Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CGException.cpp |
//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ exception related code generation. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGCleanup.h" #include "CGObjCRuntime.h" #include "TargetInfo.h" #include "clang/AST/StmtCXX.h" #include "llvm/Intrinsics.h" #include "llvm/Support/CallSite.h" using namespace clang; using namespace CodeGen; static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { // void *__cxa_allocate_exception(size_t thrown_size); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); } static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { // void __cxa_free_exception(void *thrown_exception); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); } static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, // void (*dest) (void *)); llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); } static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { // void __cxa_rethrow(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); } static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { // void *__cxa_get_exception_ptr(void*); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); } static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { // void *__cxa_begin_catch(void*); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); } static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { // void __cxa_end_catch(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); } static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { // void __cxa_call_unexepcted(void *thrown_exception); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); } llvm::Constant *CodeGenFunction::getUnwindResumeFn() { llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); if (CGM.getLangOpts().SjLjExceptions) return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); } llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); if (CGM.getLangOpts().SjLjExceptions) return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); } static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { // void __terminate(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); StringRef name; // In C++, use std::terminate(). if (CGF.getLangOpts().CPlusPlus) name = "_ZSt9terminatev"; // FIXME: mangling! else if (CGF.getLangOpts().ObjC1 && CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate) name = "objc_terminate"; else name = "abort"; return CGF.CGM.CreateRuntimeFunction(FTy, name); } static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, StringRef Name) { llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); return CGF.CGM.CreateRuntimeFunction(FTy, Name); } namespace { /// The exceptions personality for a function. struct EHPersonality { const char *PersonalityFn; // If this is non-null, this personality requires a non-standard // function for rethrowing an exception after a catchall cleanup. // This function must have prototype void(void*). const char *CatchallRethrowFn; static const EHPersonality &get(const LangOptions &Lang); static const EHPersonality GNU_C; static const EHPersonality GNU_C_SJLJ; static const EHPersonality GNU_ObjC; static const EHPersonality GNU_ObjCXX; static const EHPersonality NeXT_ObjC; static const EHPersonality GNU_CPlusPlus; static const EHPersonality GNU_CPlusPlus_SJLJ; }; } const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; const EHPersonality EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; const EHPersonality EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; static const EHPersonality &getCPersonality(const LangOptions &L) { if (L.SjLjExceptions) return EHPersonality::GNU_C_SJLJ; return EHPersonality::GNU_C; } static const EHPersonality &getObjCPersonality(const LangOptions &L) { if (L.NeXTRuntime) { if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; else return getCPersonality(L); } else { return EHPersonality::GNU_ObjC; } } static const EHPersonality &getCXXPersonality(const LangOptions &L) { if (L.SjLjExceptions) return EHPersonality::GNU_CPlusPlus_SJLJ; else return EHPersonality::GNU_CPlusPlus; } /// Determines the personality function to use when both C++ /// and Objective-C exceptions are being caught. static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { // The ObjC personality defers to the C++ personality for non-ObjC // handlers. Unlike the C++ case, we use the same personality // function on targets using (backend-driven) SJLJ EH. if (L.NeXTRuntime) { if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; // In the fragile ABI, just use C++ exception handling and hope // they're not doing crazy exception mixing. else return getCXXPersonality(L); } // The GNU runtime's personality function inherently doesn't support // mixed EH. Use the C++ personality just to avoid returning null. return EHPersonality::GNU_ObjCXX; } const EHPersonality &EHPersonality::get(const LangOptions &L) { if (L.CPlusPlus && L.ObjC1) return getObjCXXPersonality(L); else if (L.CPlusPlus) return getCXXPersonality(L); else if (L.ObjC1) return getObjCPersonality(L); else return getCPersonality(L); } static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, const EHPersonality &Personality) { llvm::Constant *Fn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), Personality.PersonalityFn); return Fn; } static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, const EHPersonality &Personality) { llvm::Constant *Fn = getPersonalityFn(CGM, Personality); return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); } /// Check whether a personality function could reasonably be swapped /// for a C++ personality function. static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { for (llvm::Constant::use_iterator I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { llvm::User *User = *I; // Conditionally white-list bitcasts. if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { if (CE->getOpcode() != llvm::Instruction::BitCast) return false; if (!PersonalityHasOnlyCXXUses(CE)) return false; continue; } // Otherwise, it has to be a landingpad instruction. llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User); if (!LPI) return false; for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { // Look for something that would've been returned by the ObjC // runtime's GetEHType() method. llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); if (LPI->isCatch(I)) { // Check if the catch value has the ObjC prefix. if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) // ObjC EH selector entries are always global variables with // names starting like this. if (GV->getName().startswith("OBJC_EHTYPE")) return false; } else { // Check if any of the filter values have the ObjC prefix. llvm::Constant *CVal = cast<llvm::Constant>(Val); for (llvm::User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { if (llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) // ObjC EH selector entries are always global variables with // names starting like this. if (GV->getName().startswith("OBJC_EHTYPE")) return false; } } } } return true; } /// Try to use the C++ personality function in ObjC++. Not doing this /// can cause some incompatibilities with gcc, which is more /// aggressive about only using the ObjC++ personality in a function /// when it really needs it. void CodeGenModule::SimplifyPersonality() { // For now, this is really a Darwin-specific operation. if (!Context.getTargetInfo().getTriple().isOSDarwin()) return; // If we're not in ObjC++ -fexceptions, there's nothing to do. if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) return; const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); const EHPersonality &CXX = getCXXPersonality(LangOpts); if (&ObjCXX == &CXX) return; assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && "Different EHPersonalities using the same personality function."); llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); // Nothing to do if it's unused. if (!Fn || Fn->use_empty()) return; // Can't do the optimization if it has non-C++ uses. if (!PersonalityHasOnlyCXXUses(Fn)) return; // Create the C++ personality function and kill off the old // function. llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); // This can happen if the user is screwing with us. if (Fn->getType() != CXXFn->getType()) return; Fn->replaceAllUsesWith(CXXFn); Fn->eraseFromParent(); } /// Returns the value to inject into a selector to indicate the /// presence of a catch-all. static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { // Possibly we should use @llvm.eh.catch.all.value here. return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); } namespace { /// A cleanup to free the exception object if its initialization /// throws. struct FreeException : EHScopeStack::Cleanup { llvm::Value *exn; FreeException(llvm::Value *exn) : exn(exn) {} void Emit(CodeGenFunction &CGF, Flags flags) { CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) ->setDoesNotThrow(); } }; } // Emits an exception expression into the given location. This // differs from EmitAnyExprToMem only in that, if a final copy-ctor // call is required, an exception within that copy ctor causes // std::terminate to be invoked. static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, llvm::Value *addr) { // Make sure the exception object is cleaned up if there's an // exception during initialization. CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); // __cxa_allocate_exception returns a void*; we need to cast this // to the appropriate type for the object. llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); // FIXME: this isn't quite right! If there's a final unelided call // to a copy constructor, then according to [except.terminate]p1 we // must call std::terminate() if that constructor throws, because // technically that copy occurs after the exception expression is // evaluated but before the exception is caught. But the best way // to handle that is to teach EmitAggExpr to do the final copy // differently if it can't be elided. CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), /*IsInit*/ true); // Deactivate the cleanup block. CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); } llvm::Value *CodeGenFunction::getExceptionSlot() { if (!ExceptionSlot) ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); return ExceptionSlot; } llvm::Value *CodeGenFunction::getEHSelectorSlot() { if (!EHSelectorSlot) EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); return EHSelectorSlot; } llvm::Value *CodeGenFunction::getExceptionFromSlot() { return Builder.CreateLoad(getExceptionSlot(), "exn"); } llvm::Value *CodeGenFunction::getSelectorFromSlot() { return Builder.CreateLoad(getEHSelectorSlot(), "sel"); } void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { if (!E->getSubExpr()) { if (getInvokeDest()) { Builder.CreateInvoke(getReThrowFn(*this), getUnreachableBlock(), getInvokeDest()) ->setDoesNotReturn(); } else { Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); Builder.CreateUnreachable(); } // throw is an expression, and the expression emitters expect us // to leave ourselves at a valid insertion point. EmitBlock(createBasicBlock("throw.cont")); return; } QualType ThrowType = E->getSubExpr()->getType(); // Now allocate the exception object. llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); llvm::CallInst *ExceptionPtr = Builder.CreateCall(AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); ExceptionPtr->setDoesNotThrow(); EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); // Now throw the exception. llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, /*ForEH=*/true); // The address of the destructor. If the exception type has a // trivial destructor (or isn't a record), we just pass null. llvm::Constant *Dtor = 0; if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); if (!Record->hasTrivialDestructor()) { CXXDestructorDecl *DtorD = Record->getDestructor(); Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); } } if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); if (getInvokeDest()) { llvm::InvokeInst *ThrowCall = Builder.CreateInvoke3(getThrowFn(*this), getUnreachableBlock(), getInvokeDest(), ExceptionPtr, TypeInfo, Dtor); ThrowCall->setDoesNotReturn(); } else { llvm::CallInst *ThrowCall = Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); ThrowCall->setDoesNotReturn(); Builder.CreateUnreachable(); } // throw is an expression, and the expression emitters expect us // to leave ourselves at a valid insertion point. EmitBlock(createBasicBlock("throw.cont")); } void CodeGenFunction::EmitStartEHSpec(const Decl *D) { if (!CGM.getLangOpts().CXXExceptions) return; const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); if (FD == 0) return; const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); if (Proto == 0) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); if (isNoexceptExceptionSpec(EST)) { if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { // noexcept functions are simple terminate scopes. EHStack.pushTerminate(); } } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { unsigned NumExceptions = Proto->getNumExceptions(); EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); for (unsigned I = 0; I != NumExceptions; ++I) { QualType Ty = Proto->getExceptionType(I); QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, /*ForEH=*/true); Filter->setFilter(I, EHType); } } } /// Emit the dispatch block for a filter scope if necessary. static void emitFilterDispatchBlock(CodeGenFunction &CGF, EHFilterScope &filterScope) { llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); if (!dispatchBlock) return; if (dispatchBlock->use_empty()) { delete dispatchBlock; return; } CGF.EmitBlockAfterUses(dispatchBlock); // If this isn't a catch-all filter, we need to check whether we got // here because the filter triggered. if (filterScope.getNumFilters()) { // Load the selector value. llvm::Value *selector = CGF.getSelectorFromSlot(); llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); llvm::Value *zero = CGF.Builder.getInt32(0); llvm::Value *failsFilter = CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock()); CGF.EmitBlock(unexpectedBB); } // Call __cxa_call_unexpected. This doesn't need to be an invoke // because __cxa_call_unexpected magically filters exceptions // according to the last landing pad the exception was thrown // into. Seriously. llvm::Value *exn = CGF.getExceptionFromSlot(); CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn) ->setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } void CodeGenFunction::EmitEndEHSpec(const Decl *D) { if (!CGM.getLangOpts().CXXExceptions) return; const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); if (FD == 0) return; const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); if (Proto == 0) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); if (isNoexceptExceptionSpec(EST)) { if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { EHStack.popTerminate(); } } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); emitFilterDispatchBlock(*this, filterScope); EHStack.popFilter(); } } void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { EnterCXXTryStmt(S); EmitStmt(S.getTryBlock()); ExitCXXTryStmt(S); } void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { unsigned NumHandlers = S.getNumHandlers(); EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); for (unsigned I = 0; I != NumHandlers; ++I) { const CXXCatchStmt *C = S.getHandler(I); llvm::BasicBlock *Handler = createBasicBlock("catch"); if (C->getExceptionDecl()) { // FIXME: Dropping the reference type on the type into makes it // impossible to correctly implement catch-by-reference // semantics for pointers. Unfortunately, this is what all // existing compilers do, and it's not clear that the standard // personality routine is capable of doing this right. See C++ DR 388: // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 QualType CaughtType = C->getCaughtType(); CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); llvm::Value *TypeInfo = 0; if (CaughtType->isObjCObjectPointerType()) TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); else TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); CatchScope->setHandler(I, TypeInfo, Handler); } else { // No exception decl indicates '...', a catch-all. CatchScope->setCatchAllHandler(I, Handler); } } } llvm::BasicBlock * CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { // The dispatch block for the end of the scope chain is a block that // just resumes unwinding. if (si == EHStack.stable_end()) return getEHResumeBlock(); // Otherwise, we should look at the actual scope. EHScope &scope = *EHStack.find(si); llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); if (!dispatchBlock) { switch (scope.getKind()) { case EHScope::Catch: { // Apply a special case to a single catch-all. EHCatchScope &catchScope = cast<EHCatchScope>(scope); if (catchScope.getNumHandlers() == 1 && catchScope.getHandler(0).isCatchAll()) { dispatchBlock = catchScope.getHandler(0).Block; // Otherwise, make a dispatch block. } else { dispatchBlock = createBasicBlock("catch.dispatch"); } break; } case EHScope::Cleanup: dispatchBlock = createBasicBlock("ehcleanup"); break; case EHScope::Filter: dispatchBlock = createBasicBlock("filter.dispatch"); break; case EHScope::Terminate: dispatchBlock = getTerminateHandler(); break; } scope.setCachedEHDispatchBlock(dispatchBlock); } return dispatchBlock; } /// Check whether this is a non-EH scope, i.e. a scope which doesn't /// affect exception handling. Currently, the only non-EH scopes are /// normal-only cleanup scopes. static bool isNonEHScope(const EHScope &S) { switch (S.getKind()) { case EHScope::Cleanup: return !cast<EHCleanupScope>(S).isEHCleanup(); case EHScope::Filter: case EHScope::Catch: case EHScope::Terminate: return false; } llvm_unreachable("Invalid EHScope Kind!"); } llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { assert(EHStack.requiresLandingPad()); assert(!EHStack.empty()); if (!CGM.getLangOpts().Exceptions) return 0; // Check the innermost scope for a cached landing pad. If this is // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); if (LP) return LP; // Build the landing pad for this scope. LP = EmitLandingPad(); assert(LP); // Cache the landing pad on the innermost scope. If this is a // non-EH scope, cache the landing pad on the enclosing scope, too. for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { ir->setCachedLandingPad(LP); if (!isNonEHScope(*ir)) break; } return LP; } // This code contains a hack to work around a design flaw in // LLVM's EH IR which breaks semantics after inlining. This same // hack is implemented in llvm-gcc. // // The LLVM EH abstraction is basically a thin veneer over the // traditional GCC zero-cost design: for each range of instructions // in the function, there is (at most) one "landing pad" with an // associated chain of EH actions. A language-specific personality // function interprets this chain of actions and (1) decides whether // or not to resume execution at the landing pad and (2) if so, // provides an integer indicating why it's stopping. In LLVM IR, // the association of a landing pad with a range of instructions is // achieved via an invoke instruction, the chain of actions becomes // the arguments to the @llvm.eh.selector call, and the selector // call returns the integer indicator. Other than the required // presence of two intrinsic function calls in the landing pad, // the IR exactly describes the layout of the output code. // // A principal advantage of this design is that it is completely // language-agnostic; in theory, the LLVM optimizers can treat // landing pads neutrally, and targets need only know how to lower // the intrinsics to have a functioning exceptions system (assuming // that platform exceptions follow something approximately like the // GCC design). Unfortunately, landing pads cannot be combined in a // language-agnostic way: given selectors A and B, there is no way // to make a single landing pad which faithfully represents the // semantics of propagating an exception first through A, then // through B, without knowing how the personality will interpret the // (lowered form of the) selectors. This means that inlining has no // choice but to crudely chain invokes (i.e., to ignore invokes in // the inlined function, but to turn all unwindable calls into // invokes), which is only semantically valid if every unwind stops // at every landing pad. // // Therefore, the invoke-inline hack is to guarantee that every // landing pad has a catch-all. enum CleanupHackLevel_t { /// A level of hack that requires that all landing pads have /// catch-alls. CHL_MandatoryCatchall, /// A level of hack that requires that all landing pads handle /// cleanups. CHL_MandatoryCleanup, /// No hacks at all; ideal IR generation. CHL_Ideal }; const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { assert(EHStack.requiresLandingPad()); EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); switch (innermostEHScope.getKind()) { case EHScope::Terminate: return getTerminateLandingPad(); case EHScope::Catch: case EHScope::Cleanup: case EHScope::Filter: if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) return lpad; } // Save the current IR generation state. CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); const EHPersonality &personality = EHPersonality::get(getLangOpts()); // Create and configure the landing pad. llvm::BasicBlock *lpad = createBasicBlock("lpad"); EmitBlock(lpad); llvm::LandingPadInst *LPadInst = Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), getOpaquePersonalityFn(CGM, personality), 0); llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); Builder.CreateStore(LPadExn, getExceptionSlot()); llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); Builder.CreateStore(LPadSel, getEHSelectorSlot()); // Save the exception pointer. It's safe to use a single exception // pointer per function because EH cleanups can never have nested // try/catches. // Build the landingpad instruction. // Accumulate all the handlers in scope. bool hasCatchAll = false; bool hasCleanup = false; bool hasFilter = false; SmallVector<llvm::Value*, 4> filterTypes; llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); I != E; ++I) { switch (I->getKind()) { case EHScope::Cleanup: // If we have a cleanup, remember that. hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); continue; case EHScope::Filter: { assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); assert(!hasCatchAll && "EH filter reached after catch-all"); // Filter scopes get added to the landingpad in weird ways. EHFilterScope &filter = cast<EHFilterScope>(*I); hasFilter = true; // Add all the filter values. for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) filterTypes.push_back(filter.getFilter(i)); goto done; } case EHScope::Terminate: // Terminate scopes are basically catch-alls. assert(!hasCatchAll); hasCatchAll = true; goto done; case EHScope::Catch: break; } EHCatchScope &catchScope = cast<EHCatchScope>(*I); for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { EHCatchScope::Handler handler = catchScope.getHandler(hi); // If this is a catch-all, register that and abort. if (!handler.Type) { assert(!hasCatchAll); hasCatchAll = true; goto done; } // Check whether we already have a handler for this type. if (catchTypes.insert(handler.Type)) // If not, add it directly to the landingpad. LPadInst->addClause(handler.Type); } } done: // If we have a catch-all, add null to the landingpad. assert(!(hasCatchAll && hasFilter)); if (hasCatchAll) { LPadInst->addClause(getCatchAllValue(*this)); // If we have an EH filter, we need to add those handlers in the // right place in the landingpad, which is to say, at the end. } else if (hasFilter) { // Create a filter expression: a constant array indicating which filter // types there are. The personality routine only lands here if the filter // doesn't match. llvm::SmallVector<llvm::Constant*, 8> Filters; llvm::ArrayType *AType = llvm::ArrayType::get(!filterTypes.empty() ? filterTypes[0]->getType() : Int8PtrTy, filterTypes.size()); for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) Filters.push_back(cast<llvm::Constant>(filterTypes[i])); llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); LPadInst->addClause(FilterArray); // Also check whether we need a cleanup. if (hasCleanup) LPadInst->setCleanup(true); // Otherwise, signal that we at least have cleanups. } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { if (CleanupHackLevel == CHL_MandatoryCatchall) LPadInst->addClause(getCatchAllValue(*this)); else LPadInst->setCleanup(true); } assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && "landingpad instruction has no clauses!"); // Tell the backend how to generate the landing pad. Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); // Restore the old IR generation state. Builder.restoreIP(savedIP); return lpad; } namespace { /// A cleanup to call __cxa_end_catch. In many cases, the caught /// exception type lets us state definitively that the thrown exception /// type does not have a destructor. In particular: /// - Catch-alls tell us nothing, so we have to conservatively /// assume that the thrown exception might have a destructor. /// - Catches by reference behave according to their base types. /// - Catches of non-record types will only trigger for exceptions /// of non-record types, which never have destructors. /// - Catches of record types can trigger for arbitrary subclasses /// of the caught type, so we have to assume the actual thrown /// exception type might have a throwing destructor, even if the /// caught type's destructor is trivial or nothrow. struct CallEndCatch : EHScopeStack::Cleanup { CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} bool MightThrow; void Emit(CodeGenFunction &CGF, Flags flags) { if (!MightThrow) { CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); return; } CGF.EmitCallOrInvoke(getEndCatchFn(CGF)); } }; } /// Emits a call to __cxa_begin_catch and enters a cleanup to call /// __cxa_end_catch. /// /// \param EndMightThrow - true if __cxa_end_catch might throw static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, llvm::Value *Exn, bool EndMightThrow) { llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); Call->setDoesNotThrow(); CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); return Call; } /// A "special initializer" callback for initializing a catch /// parameter during catch initialization. static void InitCatchParam(CodeGenFunction &CGF, const VarDecl &CatchParam, llvm::Value *ParamAddr) { // Load the exception from where the landing pad saved it. llvm::Value *Exn = CGF.getExceptionFromSlot(); CanQualType CatchType = CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); // If we're catching by reference, we can just cast the object // pointer to the appropriate pointer. if (isa<ReferenceType>(CatchType)) { QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); bool EndCatchMightThrow = CaughtType->isRecordType(); // __cxa_begin_catch returns the adjusted object pointer. llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); // We have no way to tell the personality function that we're // catching by reference, so if we're catching a pointer, // __cxa_begin_catch will actually return that pointer by value. if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { QualType PointeeType = PT->getPointeeType(); // When catching by reference, generally we should just ignore // this by-value pointer and use the exception object instead. if (!PointeeType->isRecordType()) { // Exn points to the struct _Unwind_Exception header, which // we have to skip past in order to reach the exception data. unsigned HeaderSize = CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); // However, if we're catching a pointer-to-record type that won't // work, because the personality function might have adjusted // the pointer. There's actually no way for us to fully satisfy // the language/ABI contract here: we can't use Exn because it // might have the wrong adjustment, but we can't use the by-value // pointer because it's off by a level of abstraction. // // The current solution is to dump the adjusted pointer into an // alloca, which breaks language semantics (because changing the // pointer doesn't change the exception) but at least works. // The better solution would be to filter out non-exact matches // and rethrow them, but this is tricky because the rethrow // really needs to be catchable by other sites at this landing // pad. The best solution is to fix the personality function. } else { // Pull the pointer for the reference type off. llvm::Type *PtrTy = cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); // Create the temporary and write the adjusted pointer into it. llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); CGF.Builder.CreateStore(Casted, ExnPtrTmp); // Bind the reference to the temporary. AdjustedExn = ExnPtrTmp; } } llvm::Value *ExnCast = CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); CGF.Builder.CreateStore(ExnCast, ParamAddr); return; } // Non-aggregates (plus complexes). bool IsComplex = false; if (!CGF.hasAggregateLLVMType(CatchType) || (IsComplex = CatchType->isAnyComplexType())) { llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); // If the catch type is a pointer type, __cxa_begin_catch returns // the pointer by value. if (CatchType->hasPointerRepresentation()) { llvm::Value *CastExn = CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); switch (CatchType.getQualifiers().getObjCLifetime()) { case Qualifiers::OCL_Strong: CastExn = CGF.EmitARCRetainNonBlock(CastExn); // fallthrough case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: CGF.Builder.CreateStore(CastExn, ParamAddr); return; case Qualifiers::OCL_Weak: CGF.EmitARCInitWeak(ParamAddr, CastExn); return; } llvm_unreachable("bad ownership qualifier!"); } // Otherwise, it returns a pointer into the exception object. llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); if (IsComplex) { CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), ParamAddr, /*volatile*/ false); } else { unsigned Alignment = CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, CatchType); } return; } assert(isa<RecordType>(CatchType) && "unexpected catch type!"); llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok // Check for a copy expression. If we don't have a copy expression, // that means a trivial copy is okay. const Expr *copyExpr = CatchParam.getInit(); if (!copyExpr) { llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); return; } // We have to call __cxa_get_exception_ptr to get the adjusted // pointer before copying. llvm::CallInst *rawAdjustedExn = CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); rawAdjustedExn->setDoesNotThrow(); // Cast that to the appropriate type. llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); // The copy expression is defined in terms of an OpaqueValueExpr. // Find it and map it to the adjusted expression. CodeGenFunction::OpaqueValueMapping opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); // Call the copy ctor in a terminate scope. CGF.EHStack.pushTerminate(); // Perform the copy construction. CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased)); // Leave the terminate scope. CGF.EHStack.popTerminate(); // Undo the opaque value mapping. opaque.pop(); // Finally we can call __cxa_begin_catch. CallBeginCatch(CGF, Exn, true); } /// Begins a catch statement by initializing the catch variable and /// calling __cxa_begin_catch. static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { // We have to be very careful with the ordering of cleanups here: // C++ [except.throw]p4: // The destruction [of the exception temporary] occurs // immediately after the destruction of the object declared in // the exception-declaration in the handler. // // So the precise ordering is: // 1. Construct catch variable. // 2. __cxa_begin_catch // 3. Enter __cxa_end_catch cleanup // 4. Enter dtor cleanup // // We do this by using a slightly abnormal initialization process. // Delegation sequence: // - ExitCXXTryStmt opens a RunCleanupsScope // - EmitAutoVarAlloca creates the variable and debug info // - InitCatchParam initializes the variable from the exception // - CallBeginCatch calls __cxa_begin_catch // - CallBeginCatch enters the __cxa_end_catch cleanup // - EmitAutoVarCleanups enters the variable destructor cleanup // - EmitCXXTryStmt emits the code for the catch body // - EmitCXXTryStmt close the RunCleanupsScope VarDecl *CatchParam = S->getExceptionDecl(); if (!CatchParam) { llvm::Value *Exn = CGF.getExceptionFromSlot(); CallBeginCatch(CGF, Exn, true); return; } // Emit the local. CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); CGF.EmitAutoVarCleanups(var); } namespace { struct CallRethrow : EHScopeStack::Cleanup { void Emit(CodeGenFunction &CGF, Flags flags) { CGF.EmitCallOrInvoke(getReThrowFn(CGF)); } }; } /// Emit the structure of the dispatch block for the given catch scope. /// It is an invariant that the dispatch block already exists. static void emitCatchDispatchBlock(CodeGenFunction &CGF, EHCatchScope &catchScope) { llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); assert(dispatchBlock); // If there's only a single catch-all, getEHDispatchBlock returned // that catch-all as the dispatch block. if (catchScope.getNumHandlers() == 1 && catchScope.getHandler(0).isCatchAll()) { assert(dispatchBlock == catchScope.getHandler(0).Block); return; } CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); CGF.EmitBlockAfterUses(dispatchBlock); // Select the right handler. llvm::Value *llvm_eh_typeid_for = CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); // Load the selector value. llvm::Value *selector = CGF.getSelectorFromSlot(); // Test against each of the exception types we claim to catch. for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { assert(i < e && "ran off end of handlers!"); const EHCatchScope::Handler &handler = catchScope.getHandler(i); llvm::Value *typeValue = handler.Type; assert(typeValue && "fell into catch-all case!"); typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); // Figure out the next block. bool nextIsEnd; llvm::BasicBlock *nextBlock; // If this is the last handler, we're at the end, and the next // block is the block for the enclosing EH scope. if (i + 1 == e) { nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); nextIsEnd = true; // If the next handler is a catch-all, we're at the end, and the // next block is that handler. } else if (catchScope.getHandler(i+1).isCatchAll()) { nextBlock = catchScope.getHandler(i+1).Block; nextIsEnd = true; // Otherwise, we're not at the end and we need a new block. } else { nextBlock = CGF.createBasicBlock("catch.fallthrough"); nextIsEnd = false; } // Figure out the catch type's index in the LSDA's type table. llvm::CallInst *typeIndex = CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); typeIndex->setDoesNotThrow(); llvm::Value *matchesTypeIndex = CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); // If the next handler is a catch-all, we're completely done. if (nextIsEnd) { CGF.Builder.restoreIP(savedIP); return; } // Otherwise we need to emit and continue at that block. CGF.EmitBlock(nextBlock); } } void CodeGenFunction::popCatchScope() { EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); if (catchScope.hasEHBranches()) emitCatchDispatchBlock(*this, catchScope); EHStack.popCatch(); } void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { unsigned NumHandlers = S.getNumHandlers(); EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); assert(CatchScope.getNumHandlers() == NumHandlers); // If the catch was not required, bail out now. if (!CatchScope.hasEHBranches()) { EHStack.popCatch(); return; } // Emit the structure of the EH dispatch for this catch. emitCatchDispatchBlock(*this, CatchScope); // Copy the handler blocks off before we pop the EH stack. Emitting // the handlers might scribble on this memory. SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); memcpy(Handlers.data(), CatchScope.begin(), NumHandlers * sizeof(EHCatchScope::Handler)); EHStack.popCatch(); // The fall-through block. llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); // We just emitted the body of the try; jump to the continue block. if (HaveInsertPoint()) Builder.CreateBr(ContBB); // Determine if we need an implicit rethrow for all these catch handlers. bool ImplicitRethrow = false; if (IsFnTryBlock) ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || isa<CXXConstructorDecl>(CurCodeDecl); // Perversely, we emit the handlers backwards precisely because we // want them to appear in source order. In all of these cases, the // catch block will have exactly one predecessor, which will be a // particular block in the catch dispatch. However, in the case of // a catch-all, one of the dispatch blocks will branch to two // different handlers, and EmitBlockAfterUses will cause the second // handler to be moved before the first. for (unsigned I = NumHandlers; I != 0; --I) { llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; EmitBlockAfterUses(CatchBlock); // Catch the exception if this isn't a catch-all. const CXXCatchStmt *C = S.getHandler(I-1); // Enter a cleanup scope, including the catch variable and the // end-catch. RunCleanupsScope CatchScope(*this); // Initialize the catch variable and set up the cleanups. BeginCatch(*this, C); // If there's an implicit rethrow, push a normal "cleanup" to call // _cxa_rethrow. This needs to happen before __cxa_end_catch is // called, and so it is pushed after BeginCatch. if (ImplicitRethrow) EHStack.pushCleanup<CallRethrow>(NormalCleanup); // Perform the body of the catch. EmitStmt(C->getHandlerBlock()); // Fall out through the catch cleanups. CatchScope.ForceCleanup(); // Branch out of the try. if (HaveInsertPoint()) Builder.CreateBr(ContBB); } EmitBlock(ContBB); } namespace { struct CallEndCatchForFinally : EHScopeStack::Cleanup { llvm::Value *ForEHVar; llvm::Value *EndCatchFn; CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} void Emit(CodeGenFunction &CGF, Flags flags) { llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); llvm::BasicBlock *CleanupContBB = CGF.createBasicBlock("finally.cleanup.cont"); llvm::Value *ShouldEndCatch = CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); CGF.EmitBlock(EndCatchBB); CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw CGF.EmitBlock(CleanupContBB); } }; struct PerformFinally : EHScopeStack::Cleanup { const Stmt *Body; llvm::Value *ForEHVar; llvm::Value *EndCatchFn; llvm::Value *RethrowFn; llvm::Value *SavedExnVar; PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, llvm::Value *EndCatchFn, llvm::Value *RethrowFn, llvm::Value *SavedExnVar) : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} void Emit(CodeGenFunction &CGF, Flags flags) { // Enter a cleanup to call the end-catch function if one was provided. if (EndCatchFn) CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, ForEHVar, EndCatchFn); // Save the current cleanup destination in case there are // cleanups in the finally block. llvm::Value *SavedCleanupDest = CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), "cleanup.dest.saved"); // Emit the finally block. CGF.EmitStmt(Body); // If the end of the finally is reachable, check whether this was // for EH. If so, rethrow. if (CGF.HaveInsertPoint()) { llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); llvm::Value *ShouldRethrow = CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); CGF.EmitBlock(RethrowBB); if (SavedExnVar) { CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar)); } else { CGF.EmitCallOrInvoke(RethrowFn); } CGF.Builder.CreateUnreachable(); CGF.EmitBlock(ContBB); // Restore the cleanup destination. CGF.Builder.CreateStore(SavedCleanupDest, CGF.getNormalCleanupDestSlot()); } // Leave the end-catch cleanup. As an optimization, pretend that // the fallthrough path was inaccessible; we've dynamically proven // that we're not in the EH case along that path. if (EndCatchFn) { CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); CGF.PopCleanupBlock(); CGF.Builder.restoreIP(SavedIP); } // Now make sure we actually have an insertion point or the // cleanup gods will hate us. CGF.EnsureInsertPoint(); } }; } /// Enters a finally block for an implementation using zero-cost /// exceptions. This is mostly general, but hard-codes some /// language/ABI-specific behavior in the catch-all sections. void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, const Stmt *body, llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, llvm::Constant *rethrowFn) { assert((beginCatchFn != 0) == (endCatchFn != 0) && "begin/end catch functions not paired"); assert(rethrowFn && "rethrow function is required"); BeginCatchFn = beginCatchFn; // The rethrow function has one of the following two types: // void (*)() // void (*)(void*) // In the latter case we need to pass it the exception object. // But we can't use the exception slot because the @finally might // have a landing pad (which would overwrite the exception slot). llvm::FunctionType *rethrowFnTy = cast<llvm::FunctionType>( cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); SavedExnVar = 0; if (rethrowFnTy->getNumParams()) SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); // A finally block is a statement which must be executed on any edge // out of a given scope. Unlike a cleanup, the finally block may // contain arbitrary control flow leading out of itself. In // addition, finally blocks should always be executed, even if there // are no catch handlers higher on the stack. Therefore, we // surround the protected scope with a combination of a normal // cleanup (to catch attempts to break out of the block via normal // control flow) and an EH catch-all (semantically "outside" any try // statement to which the finally block might have been attached). // The finally block itself is generated in the context of a cleanup // which conditionally leaves the catch-all. // Jump destination for performing the finally block on an exception // edge. We'll never actually reach this block, so unreachable is // fine. RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); // Whether the finally block is being executed for EH purposes. ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); // Enter a normal cleanup which will perform the @finally block. CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, ForEHVar, endCatchFn, rethrowFn, SavedExnVar); // Enter a catch-all scope. llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); catchScope->setCatchAllHandler(0, catchBB); } void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { // Leave the finally catch-all. EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; CGF.popCatchScope(); // If there are any references to the catch-all block, emit it. if (catchBB->use_empty()) { delete catchBB; } else { CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); CGF.EmitBlock(catchBB); llvm::Value *exn = 0; // If there's a begin-catch function, call it. if (BeginCatchFn) { exn = CGF.getExceptionFromSlot(); CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow(); } // If we need to remember the exception pointer to rethrow later, do so. if (SavedExnVar) { if (!exn) exn = CGF.getExceptionFromSlot(); CGF.Builder.CreateStore(exn, SavedExnVar); } // Tell the cleanups in the finally block that we're do this for EH. CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); // Thread a jump through the finally cleanup. CGF.EmitBranchThroughCleanup(RethrowDest); CGF.Builder.restoreIP(savedIP); } // Finally, leave the @finally cleanup. CGF.PopCleanupBlock(); } llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { if (TerminateLandingPad) return TerminateLandingPad; CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); // This will get inserted at the end of the function. TerminateLandingPad = createBasicBlock("terminate.lpad"); Builder.SetInsertPoint(TerminateLandingPad); // Tell the backend that this is a landing pad. const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); llvm::LandingPadInst *LPadInst = Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), getOpaquePersonalityFn(CGM, Personality), 0); LPadInst->addClause(getCatchAllValue(*this)); llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); TerminateCall->setDoesNotReturn(); TerminateCall->setDoesNotThrow(); Builder.CreateUnreachable(); // Restore the saved insertion state. Builder.restoreIP(SavedIP); return TerminateLandingPad; } llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { if (TerminateHandler) return TerminateHandler; CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); // Set up the terminate handler. This block is inserted at the very // end of the function by FinishFunction. TerminateHandler = createBasicBlock("terminate.handler"); Builder.SetInsertPoint(TerminateHandler); llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); TerminateCall->setDoesNotReturn(); TerminateCall->setDoesNotThrow(); Builder.CreateUnreachable(); // Restore the saved insertion state. Builder.restoreIP(SavedIP); return TerminateHandler; } llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() { if (EHResumeBlock) return EHResumeBlock; CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); // We emit a jump to a notional label at the outermost unwind state. EHResumeBlock = createBasicBlock("eh.resume"); Builder.SetInsertPoint(EHResumeBlock); const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); // This can always be a call because we necessarily didn't find // anything on the EH stack which needs our help. const char *RethrowName = Personality.CatchallRethrowFn; if (RethrowName != 0) { Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName), getExceptionFromSlot()) ->setDoesNotReturn(); } else { switch (CleanupHackLevel) { case CHL_MandatoryCatchall: // In mandatory-catchall mode, we need to use // _Unwind_Resume_or_Rethrow, or whatever the personality's // equivalent is. Builder.CreateCall(getUnwindResumeOrRethrowFn(), getExceptionFromSlot()) ->setDoesNotReturn(); break; case CHL_MandatoryCleanup: { // In mandatory-cleanup mode, we should use 'resume'. // Recreate the landingpad's return value for the 'resume' instruction. llvm::Value *Exn = getExceptionFromSlot(); llvm::Value *Sel = getSelectorFromSlot(); llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), Sel->getType(), NULL); llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); Builder.CreateResume(LPadVal); Builder.restoreIP(SavedIP); return EHResumeBlock; } case CHL_Ideal: // In an idealized mode where we don't have to worry about the // optimizer combining landing pads, we should just use // _Unwind_Resume (or the personality's equivalent). Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot()) ->setDoesNotReturn(); break; } } Builder.CreateUnreachable(); Builder.restoreIP(SavedIP); return EHResumeBlock; }