->getNameAsString();
  
  if (!T->qual_empty()) {
    ObjCQIString += '<';
    for (ObjCObjectPointerType::qual_iterator I = T->qual_begin(), 
                                              E = T->qual_end();
         I != E; ++I) {
      ObjCQIString += (*I)->getNameAsString();
      if (I+1 != E)
        ObjCQIString += ',';
    }
    ObjCQIString += '>';
  }
  
  if (!T->isObjCIdType() && !T->isObjCQualifiedIdType())
    ObjCQIString += " *"; // Don't forget the implicit pointer.
  else if (!S.empty()) // Prefix the basic type, e.g. 'typedefname X'.
    S = ' ' + S;
  
  S = ObjCQIString + S;  
}

std::string TemplateSpecializationType::
  PrintTemplateArgumentList(const TemplateArgumentListInfo &Args,
                            const PrintingPolicy &Policy) {
  return PrintTemplateArgumentList(Args.getArgumentArray(),
                                   Args.size(),
                                   Policy);
}

std::string
TemplateSpecializationType::PrintTemplateArgumentList(
                                                const TemplateArgument *Args,
                                                unsigned NumArgs,
                                                  const PrintingPolicy &Policy,
                                                      bool SkipBrackets) {
  std::string SpecString;
  if (!SkipBrackets)
    SpecString += '<';
  
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
    if (SpecString.size() > unsigned(!SkipBrackets))
      SpecString += ", ";
    
    // Print the argument into a string.
    std::string ArgString;
    if (Args[Arg].getKind() == TemplateArgument::Pack) {
      ArgString = PrintTemplateArgumentList(Args[Arg].pack_begin(), 
                                            Args[Arg].pack_size(), 
                                            Policy, true);
    } else {
      llvm::raw_string_ostream ArgOut(ArgString);
      Args[Arg].print(Policy, ArgOut);
    }
   
    // If this is the first argument and its string representation
    // begins with the global scope specifier ('::foo'), add a space
    // to avoid printing the diagraph '<:'.
    if (!Arg && !ArgString.empty() && ArgString[0] == ':')
      SpecString += ' ';
    
    SpecString += ArgString;
  }
  
  // If the last character of our string is '>', add another space to
  // keep the two '>''s separate tokens. We don't *have* to do this in
  // C++0x, but it's still good hygiene.
  if (!SpecString.empty() && SpecString[SpecString.size() - 1] == '>')
    SpecString += ' ';
  
  if (!SkipBrackets)
    SpecString += '>';
  
  return SpecString;
}

// Sadly, repeat all that with TemplateArgLoc.
std::string TemplateSpecializationType::
PrintTemplateArgumentList(const TemplateArgumentLoc *Args, unsigned NumArgs,
                          const PrintingPolicy &Policy) {
  std::string SpecString;
  SpecString += '<';
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
    if (SpecString.size() > 1)
      SpecString += ", ";
    
    // Print the argument into a string.
    std::string ArgString;
    if (Args[Arg].getArgument().getKind() == TemplateArgument::Pack) {
      ArgString = PrintTemplateArgumentList(
                                           Args[Arg].getArgument().pack_begin(), 
                                            Args[Arg].getArgument().pack_size(), 
                                            Policy, true);
    } else {
      llvm::raw_string_ostream ArgOut(ArgString);
      Args[Arg].getArgument().print(Policy, ArgOut);
    }
    
    // If this is the first argument and its string representation
    // begins with the global scope specifier ('::foo'), add a space
    // to avoid printing the diagraph '<:'.
    if (!Arg && !ArgString.empty() && ArgString[0] == ':')
      SpecString += ' ';
    
    SpecString += ArgString;
  }
  
  // If the last character of our string is '>', add another space to
  // keep the two '>''s separate tokens. We don't *have* to do this in
  // C++0x, but it's still good hygiene.
  if (SpecString[SpecString.size() - 1] == '>')
    SpecString += ' ';
  
  SpecString += '>';
  
  return SpecString;
}

void QualType::dump(const char *msg) const {
  std::string R = "identifier";
  LangOptions LO;
  getAsStringInternal(R, PrintingPolicy(LO));
  if (msg)
    llvm::errs() << msg << ": ";
  llvm::errs() << R << "\n";
}
void QualType::dump() const {
  dump("");
}

void Type::dump() const {
  QualType(this, 0).dump();
}

std::string Qualifiers::getAsString() const {
  LangOptions LO;
  return getAsString(PrintingPolicy(LO));
}

// Appends qualifiers to the given string, separated by spaces.  Will
// prefix a space if the string is non-empty.  Will not append a final
// space.
void Qualifiers::getAsStringInternal(std::string &S,
                                     const PrintingPolicy& Policy) const {
  AppendTypeQualList(S, getCVRQualifiers());
  if (unsigned addrspace = getAddressSpace()) {
    if (!S.empty()) S += ' ';
    switch (addrspace) {
      case LangAS::opencl_global:
        S += "__global";
        break;
      case LangAS::opencl_local:
        S += "__local";
        break;
      case LangAS::opencl_constant:
        S += "__constant";
        break;
      default:
        S += "__attribute__((address_space(";
        S += llvm::utostr_32(addrspace);
        S += ")))";
    }
  }
  if (Qualifiers::GC gc = getObjCGCAttr()) {
    if (!S.empty()) S += ' ';
    if (gc == Qualifiers::Weak)
      S += "__weak";
    else
      S += "__strong";
  }
  if (Qualifiers::ObjCLifetime lifetime = getObjCLifetime()) {
    if (!S.empty() && 
        !(lifetime == Qualifiers::OCL_Strong && Policy.SuppressStrongLifetime))
      S += ' ';
    
    switch (lifetime) {
    case Qualifiers::OCL_None: llvm_unreachable("none but true");
    case Qualifiers::OCL_ExplicitNone: S += "__unsafe_unretained"; break;
    case Qualifiers::OCL_Strong: 
      if (!Policy.SuppressStrongLifetime)
        S += "__strong"; 
      break;
        
    case Qualifiers::OCL_Weak: S += "__weak"; break;
    case Qualifiers::OCL_Autoreleasing: S += "__autoreleasing"; break;
    }
  }
}

std::string QualType::getAsString(const Type *ty, Qualifiers qs) {
  std::string buffer;
  LangOptions options;
  getAsStringInternal(ty, qs, buffer, PrintingPolicy(options));
  return buffer;
}

void QualType::getAsStringInternal(const Type *ty, Qualifiers qs,
                                   std::string &buffer,
                                   const PrintingPolicy &policy) {
  TypePrinter(policy).print(ty, qs, buffer);
}

Man Man