Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h |
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the internal per-function state used for llvm translation. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H #define CLANG_CODEGEN_CODEGENFUNCTION_H #include "clang/AST/Type.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/CharUnits.h" #include "clang/Frontend/CodeGenOptions.h" #include "clang/Basic/ABI.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/Debug.h" #include "CodeGenModule.h" #include "CGBuilder.h" #include "CGDebugInfo.h" #include "CGValue.h" namespace llvm { class BasicBlock; class LLVMContext; class MDNode; class Module; class SwitchInst; class Twine; class Value; class CallSite; } namespace clang { class ASTContext; class BlockDecl; class CXXDestructorDecl; class CXXForRangeStmt; class CXXTryStmt; class Decl; class LabelDecl; class EnumConstantDecl; class FunctionDecl; class FunctionProtoType; class LabelStmt; class ObjCContainerDecl; class ObjCInterfaceDecl; class ObjCIvarDecl; class ObjCMethodDecl; class ObjCImplementationDecl; class ObjCPropertyImplDecl; class TargetInfo; class TargetCodeGenInfo; class VarDecl; class ObjCForCollectionStmt; class ObjCAtTryStmt; class ObjCAtThrowStmt; class ObjCAtSynchronizedStmt; class ObjCAutoreleasePoolStmt; namespace CodeGen { class CodeGenTypes; class CGFunctionInfo; class CGRecordLayout; class CGBlockInfo; class CGCXXABI; class BlockFlags; class BlockFieldFlags; /// A branch fixup. These are required when emitting a goto to a /// label which hasn't been emitted yet. The goto is optimistically /// emitted as a branch to the basic block for the label, and (if it /// occurs in a scope with non-trivial cleanups) a fixup is added to /// the innermost cleanup. When a (normal) cleanup is popped, any /// unresolved fixups in that scope are threaded through the cleanup. struct BranchFixup { /// The block containing the terminator which needs to be modified /// into a switch if this fixup is resolved into the current scope. /// If null, LatestBranch points directly to the destination. llvm::BasicBlock *OptimisticBranchBlock; /// The ultimate destination of the branch. /// /// This can be set to null to indicate that this fixup was /// successfully resolved. llvm::BasicBlock *Destination; /// The destination index value. unsigned DestinationIndex; /// The initial branch of the fixup. llvm::BranchInst *InitialBranch; }; template <class T> struct InvariantValue { typedef T type; typedef T saved_type; static bool needsSaving(type value) { return false; } static saved_type save(CodeGenFunction &CGF, type value) { return value; } static type restore(CodeGenFunction &CGF, saved_type value) { return value; } }; /// A metaprogramming class for ensuring that a value will dominate an /// arbitrary position in a function. template <class T> struct DominatingValue : InvariantValue<T> {}; template <class T, bool mightBeInstruction = llvm::is_base_of<llvm::Value, T>::value && !llvm::is_base_of<llvm::Constant, T>::value && !llvm::is_base_of<llvm::BasicBlock, T>::value> struct DominatingPointer; template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; // template <class T> struct DominatingPointer<T,true> at end of file template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; enum CleanupKind { EHCleanup = 0x1, NormalCleanup = 0x2, NormalAndEHCleanup = EHCleanup | NormalCleanup, InactiveCleanup = 0x4, InactiveEHCleanup = EHCleanup | InactiveCleanup, InactiveNormalCleanup = NormalCleanup | InactiveCleanup, InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup }; /// A stack of scopes which respond to exceptions, including cleanups /// and catch blocks. class EHScopeStack { public: /// A saved depth on the scope stack. This is necessary because /// pushing scopes onto the stack invalidates iterators. class stable_iterator { friend class EHScopeStack; /// Offset from StartOfData to EndOfBuffer. ptrdiff_t Size; stable_iterator(ptrdiff_t Size) : Size(Size) {} public: static stable_iterator invalid() { return stable_iterator(-1); } stable_iterator() : Size(-1) {} bool isValid() const { return Size >= 0; } /// Returns true if this scope encloses I. /// Returns false if I is invalid. /// This scope must be valid. bool encloses(stable_iterator I) const { return Size <= I.Size; } /// Returns true if this scope strictly encloses I: that is, /// if it encloses I and is not I. /// Returns false is I is invalid. /// This scope must be valid. bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } friend bool operator==(stable_iterator A, stable_iterator B) { return A.Size == B.Size; } friend bool operator!=(stable_iterator A, stable_iterator B) { return A.Size != B.Size; } }; /// Information for lazily generating a cleanup. Subclasses must be /// POD-like: cleanups will not be destructed, and they will be /// allocated on the cleanup stack and freely copied and moved /// around. /// /// Cleanup implementations should generally be declared in an /// anonymous namespace. class Cleanup { // Anchor the construction vtable. virtual void anchor(); public: /// Generation flags. class Flags { enum { F_IsForEH = 0x1, F_IsNormalCleanupKind = 0x2, F_IsEHCleanupKind = 0x4 }; unsigned flags; public: Flags() : flags(0) {} /// isForEH - true if the current emission is for an EH cleanup. bool isForEHCleanup() const { return flags & F_IsForEH; } bool isForNormalCleanup() const { return !isForEHCleanup(); } void setIsForEHCleanup() { flags |= F_IsForEH; } bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } /// isEHCleanupKind - true if the cleanup was pushed as an EH /// cleanup. bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } }; // Provide a virtual destructor to suppress a very common warning // that unfortunately cannot be suppressed without this. Cleanups // should not rely on this destructor ever being called. virtual ~Cleanup() {} /// Emit the cleanup. For normal cleanups, this is run in the /// same EH context as when the cleanup was pushed, i.e. the /// immediately-enclosing context of the cleanup scope. For /// EH cleanups, this is run in a terminate context. /// // \param IsForEHCleanup true if this is for an EH cleanup, false /// if for a normal cleanup. virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; }; /// ConditionalCleanupN stores the saved form of its N parameters, /// then restores them and performs the cleanup. template <class T, class A0> class ConditionalCleanup1 : public Cleanup { typedef typename DominatingValue<A0>::saved_type A0_saved; A0_saved a0_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); T(a0).Emit(CGF, flags); } public: ConditionalCleanup1(A0_saved a0) : a0_saved(a0) {} }; template <class T, class A0, class A1> class ConditionalCleanup2 : public Cleanup { typedef typename DominatingValue<A0>::saved_type A0_saved; typedef typename DominatingValue<A1>::saved_type A1_saved; A0_saved a0_saved; A1_saved a1_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); T(a0, a1).Emit(CGF, flags); } public: ConditionalCleanup2(A0_saved a0, A1_saved a1) : a0_saved(a0), a1_saved(a1) {} }; template <class T, class A0, class A1, class A2> class ConditionalCleanup3 : public Cleanup { typedef typename DominatingValue<A0>::saved_type A0_saved; typedef typename DominatingValue<A1>::saved_type A1_saved; typedef typename DominatingValue<A2>::saved_type A2_saved; A0_saved a0_saved; A1_saved a1_saved; A2_saved a2_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); T(a0, a1, a2).Emit(CGF, flags); } public: ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} }; template <class T, class A0, class A1, class A2, class A3> class ConditionalCleanup4 : public Cleanup { typedef typename DominatingValue<A0>::saved_type A0_saved; typedef typename DominatingValue<A1>::saved_type A1_saved; typedef typename DominatingValue<A2>::saved_type A2_saved; typedef typename DominatingValue<A3>::saved_type A3_saved; A0_saved a0_saved; A1_saved a1_saved; A2_saved a2_saved; A3_saved a3_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); T(a0, a1, a2, a3).Emit(CGF, flags); } public: ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} }; private: // The implementation for this class is in CGException.h and // CGException.cpp; the definition is here because it's used as a // member of CodeGenFunction. /// The start of the scope-stack buffer, i.e. the allocated pointer /// for the buffer. All of these pointers are either simultaneously /// null or simultaneously valid. char *StartOfBuffer; /// The end of the buffer. char *EndOfBuffer; /// The first valid entry in the buffer. char *StartOfData; /// The innermost normal cleanup on the stack. stable_iterator InnermostNormalCleanup; /// The innermost EH scope on the stack. stable_iterator InnermostEHScope; /// The current set of branch fixups. A branch fixup is a jump to /// an as-yet unemitted label, i.e. a label for which we don't yet /// know the EH stack depth. Whenever we pop a cleanup, we have /// to thread all the current branch fixups through it. /// /// Fixups are recorded as the Use of the respective branch or /// switch statement. The use points to the final destination. /// When popping out of a cleanup, these uses are threaded through /// the cleanup and adjusted to point to the new cleanup. /// /// Note that branches are allowed to jump into protected scopes /// in certain situations; e.g. the following code is legal: /// struct A { ~A(); }; // trivial ctor, non-trivial dtor /// goto foo; /// A a; /// foo: /// bar(); SmallVector<BranchFixup, 8> BranchFixups; char *allocate(size_t Size); void *pushCleanup(CleanupKind K, size_t DataSize); public: EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), InnermostNormalCleanup(stable_end()), InnermostEHScope(stable_end()) {} ~EHScopeStack() { delete[] StartOfBuffer; } // Variadic templates would make this not terrible. /// Push a lazily-created cleanup on the stack. template <class T> void pushCleanup(CleanupKind Kind) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(); (void) Obj; } /// Push a lazily-created cleanup on the stack. template <class T, class A0> void pushCleanup(CleanupKind Kind, A0 a0) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0); (void) Obj; } /// Push a lazily-created cleanup on the stack. template <class T, class A0, class A1> void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1); (void) Obj; } /// Push a lazily-created cleanup on the stack. template <class T, class A0, class A1, class A2> void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2); (void) Obj; } /// Push a lazily-created cleanup on the stack. template <class T, class A0, class A1, class A2, class A3> void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); (void) Obj; } /// Push a lazily-created cleanup on the stack. template <class T, class A0, class A1, class A2, class A3, class A4> void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); (void) Obj; } // Feel free to add more variants of the following: /// Push a cleanup with non-constant storage requirements on the /// stack. The cleanup type must provide an additional static method: /// static size_t getExtraSize(size_t); /// The argument to this method will be the value N, which will also /// be passed as the first argument to the constructor. /// /// The data stored in the extra storage must obey the same /// restrictions as normal cleanup member data. /// /// The pointer returned from this method is valid until the cleanup /// stack is modified. template <class T, class A0, class A1, class A2> T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); return new (Buffer) T(N, a0, a1, a2); } /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. void popCleanup(); /// Push a set of catch handlers on the stack. The catch is /// uninitialized and will need to have the given number of handlers /// set on it. class EHCatchScope *pushCatch(unsigned NumHandlers); /// Pops a catch scope off the stack. This is private to CGException.cpp. void popCatch(); /// Push an exceptions filter on the stack. class EHFilterScope *pushFilter(unsigned NumFilters); /// Pops an exceptions filter off the stack. void popFilter(); /// Push a terminate handler on the stack. void pushTerminate(); /// Pops a terminate handler off the stack. void popTerminate(); /// Determines whether the exception-scopes stack is empty. bool empty() const { return StartOfData == EndOfBuffer; } bool requiresLandingPad() const { return InnermostEHScope != stable_end(); } /// Determines whether there are any normal cleanups on the stack. bool hasNormalCleanups() const { return InnermostNormalCleanup != stable_end(); } /// Returns the innermost normal cleanup on the stack, or /// stable_end() if there are no normal cleanups. stable_iterator getInnermostNormalCleanup() const { return InnermostNormalCleanup; } stable_iterator getInnermostActiveNormalCleanup() const; stable_iterator getInnermostEHScope() const { return InnermostEHScope; } stable_iterator getInnermostActiveEHScope() const; /// An unstable reference to a scope-stack depth. Invalidated by /// pushes but not pops. class iterator; /// Returns an iterator pointing to the innermost EH scope. iterator begin() const; /// Returns an iterator pointing to the outermost EH scope. iterator end() const; /// Create a stable reference to the top of the EH stack. The /// returned reference is valid until that scope is popped off the /// stack. stable_iterator stable_begin() const { return stable_iterator(EndOfBuffer - StartOfData); } /// Create a stable reference to the bottom of the EH stack. static stable_iterator stable_end() { return stable_iterator(0); } /// Translates an iterator into a stable_iterator. stable_iterator stabilize(iterator it) const; /// Turn a stable reference to a scope depth into a unstable pointer /// to the EH stack. iterator find(stable_iterator save) const; /// Removes the cleanup pointed to by the given stable_iterator. void removeCleanup(stable_iterator save); /// Add a branch fixup to the current cleanup scope. BranchFixup &addBranchFixup() { assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); BranchFixups.push_back(BranchFixup()); return BranchFixups.back(); } unsigned getNumBranchFixups() const { return BranchFixups.size(); } BranchFixup &getBranchFixup(unsigned I) { assert(I < getNumBranchFixups()); return BranchFixups[I]; } /// Pops lazily-removed fixups from the end of the list. This /// should only be called by procedures which have just popped a /// cleanup or resolved one or more fixups. void popNullFixups(); /// Clears the branch-fixups list. This should only be called by /// ResolveAllBranchFixups. void clearFixups() { BranchFixups.clear(); } }; /// CodeGenFunction - This class organizes the per-function state that is used /// while generating LLVM code. class CodeGenFunction : public CodeGenTypeCache { CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT friend class CGCXXABI; public: /// A jump destination is an abstract label, branching to which may /// require a jump out through normal cleanups. struct JumpDest { JumpDest() : Block(0), ScopeDepth(), Index(0) {} JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index) : Block(Block), ScopeDepth(Depth), Index(Index) {} bool isValid() const { return Block != 0; } llvm::BasicBlock *getBlock() const { return Block; } EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } unsigned getDestIndex() const { return Index; } private: llvm::BasicBlock *Block; EHScopeStack::stable_iterator ScopeDepth; unsigned Index; }; CodeGenModule &CGM; // Per-module state. const TargetInfo &Target; typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; CGBuilderTy Builder; /// CurFuncDecl - Holds the Decl for the current function or ObjC method. /// This excludes BlockDecls. const Decl *CurFuncDecl; /// CurCodeDecl - This is the inner-most code context, which includes blocks. const Decl *CurCodeDecl; const CGFunctionInfo *CurFnInfo; QualType FnRetTy; llvm::Function *CurFn; /// CurGD - The GlobalDecl for the current function being compiled. GlobalDecl CurGD; /// PrologueCleanupDepth - The cleanup depth enclosing all the /// cleanups associated with the parameters. EHScopeStack::stable_iterator PrologueCleanupDepth; /// ReturnBlock - Unified return block. JumpDest ReturnBlock; /// ReturnValue - The temporary alloca to hold the return value. This is null /// iff the function has no return value. llvm::Value *ReturnValue; /// AllocaInsertPoint - This is an instruction in the entry block before which /// we prefer to insert allocas. llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; bool CatchUndefined; /// In ARC, whether we should autorelease the return value. bool AutoreleaseResult; const CodeGen::CGBlockInfo *BlockInfo; llvm::Value *BlockPointer; llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; FieldDecl *LambdaThisCaptureField; /// \brief A mapping from NRVO variables to the flags used to indicate /// when the NRVO has been applied to this variable. llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; EHScopeStack EHStack; /// i32s containing the indexes of the cleanup destinations. llvm::AllocaInst *NormalCleanupDest; unsigned NextCleanupDestIndex; /// FirstBlockInfo - The head of a singly-linked-list of block layouts. CGBlockInfo *FirstBlockInfo; /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. llvm::BasicBlock *EHResumeBlock; /// The exception slot. All landing pads write the current exception pointer /// into this alloca. llvm::Value *ExceptionSlot; /// The selector slot. Under the MandatoryCleanup model, all landing pads /// write the current selector value into this alloca. llvm::AllocaInst *EHSelectorSlot; /// Emits a landing pad for the current EH stack. llvm::BasicBlock *EmitLandingPad(); llvm::BasicBlock *getInvokeDestImpl(); template <class T> typename DominatingValue<T>::saved_type saveValueInCond(T value) { return DominatingValue<T>::save(*this, value); } public: /// ObjCEHValueStack - Stack of Objective-C exception values, used for /// rethrows. SmallVector<llvm::Value*, 8> ObjCEHValueStack; /// A class controlling the emission of a finally block. class FinallyInfo { /// Where the catchall's edge through the cleanup should go. JumpDest RethrowDest; /// A function to call to enter the catch. llvm::Constant *BeginCatchFn; /// An i1 variable indicating whether or not the @finally is /// running for an exception. llvm::AllocaInst *ForEHVar; /// An i8* variable into which the exception pointer to rethrow /// has been saved. llvm::AllocaInst *SavedExnVar; public: void enter(CodeGenFunction &CGF, const Stmt *Finally, llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, llvm::Constant *rethrowFn); void exit(CodeGenFunction &CGF); }; /// pushFullExprCleanup - Push a cleanup to be run at the end of the /// current full-expression. Safe against the possibility that /// we're currently inside a conditionally-evaluated expression. template <class T, class A0> void pushFullExprCleanup(CleanupKind kind, A0 a0) { // If we're not in a conditional branch, or if none of the // arguments requires saving, then use the unconditional cleanup. if (!isInConditionalBranch()) return EHStack.pushCleanup<T>(kind, a0); typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; EHStack.pushCleanup<CleanupType>(kind, a0_saved); initFullExprCleanup(); } /// pushFullExprCleanup - Push a cleanup to be run at the end of the /// current full-expression. Safe against the possibility that /// we're currently inside a conditionally-evaluated expression. template <class T, class A0, class A1> void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { // If we're not in a conditional branch, or if none of the // arguments requires saving, then use the unconditional cleanup. if (!isInConditionalBranch()) return EHStack.pushCleanup<T>(kind, a0, a1); typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); initFullExprCleanup(); } /// pushFullExprCleanup - Push a cleanup to be run at the end of the /// current full-expression. Safe against the possibility that /// we're currently inside a conditionally-evaluated expression. template <class T, class A0, class A1, class A2> void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { // If we're not in a conditional branch, or if none of the // arguments requires saving, then use the unconditional cleanup. if (!isInConditionalBranch()) { return EHStack.pushCleanup<T>(kind, a0, a1, a2); } typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); initFullExprCleanup(); } /// pushFullExprCleanup - Push a cleanup to be run at the end of the /// current full-expression. Safe against the possibility that /// we're currently inside a conditionally-evaluated expression. template <class T, class A0, class A1, class A2, class A3> void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { // If we're not in a conditional branch, or if none of the // arguments requires saving, then use the unconditional cleanup. if (!isInConditionalBranch()) { return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); } typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved, a3_saved); initFullExprCleanup(); } /// Set up the last cleaup that was pushed as a conditional /// full-expression cleanup. void initFullExprCleanup(); /// PushDestructorCleanup - Push a cleanup to call the /// complete-object destructor of an object of the given type at the /// given address. Does nothing if T is not a C++ class type with a /// non-trivial destructor. void PushDestructorCleanup(QualType T, llvm::Value *Addr); /// PushDestructorCleanup - Push a cleanup to call the /// complete-object variant of the given destructor on the object at /// the given address. void PushDestructorCleanup(const CXXDestructorDecl *Dtor, llvm::Value *Addr); /// PopCleanupBlock - Will pop the cleanup entry on the stack and /// process all branch fixups. void PopCleanupBlock(bool FallThroughIsBranchThrough = false); /// DeactivateCleanupBlock - Deactivates the given cleanup block. /// The block cannot be reactivated. Pops it if it's the top of the /// stack. /// /// \param DominatingIP - An instruction which is known to /// dominate the current IP (if set) and which lies along /// all paths of execution between the current IP and the /// the point at which the cleanup comes into scope. void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP); /// ActivateCleanupBlock - Activates an initially-inactive cleanup. /// Cannot be used to resurrect a deactivated cleanup. /// /// \param DominatingIP - An instruction which is known to /// dominate the current IP (if set) and which lies along /// all paths of execution between the current IP and the /// the point at which the cleanup comes into scope. void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP); /// \brief Enters a new scope for capturing cleanups, all of which /// will be executed once the scope is exited. class RunCleanupsScope { EHScopeStack::stable_iterator CleanupStackDepth; bool OldDidCallStackSave; bool PerformCleanup; RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT protected: CodeGenFunction& CGF; public: /// \brief Enter a new cleanup scope. explicit RunCleanupsScope(CodeGenFunction &CGF) : PerformCleanup(true), CGF(CGF) { CleanupStackDepth = CGF.EHStack.stable_begin(); OldDidCallStackSave = CGF.DidCallStackSave; CGF.DidCallStackSave = false; } /// \brief Exit this cleanup scope, emitting any accumulated /// cleanups. ~RunCleanupsScope() { if (PerformCleanup) { CGF.DidCallStackSave = OldDidCallStackSave; CGF.PopCleanupBlocks(CleanupStackDepth); } } /// \brief Determine whether this scope requires any cleanups. bool requiresCleanups() const { return CGF.EHStack.stable_begin() != CleanupStackDepth; } /// \brief Force the emission of cleanups now, instead of waiting /// until this object is destroyed. void ForceCleanup() { assert(PerformCleanup && "Already forced cleanup"); CGF.DidCallStackSave = OldDidCallStackSave; CGF.PopCleanupBlocks(CleanupStackDepth); PerformCleanup = false; } }; class LexicalScope: protected RunCleanupsScope { SourceRange Range; bool PopDebugStack; LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE LexicalScope &operator=(const LexicalScope &); public: /// \brief Enter a new cleanup scope. explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { if (CGDebugInfo *DI = CGF.getDebugInfo()) DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); } /// \brief Exit this cleanup scope, emitting any accumulated /// cleanups. ~LexicalScope() { if (PopDebugStack) { CGDebugInfo *DI = CGF.getDebugInfo(); if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); } } /// \brief Force the emission of cleanups now, instead of waiting /// until this object is destroyed. void ForceCleanup() { RunCleanupsScope::ForceCleanup(); if (CGDebugInfo *DI = CGF.getDebugInfo()) { DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); PopDebugStack = false; } } }; /// PopCleanupBlocks - Takes the old cleanup stack size and emits /// the cleanup blocks that have been added. void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); void ResolveBranchFixups(llvm::BasicBlock *Target); /// The given basic block lies in the current EH scope, but may be a /// target of a potentially scope-crossing jump; get a stable handle /// to which we can perform this jump later. JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { return JumpDest(Target, EHStack.getInnermostNormalCleanup(), NextCleanupDestIndex++); } /// The given basic block lies in the current EH scope, but may be a /// target of a potentially scope-crossing jump; get a stable handle /// to which we can perform this jump later. JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { return getJumpDestInCurrentScope(createBasicBlock(Name)); } /// EmitBranchThroughCleanup - Emit a branch from the current insert /// block through the normal cleanup handling code (if any) and then /// on to \arg Dest. void EmitBranchThroughCleanup(JumpDest Dest); /// isObviouslyBranchWithoutCleanups - Return true if a branch to the /// specified destination obviously has no cleanups to run. 'false' is always /// a conservatively correct answer for this method. bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; /// popCatchScope - Pops the catch scope at the top of the EHScope /// stack, emitting any required code (other than the catch handlers /// themselves). void popCatchScope(); llvm::BasicBlock *getEHResumeBlock(); llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); /// An object to manage conditionally-evaluated expressions. class ConditionalEvaluation { llvm::BasicBlock *StartBB; public: ConditionalEvaluation(CodeGenFunction &CGF) : StartBB(CGF.Builder.GetInsertBlock()) {} void begin(CodeGenFunction &CGF) { assert(CGF.OutermostConditional != this); if (!CGF.OutermostConditional) CGF.OutermostConditional = this; } void end(CodeGenFunction &CGF) { assert(CGF.OutermostConditional != 0); if (CGF.OutermostConditional == this) CGF.OutermostConditional = 0; } /// Returns a block which will be executed prior to each /// evaluation of the conditional code. llvm::BasicBlock *getStartingBlock() const { return StartBB; } }; /// isInConditionalBranch - Return true if we're currently emitting /// one branch or the other of a conditional expression. bool isInConditionalBranch() const { return OutermostConditional != 0; } void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { assert(isInConditionalBranch()); llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); new llvm::StoreInst(value, addr, &block->back()); } /// An RAII object to record that we're evaluating a statement /// expression. class StmtExprEvaluation { CodeGenFunction &CGF; /// We have to save the outermost conditional: cleanups in a /// statement expression aren't conditional just because the /// StmtExpr is. ConditionalEvaluation *SavedOutermostConditional; public: StmtExprEvaluation(CodeGenFunction &CGF) : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { CGF.OutermostConditional = 0; } ~StmtExprEvaluation() { CGF.OutermostConditional = SavedOutermostConditional; CGF.EnsureInsertPoint(); } }; /// An object which temporarily prevents a value from being /// destroyed by aggressive peephole optimizations that assume that /// all uses of a value have been realized in the IR. class PeepholeProtection { llvm::Instruction *Inst; friend class CodeGenFunction; public: PeepholeProtection() : Inst(0) {} }; /// A non-RAII class containing all the information about a bound /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for /// this which makes individual mappings very simple; using this /// class directly is useful when you have a variable number of /// opaque values or don't want the RAII functionality for some /// reason. class OpaqueValueMappingData { const OpaqueValueExpr *OpaqueValue; bool BoundLValue; CodeGenFunction::PeepholeProtection Protection; OpaqueValueMappingData(const OpaqueValueExpr *ov, bool boundLValue) : OpaqueValue(ov), BoundLValue(boundLValue) {} public: OpaqueValueMappingData() : OpaqueValue(0) {} static bool shouldBindAsLValue(const Expr *expr) { // gl-values should be bound as l-values for obvious reasons. // Records should be bound as l-values because IR generation // always keeps them in memory. Expressions of function type // act exactly like l-values but are formally required to be // r-values in C. return expr->isGLValue() || expr->getType()->isRecordType() || expr->getType()->isFunctionType(); } static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e) { if (shouldBindAsLValue(ov)) return bind(CGF, ov, CGF.EmitLValue(e)); return bind(CGF, ov, CGF.EmitAnyExpr(e)); } static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv) { assert(shouldBindAsLValue(ov)); CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); return OpaqueValueMappingData(ov, true); } static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv) { assert(!shouldBindAsLValue(ov)); CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); OpaqueValueMappingData data(ov, false); // Work around an extremely aggressive peephole optimization in // EmitScalarConversion which assumes that all other uses of a // value are extant. data.Protection = CGF.protectFromPeepholes(rv); return data; } bool isValid() const { return OpaqueValue != 0; } void clear() { OpaqueValue = 0; } void unbind(CodeGenFunction &CGF) { assert(OpaqueValue && "no data to unbind!"); if (BoundLValue) { CGF.OpaqueLValues.erase(OpaqueValue); } else { CGF.OpaqueRValues.erase(OpaqueValue); CGF.unprotectFromPeepholes(Protection); } } }; /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. class OpaqueValueMapping { CodeGenFunction &CGF; OpaqueValueMappingData Data; public: static bool shouldBindAsLValue(const Expr *expr) { return OpaqueValueMappingData::shouldBindAsLValue(expr); } /// Build the opaque value mapping for the given conditional /// operator if it's the GNU ?: extension. This is a common /// enough pattern that the convenience operator is really /// helpful. /// OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op) : CGF(CGF) { if (isa<ConditionalOperator>(op)) // Leave Data empty. return; const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), e->getCommon()); } OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, LValue lvalue) : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { } OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue) : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { } void pop() { Data.unbind(CGF); Data.clear(); } ~OpaqueValueMapping() { if (Data.isValid()) Data.unbind(CGF); } }; /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field /// number that holds the value. unsigned getByRefValueLLVMField(const ValueDecl *VD) const; /// BuildBlockByrefAddress - Computes address location of the /// variable which is declared as __block. llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, const VarDecl *V); private: CGDebugInfo *DebugInfo; bool DisableDebugInfo; /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid /// calling llvm.stacksave for multiple VLAs in the same scope. bool DidCallStackSave; /// IndirectBranch - The first time an indirect goto is seen we create a block /// with an indirect branch. Every time we see the address of a label taken, /// we add the label to the indirect goto. Every subsequent indirect goto is /// codegen'd as a jump to the IndirectBranch's basic block. llvm::IndirectBrInst *IndirectBranch; /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C /// decls. typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; DeclMapTy LocalDeclMap; /// LabelMap - This keeps track of the LLVM basic block for each C label. llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; // BreakContinueStack - This keeps track of where break and continue // statements should jump to. struct BreakContinue { BreakContinue(JumpDest Break, JumpDest Continue) : BreakBlock(Break), ContinueBlock(Continue) {} JumpDest BreakBlock; JumpDest ContinueBlock; }; SmallVector<BreakContinue, 8> BreakContinueStack; /// SwitchInsn - This is nearest current switch instruction. It is null if /// current context is not in a switch. llvm::SwitchInst *SwitchInsn; /// CaseRangeBlock - This block holds if condition check for last case /// statement range in current switch instruction. llvm::BasicBlock *CaseRangeBlock; /// OpaqueLValues - Keeps track of the current set of opaque value /// expressions. llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; // VLASizeMap - This keeps track of the associated size for each VLA type. // We track this by the size expression rather than the type itself because // in certain situations, like a const qualifier applied to an VLA typedef, // multiple VLA types can share the same size expression. // FIXME: Maybe this could be a stack of maps that is pushed/popped as we // enter/leave scopes. llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; /// A block containing a single 'unreachable' instruction. Created /// lazily by getUnreachableBlock(). llvm::BasicBlock *UnreachableBlock; /// CXXThisDecl - When generating code for a C++ member function, /// this will hold the implicit 'this' declaration. ImplicitParamDecl *CXXABIThisDecl; llvm::Value *CXXABIThisValue; llvm::Value *CXXThisValue; /// CXXVTTDecl - When generating code for a base object constructor or /// base object destructor with virtual bases, this will hold the implicit /// VTT parameter. ImplicitParamDecl *CXXVTTDecl; llvm::Value *CXXVTTValue; /// OutermostConditional - Points to the outermost active /// conditional control. This is used so that we know if a /// temporary should be destroyed conditionally. ConditionalEvaluation *OutermostConditional; /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM /// type as well as the field number that contains the actual data. llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, unsigned> > ByRefValueInfo; llvm::BasicBlock *TerminateLandingPad; llvm::BasicBlock *TerminateHandler; llvm::BasicBlock *TrapBB; public: CodeGenFunction(CodeGenModule &cgm); ~CodeGenFunction(); CodeGenTypes &getTypes() const { return CGM.getTypes(); } ASTContext &getContext() const { return CGM.getContext(); } CGDebugInfo *getDebugInfo() { if (DisableDebugInfo) return NULL; return DebugInfo; } void disableDebugInfo() { DisableDebugInfo = true; } void enableDebugInfo() { DisableDebugInfo = false; } bool shouldUseFusedARCCalls() { return CGM.getCodeGenOpts().OptimizationLevel == 0; } const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } /// Returns a pointer to the function's exception object and selector slot, /// which is assigned in every landing pad. llvm::Value *getExceptionSlot(); llvm::Value *getEHSelectorSlot(); /// Returns the contents of the function's exception object and selector /// slots. llvm::Value *getExceptionFromSlot(); llvm::Value *getSelectorFromSlot(); llvm::Value *getNormalCleanupDestSlot(); llvm::BasicBlock *getUnreachableBlock() { if (!UnreachableBlock) { UnreachableBlock = createBasicBlock("unreachable"); new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); } return UnreachableBlock; } llvm::BasicBlock *getInvokeDest() { if (!EHStack.requiresLandingPad()) return 0; return getInvokeDestImpl(); } llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } //===--------------------------------------------------------------------===// // Cleanups //===--------------------------------------------------------------------===// typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEndPointer, QualType elementType, Destroyer *destroyer); void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, Destroyer *destroyer); void pushDestroy(QualType::DestructionKind dtorKind, llvm::Value *addr, QualType type); void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray); void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray); llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray); void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType type, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup); Destroyer *getDestroyer(QualType::DestructionKind destructionKind); /// Determines whether an EH cleanup is required to destroy a type /// with the given destruction kind. bool needsEHCleanup(QualType::DestructionKind kind) { switch (kind) { case QualType::DK_none: return false; case QualType::DK_cxx_destructor: case QualType::DK_objc_weak_lifetime: return getLangOpts().Exceptions; case QualType::DK_objc_strong_lifetime: return getLangOpts().Exceptions && CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; } llvm_unreachable("bad destruction kind"); } CleanupKind getCleanupKind(QualType::DestructionKind kind) { return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); } //===--------------------------------------------------------------------===// // Objective-C //===--------------------------------------------------------------------===// void GenerateObjCMethod(const ObjCMethodDecl *OMD); void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD, SourceLocation StartLoc); /// GenerateObjCGetter - Synthesize an Objective-C property getter function. void GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID); void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn); void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor); /// GenerateObjCSetter - Synthesize an Objective-C property setter function /// for the given property. void GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID); void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn); bool IndirectObjCSetterArg(const CGFunctionInfo &FI); bool IvarTypeWithAggrGCObjects(QualType Ty); //===--------------------------------------------------------------------===// // Block Bits //===--------------------------------------------------------------------===// llvm::Value *EmitBlockLiteral(const BlockExpr *); llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); static void destroyBlockInfos(CGBlockInfo *info); llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, const CGBlockInfo &Info, llvm::StructType *, llvm::Constant *BlockVarLayout); llvm::Function *GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &Info, const Decl *OuterFuncDecl, const DeclMapTy &ldm, bool IsLambdaConversionToBlock); llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( const ObjCPropertyImplDecl *PID); llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( const ObjCPropertyImplDecl *PID); llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); class AutoVarEmission; void emitByrefStructureInit(const AutoVarEmission &emission); void enterByrefCleanup(const AutoVarEmission &emission); llvm::Value *LoadBlockStruct() { assert(BlockPointer && "no block pointer set!"); return BlockPointer; } void AllocateBlockCXXThisPointer(const CXXThisExpr *E); void AllocateBlockDecl(const DeclRefExpr *E); llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); llvm::Type *BuildByRefType(const VarDecl *var); void GenerateCode(GlobalDecl GD, llvm::Function *Fn, const CGFunctionInfo &FnInfo); void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation StartLoc); void EmitConstructorBody(FunctionArgList &Args); void EmitDestructorBody(FunctionArgList &Args); void EmitFunctionBody(FunctionArgList &Args); void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, CallArgList &CallArgs); void EmitLambdaToBlockPointerBody(FunctionArgList &Args); void EmitLambdaBlockInvokeBody(); void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); /// EmitReturnBlock - Emit the unified return block, trying to avoid its /// emission when possible. void EmitReturnBlock(); /// FinishFunction - Complete IR generation of the current function. It is /// legal to call this function even if there is no current insertion point. void FinishFunction(SourceLocation EndLoc=SourceLocation()); /// GenerateThunk - Generate a thunk for the given method. void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk); void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk); void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, FunctionArgList &Args); void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, ArrayRef<VarDecl *> ArrayIndexes); /// InitializeVTablePointer - Initialize the vtable pointer of the given /// subobject. /// void InitializeVTablePointer(BaseSubobject Base, const CXXRecordDecl *NearestVBase, CharUnits OffsetFromNearestVBase, llvm::Constant *VTable, const CXXRecordDecl *VTableClass); typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; void InitializeVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, CharUnits OffsetFromNearestVBase, bool BaseIsNonVirtualPrimaryBase, llvm::Constant *VTable, const CXXRecordDecl *VTableClass, VisitedVirtualBasesSetTy& VBases); void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); /// GetVTablePtr - Return the Value of the vtable pointer member pointed /// to by This. llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); /// EnterDtorCleanups - Enter the cleanups necessary to complete the /// given phase of destruction for a destructor. The end result /// should call destructors on members and base classes in reverse /// order of their construction. void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); /// ShouldInstrumentFunction - Return true if the current function should be /// instrumented with __cyg_profile_func_* calls bool ShouldInstrumentFunction(); /// EmitFunctionInstrumentation - Emit LLVM code to call the specified /// instrumentation function with the current function and the call site, if /// function instrumentation is enabled. void EmitFunctionInstrumentation(const char *Fn); /// EmitMCountInstrumentation - Emit call to .mcount. void EmitMCountInstrumentation(); /// EmitFunctionProlog - Emit the target specific LLVM code to load the /// arguments for the given function. This is also responsible for naming the /// LLVM function arguments. void EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, const FunctionArgList &Args); /// EmitFunctionEpilog - Emit the target specific LLVM code to return the /// given temporary. void EmitFunctionEpilog(const CGFunctionInfo &FI); /// EmitStartEHSpec - Emit the start of the exception spec. void EmitStartEHSpec(const Decl *D); /// EmitEndEHSpec - Emit the end of the exception spec. void EmitEndEHSpec(const Decl *D); /// getTerminateLandingPad - Return a landing pad that just calls terminate. llvm::BasicBlock *getTerminateLandingPad(); /// getTerminateHandler - Return a handler (not a landing pad, just /// a catch handler) that just calls terminate. This is used when /// a terminate scope encloses a try. llvm::BasicBlock *getTerminateHandler(); llvm::Type *ConvertTypeForMem(QualType T); llvm::Type *ConvertType(QualType T); llvm::Type *ConvertType(const TypeDecl *T) { return ConvertType(getContext().getTypeDeclType(T)); } /// LoadObjCSelf - Load the value of self. This function is only valid while /// generating code for an Objective-C method. llvm::Value *LoadObjCSelf(); /// TypeOfSelfObject - Return type of object that this self represents. QualType TypeOfSelfObject(); /// hasAggregateLLVMType - Return true if the specified AST type will map into /// an aggregate LLVM type or is void. static bool hasAggregateLLVMType(QualType T); /// createBasicBlock - Create an LLVM basic block. llvm::BasicBlock *createBasicBlock(StringRef name = "", llvm::Function *parent = 0, llvm::BasicBlock *before = 0) { #ifdef NDEBUG return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); #else return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); #endif } /// getBasicBlockForLabel - Return the LLVM basicblock that the specified /// label maps to. JumpDest getJumpDestForLabel(const LabelDecl *S); /// SimplifyForwardingBlocks - If the given basic block is only a branch to /// another basic block, simplify it. This assumes that no other code could /// potentially reference the basic block. void SimplifyForwardingBlocks(llvm::BasicBlock *BB); /// EmitBlock - Emit the given block \arg BB and set it as the insert point, /// adding a fall-through branch from the current insert block if /// necessary. It is legal to call this function even if there is no current /// insertion point. /// /// IsFinished - If true, indicates that the caller has finished emitting /// branches to the given block and does not expect to emit code into it. This /// means the block can be ignored if it is unreachable. void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); /// EmitBlockAfterUses - Emit the given block somewhere hopefully /// near its uses, and leave the insertion point in it. void EmitBlockAfterUses(llvm::BasicBlock *BB); /// EmitBranch - Emit a branch to the specified basic block from the current /// insert block, taking care to avoid creation of branches from dummy /// blocks. It is legal to call this function even if there is no current /// insertion point. /// /// This function clears the current insertion point. The caller should follow /// calls to this function with calls to Emit*Block prior to generation new /// code. void EmitBranch(llvm::BasicBlock *Block); /// HaveInsertPoint - True if an insertion point is defined. If not, this /// indicates that the current code being emitted is unreachable. bool HaveInsertPoint() const { return Builder.GetInsertBlock() != 0; } /// EnsureInsertPoint - Ensure that an insertion point is defined so that /// emitted IR has a place to go. Note that by definition, if this function /// creates a block then that block is unreachable; callers may do better to /// detect when no insertion point is defined and simply skip IR generation. void EnsureInsertPoint() { if (!HaveInsertPoint()) EmitBlock(createBasicBlock()); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void ErrorUnsupported(const Stmt *S, const char *Type, bool OmitOnError=false); //===--------------------------------------------------------------------===// // Helpers //===--------------------------------------------------------------------===// LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment = CharUnits()) { return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); } LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { CharUnits Alignment; if (!T->isIncompleteType()) Alignment = getContext().getTypeAlignInChars(T); return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); } /// CreateTempAlloca - This creates a alloca and inserts it into the entry /// block. The caller is responsible for setting an appropriate alignment on /// the alloca. llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp"); /// InitTempAlloca - Provide an initial value for the given alloca. void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); /// CreateIRTemp - Create a temporary IR object of the given type, with /// appropriate alignment. This routine should only be used when an temporary /// value needs to be stored into an alloca (for example, to avoid explicit /// PHI construction), but the type is the IR type, not the type appropriate /// for storing in memory. llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); /// CreateMemTemp - Create a temporary memory object of the given type, with /// appropriate alignment. llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); /// CreateAggTemp - Create a temporary memory object for the given /// aggregate type. AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { CharUnits Alignment = getContext().getTypeAlignInChars(T); return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, T.getQualifiers(), AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); } /// Emit a cast to void* in the appropriate address space. llvm::Value *EmitCastToVoidPtr(llvm::Value *value); /// EvaluateExprAsBool - Perform the usual unary conversions on the specified /// expression and compare the result against zero, returning an Int1Ty value. llvm::Value *EvaluateExprAsBool(const Expr *E); /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. void EmitIgnoredExpr(const Expr *E); /// EmitAnyExpr - Emit code to compute the specified expression which can have /// any type. The result is returned as an RValue struct. If this is an /// aggregate expression, the aggloc/agglocvolatile arguments indicate where /// the result should be returned. /// /// \param IgnoreResult - True if the resulting value isn't used. RValue EmitAnyExpr(const Expr *E, AggValueSlot AggSlot = AggValueSlot::ignored(), bool IgnoreResult = false); // EmitVAListRef - Emit a "reference" to a va_list; this is either the address // or the value of the expression, depending on how va_list is defined. llvm::Value *EmitVAListRef(const Expr *E); /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will /// always be accessible even if no aggregate location is provided. RValue EmitAnyExprToTemp(const Expr *E); /// EmitAnyExprToMem - Emits the code necessary to evaluate an /// arbitrary expression into the given memory location. void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, Qualifiers Quals, bool IsInitializer); /// EmitExprAsInit - Emits the code necessary to initialize a /// location in memory with the given initializer. void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit); /// EmitAggregateCopy - Emit an aggrate copy. /// /// \param isVolatile - True iff either the source or the destination is /// volatile. void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType EltTy, bool isVolatile=false, unsigned Alignment = 0); /// StartBlock - Start new block named N. If insert block is a dummy block /// then reuse it. void StartBlock(const char *N); /// GetAddrOfStaticLocalVar - Return the address of a static local variable. llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); } /// GetAddrOfLocalVar - Return the address of a local variable. llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { llvm::Value *Res = LocalDeclMap[VD]; assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); return Res; } /// getOpaqueLValueMapping - Given an opaque value expression (which /// must be mapped to an l-value), return its mapping. const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { assert(OpaqueValueMapping::shouldBindAsLValue(e)); llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator it = OpaqueLValues.find(e); assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); return it->second; } /// getOpaqueRValueMapping - Given an opaque value expression (which /// must be mapped to an r-value), return its mapping. const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { assert(!OpaqueValueMapping::shouldBindAsLValue(e)); llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator it = OpaqueRValues.find(e); assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); return it->second; } /// getAccessedFieldNo - Given an encoded value and a result number, return /// the input field number being accessed. static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); llvm::BasicBlock *GetIndirectGotoBlock(); /// EmitNullInitialization - Generate code to set a value of the given type to /// null, If the type contains data member pointers, they will be initialized /// to -1 in accordance with the Itanium C++ ABI. void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); // EmitVAArg - Generate code to get an argument from the passed in pointer // and update it accordingly. The return value is a pointer to the argument. // FIXME: We should be able to get rid of this method and use the va_arg // instruction in LLVM instead once it works well enough. llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); /// emitArrayLength - Compute the length of an array, even if it's a /// VLA, and drill down to the base element type. llvm::Value *emitArrayLength(const ArrayType *arrayType, QualType &baseType, llvm::Value *&addr); /// EmitVLASize - Capture all the sizes for the VLA expressions in /// the given variably-modified type and store them in the VLASizeMap. /// /// This function can be called with a null (unreachable) insert point. void EmitVariablyModifiedType(QualType Ty); /// getVLASize - Returns an LLVM value that corresponds to the size, /// in non-variably-sized elements, of a variable length array type, /// plus that largest non-variably-sized element type. Assumes that /// the type has already been emitted with EmitVariablyModifiedType. std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); std::pair<llvm::Value*,QualType> getVLASize(QualType vla); /// LoadCXXThis - Load the value of 'this'. This function is only valid while /// generating code for an C++ member function. llvm::Value *LoadCXXThis() { assert(CXXThisValue && "no 'this' value for this function"); return CXXThisValue; } /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have /// virtual bases. llvm::Value *LoadCXXVTT() { assert(CXXVTTValue && "no VTT value for this function"); return CXXVTTValue; } /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a /// complete class to the given direct base. llvm::Value * GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, const CXXRecordDecl *Derived, const CXXRecordDecl *Base, bool BaseIsVirtual); /// GetAddressOfBaseClass - This function will add the necessary delta to the /// load of 'this' and returns address of the base class. llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue); llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue); llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl); void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, CXXCtorType CtorType, const FunctionArgList &Args); // It's important not to confuse this and the previous function. Delegating // constructors are the C++0x feature. The constructor delegate optimization // is used to reduce duplication in the base and complete consturctors where // they are substantially the same. void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, const FunctionArgList &Args); void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, llvm::Value *This, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd); void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, llvm::Value *This, llvm::Value *Src, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd); void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, const ConstantArrayType *ArrayTy, llvm::Value *ArrayPtr, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd, bool ZeroInitialization = false); void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, llvm::Value *NumElements, llvm::Value *ArrayPtr, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd, bool ZeroInitialization = false); static Destroyer destroyCXXObject; void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, llvm::Value *This); void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Value *NewPtr, llvm::Value *NumElements); void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, llvm::Value *Ptr); llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); void EmitCXXDeleteExpr(const CXXDeleteExpr *E); void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy); llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); void EmitStdInitializerListCleanup(llvm::Value *loc, const InitListExpr *init); void EmitCheck(llvm::Value *, unsigned Size); llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre); ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre); //===--------------------------------------------------------------------===// // Declaration Emission //===--------------------------------------------------------------------===// /// EmitDecl - Emit a declaration. /// /// This function can be called with a null (unreachable) insert point. void EmitDecl(const Decl &D); /// EmitVarDecl - Emit a local variable declaration. /// /// This function can be called with a null (unreachable) insert point. void EmitVarDecl(const VarDecl &D); void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit); void EmitScalarInit(llvm::Value *init, LValue lvalue); typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address); /// EmitAutoVarDecl - Emit an auto variable declaration. /// /// This function can be called with a null (unreachable) insert point. void EmitAutoVarDecl(const VarDecl &D); class AutoVarEmission { friend class CodeGenFunction; const VarDecl *Variable; /// The alignment of the variable. CharUnits Alignment; /// The address of the alloca. Null if the variable was emitted /// as a global constant. llvm::Value *Address; llvm::Value *NRVOFlag; /// True if the variable is a __block variable. bool IsByRef; /// True if the variable is of aggregate type and has a constant /// initializer. bool IsConstantAggregate; struct Invalid {}; AutoVarEmission(Invalid) : Variable(0) {} AutoVarEmission(const VarDecl &variable) : Variable(&variable), Address(0), NRVOFlag(0), IsByRef(false), IsConstantAggregate(false) {} bool wasEmittedAsGlobal() const { return Address == 0; } public: static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } /// Returns the address of the object within this declaration. /// Note that this does not chase the forwarding pointer for /// __block decls. llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { if (!IsByRef) return Address; return CGF.Builder.CreateStructGEP(Address, CGF.getByRefValueLLVMField(Variable), Variable->getNameAsString()); } }; AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); void EmitAutoVarInit(const AutoVarEmission &emission); void EmitAutoVarCleanups(const AutoVarEmission &emission); void emitAutoVarTypeCleanup(const AutoVarEmission &emission, QualType::DestructionKind dtorKind); void EmitStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage); /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); /// protectFromPeepholes - Protect a value that we're intending to /// store to the side, but which will probably be used later, from /// aggressive peepholing optimizations that might delete it. /// /// Pass the result to unprotectFromPeepholes to declare that /// protection is no longer required. /// /// There's no particular reason why this shouldn't apply to /// l-values, it's just that no existing peepholes work on pointers. PeepholeProtection protectFromPeepholes(RValue rvalue); void unprotectFromPeepholes(PeepholeProtection protection); //===--------------------------------------------------------------------===// // Statement Emission //===--------------------------------------------------------------------===// /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. void EmitStopPoint(const Stmt *S); /// EmitStmt - Emit the code for the statement \arg S. It is legal to call /// this function even if there is no current insertion point. /// /// This function may clear the current insertion point; callers should use /// EnsureInsertPoint if they wish to subsequently generate code without first /// calling EmitBlock, EmitBranch, or EmitStmt. void EmitStmt(const Stmt *S); /// EmitSimpleStmt - Try to emit a "simple" statement which does not /// necessarily require an insertion point or debug information; typically /// because the statement amounts to a jump or a container of other /// statements. /// /// \return True if the statement was handled. bool EmitSimpleStmt(const Stmt *S); RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, AggValueSlot AVS = AggValueSlot::ignored()); /// EmitLabel - Emit the block for the given label. It is legal to call this /// function even if there is no current insertion point. void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. void EmitLabelStmt(const LabelStmt &S); void EmitAttributedStmt(const AttributedStmt &S); void EmitGotoStmt(const GotoStmt &S); void EmitIndirectGotoStmt(const IndirectGotoStmt &S); void EmitIfStmt(const IfStmt &S); void EmitWhileStmt(const WhileStmt &S); void EmitDoStmt(const DoStmt &S); void EmitForStmt(const ForStmt &S); void EmitReturnStmt(const ReturnStmt &S); void EmitDeclStmt(const DeclStmt &S); void EmitBreakStmt(const BreakStmt &S); void EmitContinueStmt(const ContinueStmt &S); void EmitSwitchStmt(const SwitchStmt &S); void EmitDefaultStmt(const DefaultStmt &S); void EmitCaseStmt(const CaseStmt &S); void EmitCaseStmtRange(const CaseStmt &S); void EmitAsmStmt(const AsmStmt &S); void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); llvm::Constant *getUnwindResumeFn(); llvm::Constant *getUnwindResumeOrRethrowFn(); void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); void EmitCXXTryStmt(const CXXTryStmt &S); void EmitCXXForRangeStmt(const CXXForRangeStmt &S); //===--------------------------------------------------------------------===// // LValue Expression Emission //===--------------------------------------------------------------------===// /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. RValue GetUndefRValue(QualType Ty); /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E /// and issue an ErrorUnsupported style diagnostic (using the /// provided Name). RValue EmitUnsupportedRValue(const Expr *E, const char *Name); /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue /// an ErrorUnsupported style diagnostic (using the provided Name). LValue EmitUnsupportedLValue(const Expr *E, const char *Name); /// EmitLValue - Emit code to compute a designator that specifies the location /// of the expression. /// /// This can return one of two things: a simple address or a bitfield /// reference. In either case, the LLVM Value* in the LValue structure is /// guaranteed to be an LLVM pointer type. /// /// If this returns a bitfield reference, nothing about the pointee type of /// the LLVM value is known: For example, it may not be a pointer to an /// integer. /// /// If this returns a normal address, and if the lvalue's C type is fixed /// size, this method guarantees that the returned pointer type will point to /// an LLVM type of the same size of the lvalue's type. If the lvalue has a /// variable length type, this is not possible. /// LValue EmitLValue(const Expr *E); /// EmitCheckedLValue - Same as EmitLValue but additionally we generate /// checking code to guard against undefined behavior. This is only /// suitable when we know that the address will be used to access the /// object. LValue EmitCheckedLValue(const Expr *E); /// EmitToMemory - Change a scalar value from its value /// representation to its in-memory representation. llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); /// EmitFromMemory - Change a scalar value from its memory /// representation to its value representation. llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); /// EmitLoadOfScalar - Load a scalar value from an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, unsigned Alignment, QualType Ty, llvm::MDNode *TBAAInfo = 0); /// EmitLoadOfScalar - Load a scalar value from an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. The l-value must be a simple /// l-value. llvm::Value *EmitLoadOfScalar(LValue lvalue); /// EmitStoreOfScalar - Store a scalar value to an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, bool Volatile, unsigned Alignment, QualType Ty, llvm::MDNode *TBAAInfo = 0, bool isInit=false); /// EmitStoreOfScalar - Store a scalar value to an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. The l-value must be a simple /// l-value. The isInit flag indicates whether this is an initialization. /// If so, atomic qualifiers are ignored and the store is always non-atomic. void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); /// EmitLoadOfLValue - Given an expression that represents a value lvalue, /// this method emits the address of the lvalue, then loads the result as an /// rvalue, returning the rvalue. RValue EmitLoadOfLValue(LValue V); RValue EmitLoadOfExtVectorElementLValue(LValue V); RValue EmitLoadOfBitfieldLValue(LValue LV); /// EmitStoreThroughLValue - Store the specified rvalue into the specified /// lvalue, where both are guaranteed to the have the same type, and that type /// is 'Ty'. void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); /// EmitStoreThroughLValue - Store Src into Dst with same constraints as /// EmitStoreThroughLValue. /// /// \param Result [out] - If non-null, this will be set to a Value* for the /// bit-field contents after the store, appropriate for use as the result of /// an assignment to the bit-field. void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=0); /// Emit an l-value for an assignment (simple or compound) of complex type. LValue EmitComplexAssignmentLValue(const BinaryOperator *E); LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); // Note: only available for agg return types LValue EmitBinaryOperatorLValue(const BinaryOperator *E); LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); // Note: only available for agg return types LValue EmitCallExprLValue(const CallExpr *E); // Note: only available for agg return types LValue EmitVAArgExprLValue(const VAArgExpr *E); LValue EmitDeclRefLValue(const DeclRefExpr *E); LValue EmitStringLiteralLValue(const StringLiteral *E); LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); LValue EmitPredefinedLValue(const PredefinedExpr *E); LValue EmitUnaryOpLValue(const UnaryOperator *E); LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); LValue EmitMemberExpr(const MemberExpr *E); LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); LValue EmitCastLValue(const CastExpr *E); LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); RValue EmitRValueForField(LValue LV, const FieldDecl *FD); class ConstantEmission { llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; ConstantEmission(llvm::Constant *C, bool isReference) : ValueAndIsReference(C, isReference) {} public: ConstantEmission() {} static ConstantEmission forReference(llvm::Constant *C) { return ConstantEmission(C, true); } static ConstantEmission forValue(llvm::Constant *C) { return ConstantEmission(C, false); } operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } bool isReference() const { return ValueAndIsReference.getInt(); } LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { assert(isReference()); return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), refExpr->getType()); } llvm::Constant *getValue() const { assert(!isReference()); return ValueAndIsReference.getPointer(); } }; ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot = AggValueSlot::ignored()); LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar); LValue EmitLValueForAnonRecordField(llvm::Value* Base, const IndirectFieldDecl* Field, unsigned CVRQualifiers); LValue EmitLValueForField(LValue Base, const FieldDecl* Field); /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that /// if the Field is a reference, this will return the address of the reference /// and not the address of the value stored in the reference. LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl* Field); LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value* Base, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers); LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, unsigned CVRQualifiers); LValue EmitCXXConstructLValue(const CXXConstructExpr *E); LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); LValue EmitLambdaLValue(const LambdaExpr *E); LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); LValue EmitStmtExprLValue(const StmtExpr *E); LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); //===--------------------------------------------------------------------===// // Scalar Expression Emission //===--------------------------------------------------------------------===// /// EmitCall - Generate a call of the given function, expecting the given /// result type, and using the given argument list which specifies both the /// LLVM arguments and the types they were derived from. /// /// \param TargetDecl - If given, the decl of the function in a direct call; /// used to set attributes on the call (noreturn, etc.). RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, const Decl *TargetDecl = 0, llvm::Instruction **callOrInvoke = 0); RValue EmitCall(QualType FnType, llvm::Value *Callee, ReturnValueSlot ReturnValue, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd, const Decl *TargetDecl = 0); RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue = ReturnValueSlot()); llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, ArrayRef<llvm::Value *> Args, const Twine &Name = ""); llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, const Twine &Name = ""); llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, llvm::Type *Ty); llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, llvm::Value *This, llvm::Type *Ty); llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, NestedNameSpecifier *Qual, llvm::Type *Ty); llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, CXXDtorType Type, const CXXRecordDecl *RD); RValue EmitCXXMemberCall(const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *VTT, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd); RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue); RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue); llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, llvm::Value *This); RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue); RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue); RValue EmitBuiltinExpr(const FunctionDecl *FD, unsigned BuiltinID, const CallExpr *E); RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call /// is unhandled by the current target. llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitNeonCall(llvm::Function *F, SmallVectorImpl<llvm::Value*> &O, const char *name, unsigned shift = 0, bool rightshift = false); llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, bool negateForRightShift); llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); llvm::Value *EmitObjCNumericLiteral(const ObjCNumericLiteral *E); llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); llvm::Value *EmitObjCCollectionLiteral(const Expr *E, const ObjCMethodDecl *MethodWithObjects); llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return = ReturnValueSlot()); /// Retrieves the default cleanup kind for an ARC cleanup. /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. CleanupKind getARCCleanupKind() { return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions ? NormalAndEHCleanup : NormalCleanup; } // ARC primitives. void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); void EmitARCDestroyWeak(llvm::Value *addr); llvm::Value *EmitARCLoadWeak(llvm::Value *addr); llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, bool ignored); void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool ignored); llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, bool ignored); llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); void EmitARCRelease(llvm::Value *value, bool precise); llvm::Value *EmitARCAutorelease(llvm::Value *value); llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); std::pair<LValue,llvm::Value*> EmitARCStoreAutoreleasing(const BinaryOperator *e); std::pair<LValue,llvm::Value*> EmitARCStoreStrong(const BinaryOperator *e, bool ignored); llvm::Value *EmitObjCThrowOperand(const Expr *expr); llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); llvm::Value *EmitARCExtendBlockObject(const Expr *expr); llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); static Destroyer destroyARCStrongImprecise; static Destroyer destroyARCStrongPrecise; static Destroyer destroyARCWeak; void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); llvm::Value *EmitObjCAutoreleasePoolPush(); llvm::Value *EmitObjCMRRAutoreleasePoolPush(); void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in /// expression. Will emit a temporary variable if E is not an LValue. RValue EmitReferenceBindingToExpr(const Expr* E, const NamedDecl *InitializedDecl); //===--------------------------------------------------------------------===// // Expression Emission //===--------------------------------------------------------------------===// // Expressions are broken into three classes: scalar, complex, aggregate. /// EmitScalarExpr - Emit the computation of the specified expression of LLVM /// scalar type, returning the result. llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); /// EmitScalarConversion - Emit a conversion from the specified type to the /// specified destination type, both of which are LLVM scalar types. llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy); /// EmitComplexToScalarConversion - Emit a conversion from the specified /// complex type to the specified destination type, where the destination type /// is an LLVM scalar type. llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy); /// EmitAggExpr - Emit the computation of the specified expression /// of aggregate type. The result is computed into the given slot, /// which may be null to indicate that the value is not needed. void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); /// EmitAggExprToLValue - Emit the computation of the specified expression of /// aggregate type into a temporary LValue. LValue EmitAggExprToLValue(const Expr *E); /// EmitGCMemmoveCollectable - Emit special API for structs with object /// pointers. void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType Ty); /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, /// make sure it survives garbage collection until this point. void EmitExtendGCLifetime(llvm::Value *object); /// EmitComplexExpr - Emit the computation of the specified expression of /// complex type, returning the result. ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal = false, bool IgnoreImag = false); /// EmitComplexExprIntoAddr - Emit the computation of the specified expression /// of complex type, storing into the specified Value*. void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, bool DestIsVolatile); /// StoreComplexToAddr - Store a complex number into the specified address. void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, bool DestIsVolatile); /// LoadComplexFromAddr - Load a complex number from the specified address. ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); /// CreateStaticVarDecl - Create a zero-initialized LLVM global for /// a static local variable. llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, const char *Separator, llvm::GlobalValue::LinkageTypes Linkage); /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the /// global variable that has already been created for it. If the initializer /// has a different type than GV does, this may free GV and return a different /// one. Otherwise it just returns GV. llvm::GlobalVariable * AddInitializerToStaticVarDecl(const VarDecl &D, llvm::GlobalVariable *GV); /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ /// variable with global storage. void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, bool PerformInit); /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr /// with the C++ runtime so that its destructor will be called at exit. void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, llvm::Constant *DeclPtr); /// Emit code in this function to perform a guarded variable /// initialization. Guarded initializations are used when it's not /// possible to prove that an initialization will be done exactly /// once, e.g. with a static local variable or a static data member /// of a class template. void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit); /// GenerateCXXGlobalInitFunc - Generates code for initializing global /// variables. void GenerateCXXGlobalInitFunc(llvm::Function *Fn, llvm::Constant **Decls, unsigned NumDecls); /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global /// variables. void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, const std::vector<std::pair<llvm::WeakVH, llvm::Constant*> > &DtorsAndObjects); void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D, llvm::GlobalVariable *Addr, bool PerformInit); void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, const Expr *Exp); void enterFullExpression(const ExprWithCleanups *E) { if (E->getNumObjects() == 0) return; enterNonTrivialFullExpression(E); } void enterNonTrivialFullExpression(const ExprWithCleanups *E); void EmitCXXThrowExpr(const CXXThrowExpr *E); void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); //===--------------------------------------------------------------------===// // Annotations Emission //===--------------------------------------------------------------------===// /// Emit an annotation call (intrinsic or builtin). llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, llvm::Value *AnnotatedVal, llvm::StringRef AnnotationStr, SourceLocation Location); /// Emit local annotations for the local variable V, declared by D. void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); /// Emit field annotations for the given field & value. Returns the /// annotation result. llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); //===--------------------------------------------------------------------===// // Internal Helpers //===--------------------------------------------------------------------===// /// ContainsLabel - Return true if the statement contains a label in it. If /// this statement is not executed normally, it not containing a label means /// that we can just remove the code. static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); /// containsBreak - Return true if the statement contains a break out of it. /// If the statement (recursively) contains a switch or loop with a break /// inside of it, this is fine. static bool containsBreak(const Stmt *S); /// ConstantFoldsToSimpleInteger - If the specified expression does not fold /// to a constant, or if it does but contains a label, return false. If it /// constant folds return true and set the boolean result in Result. bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); /// ConstantFoldsToSimpleInteger - If the specified expression does not fold /// to a constant, or if it does but contains a label, return false. If it /// constant folds return true and set the folded value. bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an /// if statement) to the specified blocks. Based on the condition, this might /// try to simplify the codegen of the conditional based on the branch. void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock); /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll /// generate a branch around the created basic block as necessary. llvm::BasicBlock *getTrapBB(); /// EmitCallArg - Emit a single call argument. void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); /// EmitDelegateCallArg - We are performing a delegate call; that /// is, the current function is delegating to another one. Produce /// a r-value suitable for passing the given parameter. void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); /// SetFPAccuracy - Set the minimum required accuracy of the given floating /// point operation, expressed as the maximum relative error in ulp. void SetFPAccuracy(llvm::Value *Val, float Accuracy); private: llvm::MDNode *getRangeForLoadFromType(QualType Ty); void EmitReturnOfRValue(RValue RV, QualType Ty); /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty /// from function arguments into \arg Dst. See ABIArgInfo::Expand. /// /// \param AI - The first function argument of the expansion. /// \return The argument following the last expanded function /// argument. llvm::Function::arg_iterator ExpandTypeFromArgs(QualType Ty, LValue Dst, llvm::Function::arg_iterator AI); /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg /// Ty, into individual arguments on the provided vector \arg Args. See /// ABIArgInfo::Expand. void ExpandTypeToArgs(QualType Ty, RValue Src, SmallVector<llvm::Value*, 16> &Args, llvm::FunctionType *IRFuncTy); llvm::Value* EmitAsmInput(const AsmStmt &S, const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, std::string &ConstraintStr); llvm::Value* EmitAsmInputLValue(const AsmStmt &S, const TargetInfo::ConstraintInfo &Info, LValue InputValue, QualType InputType, std::string &ConstraintStr); /// EmitCallArgs - Emit call arguments for a function. /// The CallArgTypeInfo parameter is used for iterating over the known /// argument types of the function being called. template<typename T> void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd) { CallExpr::const_arg_iterator Arg = ArgBeg; // First, use the argument types that the type info knows about if (CallArgTypeInfo) { for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { assert(Arg != ArgEnd && "Running over edge of argument list!"); QualType ArgType = *I; #ifndef NDEBUG QualType ActualArgType = Arg->getType(); if (ArgType->isPointerType() && ActualArgType->isPointerType()) { QualType ActualBaseType = ActualArgType->getAs<PointerType>()->getPointeeType(); QualType ArgBaseType = ArgType->getAs<PointerType>()->getPointeeType(); if (ArgBaseType->isVariableArrayType()) { if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(ActualBaseType)) { if (!VAT->getSizeExpr()) ActualArgType = ArgType; } } } assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). getTypePtr() == getContext().getCanonicalType(ActualArgType).getTypePtr() && "type mismatch in call argument!"); #endif EmitCallArg(Args, *Arg, ArgType); } // Either we've emitted all the call args, or we have a call to a // variadic function. assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && "Extra arguments in non-variadic function!"); } // If we still have any arguments, emit them using the type of the argument. for (; Arg != ArgEnd; ++Arg) EmitCallArg(Args, *Arg, Arg->getType()); } const TargetCodeGenInfo &getTargetHooks() const { return CGM.getTargetCodeGenInfo(); } void EmitDeclMetadata(); CodeGenModule::ByrefHelpers * buildByrefHelpers(llvm::StructType &byrefType, const AutoVarEmission &emission); void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); /// GetPointeeAlignment - Given an expression with a pointer type, find the /// alignment of the type referenced by the pointer. Skip over implicit /// casts. unsigned GetPointeeAlignment(const Expr *Addr); /// GetPointeeAlignmentValue - Given an expression with a pointer type, find /// the alignment of the type referenced by the pointer. Skip over implicit /// casts. Return the alignment as an llvm::Value. llvm::Value *GetPointeeAlignmentValue(const Expr *Addr); }; /// Helper class with most of the code for saving a value for a /// conditional expression cleanup. struct DominatingLLVMValue { typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; /// Answer whether the given value needs extra work to be saved. static bool needsSaving(llvm::Value *value) { // If it's not an instruction, we don't need to save. if (!isa<llvm::Instruction>(value)) return false; // If it's an instruction in the entry block, we don't need to save. llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); return (block != &block->getParent()->getEntryBlock()); } /// Try to save the given value. static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { if (!needsSaving(value)) return saved_type(value, false); // Otherwise we need an alloca. llvm::Value *alloca = CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); CGF.Builder.CreateStore(value, alloca); return saved_type(alloca, true); } static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { if (!value.getInt()) return value.getPointer(); return CGF.Builder.CreateLoad(value.getPointer()); } }; /// A partial specialization of DominatingValue for llvm::Values that /// might be llvm::Instructions. template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { typedef T *type; static type restore(CodeGenFunction &CGF, saved_type value) { return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); } }; /// A specialization of DominatingValue for RValue. template <> struct DominatingValue<RValue> { typedef RValue type; class saved_type { enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, AggregateAddress, ComplexAddress }; llvm::Value *Value; Kind K; saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} public: static bool needsSaving(RValue value); static saved_type save(CodeGenFunction &CGF, RValue value); RValue restore(CodeGenFunction &CGF); // implementations in CGExprCXX.cpp }; static bool needsSaving(type value) { return saved_type::needsSaving(value); } static saved_type save(CodeGenFunction &CGF, type value) { return saved_type::save(CGF, value); } static type restore(CodeGenFunction &CGF, saved_type value) { return value.restore(CGF); } }; } // end namespace CodeGen } // end namespace clang #endif