Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Frontend/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Frontend/ASTUnit.cpp |
//===--- ASTUnit.cpp - ASTUnit utility ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // ASTUnit Implementation. // //===----------------------------------------------------------------------===// #include "clang/Frontend/ASTUnit.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/TypeOrdering.h" #include "clang/AST/StmtVisitor.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/Driver.h" #include "clang/Driver/Job.h" #include "clang/Driver/ArgList.h" #include "clang/Driver/Options.h" #include "clang/Driver/Tool.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendActions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Frontend/MultiplexConsumer.h" #include "clang/Frontend/Utils.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTWriter.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Host.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/MutexGuard.h" #include "llvm/Support/CrashRecoveryContext.h" #include <cstdlib> #include <cstdio> #include <sys/stat.h> using namespace clang; using llvm::TimeRecord; namespace { class SimpleTimer { bool WantTiming; TimeRecord Start; std::string Output; public: explicit SimpleTimer(bool WantTiming) : WantTiming(WantTiming) { if (WantTiming) Start = TimeRecord::getCurrentTime(); } void setOutput(const Twine &Output) { if (WantTiming) this->Output = Output.str(); } ~SimpleTimer() { if (WantTiming) { TimeRecord Elapsed = TimeRecord::getCurrentTime(); Elapsed -= Start; llvm::errs() << Output << ':'; Elapsed.print(Elapsed, llvm::errs()); llvm::errs() << '\n'; } } }; struct OnDiskData { /// \brief The file in which the precompiled preamble is stored. std::string PreambleFile; /// \brief Temporary files that should be removed when the ASTUnit is /// destroyed. SmallVector<llvm::sys::Path, 4> TemporaryFiles; /// \brief Erase temporary files. void CleanTemporaryFiles(); /// \brief Erase the preamble file. void CleanPreambleFile(); /// \brief Erase temporary files and the preamble file. void Cleanup(); }; } static llvm::sys::SmartMutex<false> &getOnDiskMutex() { static llvm::sys::SmartMutex<false> M(/* recursive = */ true); return M; } static void cleanupOnDiskMapAtExit(void); typedef llvm::DenseMap<const ASTUnit *, OnDiskData *> OnDiskDataMap; static OnDiskDataMap &getOnDiskDataMap() { static OnDiskDataMap M; static bool hasRegisteredAtExit = false; if (!hasRegisteredAtExit) { hasRegisteredAtExit = true; atexit(cleanupOnDiskMapAtExit); } return M; } static void cleanupOnDiskMapAtExit(void) { // No mutex required here since we are leaving the program. OnDiskDataMap &M = getOnDiskDataMap(); for (OnDiskDataMap::iterator I = M.begin(), E = M.end(); I != E; ++I) { // We don't worry about freeing the memory associated with OnDiskDataMap. // All we care about is erasing stale files. I->second->Cleanup(); } } static OnDiskData &getOnDiskData(const ASTUnit *AU) { // We require the mutex since we are modifying the structure of the // DenseMap. llvm::MutexGuard Guard(getOnDiskMutex()); OnDiskDataMap &M = getOnDiskDataMap(); OnDiskData *&D = M[AU]; if (!D) D = new OnDiskData(); return *D; } static void erasePreambleFile(const ASTUnit *AU) { getOnDiskData(AU).CleanPreambleFile(); } static void removeOnDiskEntry(const ASTUnit *AU) { // We require the mutex since we are modifying the structure of the // DenseMap. llvm::MutexGuard Guard(getOnDiskMutex()); OnDiskDataMap &M = getOnDiskDataMap(); OnDiskDataMap::iterator I = M.find(AU); if (I != M.end()) { I->second->Cleanup(); delete I->second; M.erase(AU); } } static void setPreambleFile(const ASTUnit *AU, llvm::StringRef preambleFile) { getOnDiskData(AU).PreambleFile = preambleFile; } static const std::string &getPreambleFile(const ASTUnit *AU) { return getOnDiskData(AU).PreambleFile; } void OnDiskData::CleanTemporaryFiles() { for (unsigned I = 0, N = TemporaryFiles.size(); I != N; ++I) TemporaryFiles[I].eraseFromDisk(); TemporaryFiles.clear(); } void OnDiskData::CleanPreambleFile() { if (!PreambleFile.empty()) { llvm::sys::Path(PreambleFile).eraseFromDisk(); PreambleFile.clear(); } } void OnDiskData::Cleanup() { CleanTemporaryFiles(); CleanPreambleFile(); } void ASTUnit::clearFileLevelDecls() { for (FileDeclsTy::iterator I = FileDecls.begin(), E = FileDecls.end(); I != E; ++I) delete I->second; FileDecls.clear(); } void ASTUnit::CleanTemporaryFiles() { getOnDiskData(this).CleanTemporaryFiles(); } void ASTUnit::addTemporaryFile(const llvm::sys::Path &TempFile) { getOnDiskData(this).TemporaryFiles.push_back(TempFile); } /// \brief After failing to build a precompiled preamble (due to /// errors in the source that occurs in the preamble), the number of /// reparses during which we'll skip even trying to precompile the /// preamble. const unsigned DefaultPreambleRebuildInterval = 5; /// \brief Tracks the number of ASTUnit objects that are currently active. /// /// Used for debugging purposes only. static llvm::sys::cas_flag ActiveASTUnitObjects; ASTUnit::ASTUnit(bool _MainFileIsAST) : Reader(0), OnlyLocalDecls(false), CaptureDiagnostics(false), MainFileIsAST(_MainFileIsAST), TUKind(TU_Complete), WantTiming(getenv("LIBCLANG_TIMING")), OwnsRemappedFileBuffers(true), NumStoredDiagnosticsFromDriver(0), PreambleRebuildCounter(0), SavedMainFileBuffer(0), PreambleBuffer(0), NumWarningsInPreamble(0), ShouldCacheCodeCompletionResults(false), CompletionCacheTopLevelHashValue(0), PreambleTopLevelHashValue(0), CurrentTopLevelHashValue(0), UnsafeToFree(false) { if (getenv("LIBCLANG_OBJTRACKING")) { llvm::sys::AtomicIncrement(&ActiveASTUnitObjects); fprintf(stderr, "+++ %d translation units\n", ActiveASTUnitObjects); } } ASTUnit::~ASTUnit() { clearFileLevelDecls(); // Clean up the temporary files and the preamble file. removeOnDiskEntry(this); // Free the buffers associated with remapped files. We are required to // perform this operation here because we explicitly request that the // compiler instance *not* free these buffers for each invocation of the // parser. if (Invocation.getPtr() && OwnsRemappedFileBuffers) { PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); for (PreprocessorOptions::remapped_file_buffer_iterator FB = PPOpts.remapped_file_buffer_begin(), FBEnd = PPOpts.remapped_file_buffer_end(); FB != FBEnd; ++FB) delete FB->second; } delete SavedMainFileBuffer; delete PreambleBuffer; ClearCachedCompletionResults(); if (getenv("LIBCLANG_OBJTRACKING")) { llvm::sys::AtomicDecrement(&ActiveASTUnitObjects); fprintf(stderr, "--- %d translation units\n", ActiveASTUnitObjects); } } void ASTUnit::setPreprocessor(Preprocessor *pp) { PP = pp; } /// \brief Determine the set of code-completion contexts in which this /// declaration should be shown. static unsigned getDeclShowContexts(NamedDecl *ND, const LangOptions &LangOpts, bool &IsNestedNameSpecifier) { IsNestedNameSpecifier = false; if (isa<UsingShadowDecl>(ND)) ND = dyn_cast<NamedDecl>(ND->getUnderlyingDecl()); if (!ND) return 0; unsigned Contexts = 0; if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND) || isa<ClassTemplateDecl>(ND) || isa<TemplateTemplateParmDecl>(ND)) { // Types can appear in these contexts. if (LangOpts.CPlusPlus || !isa<TagDecl>(ND)) Contexts |= (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Type - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)); // In C++, types can appear in expressions contexts (for functional casts). if (LangOpts.CPlusPlus) Contexts |= (1 << (CodeCompletionContext::CCC_Expression - 1)); // In Objective-C, message sends can send interfaces. In Objective-C++, // all types are available due to functional casts. if (LangOpts.CPlusPlus || isa<ObjCInterfaceDecl>(ND)) Contexts |= (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)); // In Objective-C, you can only be a subclass of another Objective-C class if (isa<ObjCInterfaceDecl>(ND)) Contexts |= (1 << (CodeCompletionContext::CCC_ObjCInterfaceName - 1)); // Deal with tag names. if (isa<EnumDecl>(ND)) { Contexts |= (1 << (CodeCompletionContext::CCC_EnumTag - 1)); // Part of the nested-name-specifier in C++0x. if (LangOpts.CPlusPlus0x) IsNestedNameSpecifier = true; } else if (RecordDecl *Record = dyn_cast<RecordDecl>(ND)) { if (Record->isUnion()) Contexts |= (1 << (CodeCompletionContext::CCC_UnionTag - 1)); else Contexts |= (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1)); if (LangOpts.CPlusPlus) IsNestedNameSpecifier = true; } else if (isa<ClassTemplateDecl>(ND)) IsNestedNameSpecifier = true; } else if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) { // Values can appear in these contexts. Contexts = (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)); } else if (isa<ObjCProtocolDecl>(ND)) { Contexts = (1 << (CodeCompletionContext::CCC_ObjCProtocolName - 1)); } else if (isa<ObjCCategoryDecl>(ND)) { Contexts = (1 << (CodeCompletionContext::CCC_ObjCCategoryName - 1)); } else if (isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) { Contexts = (1 << (CodeCompletionContext::CCC_Namespace - 1)); // Part of the nested-name-specifier. IsNestedNameSpecifier = true; } return Contexts; } void ASTUnit::CacheCodeCompletionResults() { if (!TheSema) return; SimpleTimer Timer(WantTiming); Timer.setOutput("Cache global code completions for " + getMainFileName()); // Clear out the previous results. ClearCachedCompletionResults(); // Gather the set of global code completions. typedef CodeCompletionResult Result; SmallVector<Result, 8> Results; CachedCompletionAllocator = new GlobalCodeCompletionAllocator; TheSema->GatherGlobalCodeCompletions(*CachedCompletionAllocator, getCodeCompletionTUInfo(), Results); // Translate global code completions into cached completions. llvm::DenseMap<CanQualType, unsigned> CompletionTypes; for (unsigned I = 0, N = Results.size(); I != N; ++I) { switch (Results[I].Kind) { case Result::RK_Declaration: { bool IsNestedNameSpecifier = false; CachedCodeCompletionResult CachedResult; CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema, *CachedCompletionAllocator, getCodeCompletionTUInfo()); CachedResult.ShowInContexts = getDeclShowContexts(Results[I].Declaration, Ctx->getLangOpts(), IsNestedNameSpecifier); CachedResult.Priority = Results[I].Priority; CachedResult.Kind = Results[I].CursorKind; CachedResult.Availability = Results[I].Availability; // Keep track of the type of this completion in an ASTContext-agnostic // way. QualType UsageType = getDeclUsageType(*Ctx, Results[I].Declaration); if (UsageType.isNull()) { CachedResult.TypeClass = STC_Void; CachedResult.Type = 0; } else { CanQualType CanUsageType = Ctx->getCanonicalType(UsageType.getUnqualifiedType()); CachedResult.TypeClass = getSimplifiedTypeClass(CanUsageType); // Determine whether we have already seen this type. If so, we save // ourselves the work of formatting the type string by using the // temporary, CanQualType-based hash table to find the associated value. unsigned &TypeValue = CompletionTypes[CanUsageType]; if (TypeValue == 0) { TypeValue = CompletionTypes.size(); CachedCompletionTypes[QualType(CanUsageType).getAsString()] = TypeValue; } CachedResult.Type = TypeValue; } CachedCompletionResults.push_back(CachedResult); /// Handle nested-name-specifiers in C++. if (TheSema->Context.getLangOpts().CPlusPlus && IsNestedNameSpecifier && !Results[I].StartsNestedNameSpecifier) { // The contexts in which a nested-name-specifier can appear in C++. unsigned NNSContexts = (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)) | (1 << (CodeCompletionContext::CCC_EnumTag - 1)) | (1 << (CodeCompletionContext::CCC_UnionTag - 1)) | (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1)) | (1 << (CodeCompletionContext::CCC_Type - 1)) | (1 << (CodeCompletionContext::CCC_PotentiallyQualifiedName - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)); if (isa<NamespaceDecl>(Results[I].Declaration) || isa<NamespaceAliasDecl>(Results[I].Declaration)) NNSContexts |= (1 << (CodeCompletionContext::CCC_Namespace - 1)); if (unsigned RemainingContexts = NNSContexts & ~CachedResult.ShowInContexts) { // If there any contexts where this completion can be a // nested-name-specifier but isn't already an option, create a // nested-name-specifier completion. Results[I].StartsNestedNameSpecifier = true; CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema, *CachedCompletionAllocator, getCodeCompletionTUInfo()); CachedResult.ShowInContexts = RemainingContexts; CachedResult.Priority = CCP_NestedNameSpecifier; CachedResult.TypeClass = STC_Void; CachedResult.Type = 0; CachedCompletionResults.push_back(CachedResult); } } break; } case Result::RK_Keyword: case Result::RK_Pattern: // Ignore keywords and patterns; we don't care, since they are so // easily regenerated. break; case Result::RK_Macro: { CachedCodeCompletionResult CachedResult; CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema, *CachedCompletionAllocator, getCodeCompletionTUInfo()); CachedResult.ShowInContexts = (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCInterface - 1)) | (1 << (CodeCompletionContext::CCC_ObjCImplementation - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)) | (1 << (CodeCompletionContext::CCC_MacroNameUse - 1)) | (1 << (CodeCompletionContext::CCC_PreprocessorExpression - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)) | (1 << (CodeCompletionContext::CCC_OtherWithMacros - 1)); CachedResult.Priority = Results[I].Priority; CachedResult.Kind = Results[I].CursorKind; CachedResult.Availability = Results[I].Availability; CachedResult.TypeClass = STC_Void; CachedResult.Type = 0; CachedCompletionResults.push_back(CachedResult); break; } } } // Save the current top-level hash value. CompletionCacheTopLevelHashValue = CurrentTopLevelHashValue; } void ASTUnit::ClearCachedCompletionResults() { CachedCompletionResults.clear(); CachedCompletionTypes.clear(); CachedCompletionAllocator = 0; } namespace { /// \brief Gathers information from ASTReader that will be used to initialize /// a Preprocessor. class ASTInfoCollector : public ASTReaderListener { Preprocessor &PP; ASTContext &Context; LangOptions &LangOpt; HeaderSearch &HSI; IntrusiveRefCntPtr<TargetInfo> &Target; std::string &Predefines; unsigned &Counter; unsigned NumHeaderInfos; bool InitializedLanguage; public: ASTInfoCollector(Preprocessor &PP, ASTContext &Context, LangOptions &LangOpt, HeaderSearch &HSI, IntrusiveRefCntPtr<TargetInfo> &Target, std::string &Predefines, unsigned &Counter) : PP(PP), Context(Context), LangOpt(LangOpt), HSI(HSI), Target(Target), Predefines(Predefines), Counter(Counter), NumHeaderInfos(0), InitializedLanguage(false) {} virtual bool ReadLanguageOptions(const LangOptions &LangOpts) { if (InitializedLanguage) return false; LangOpt = LangOpts; // Initialize the preprocessor. PP.Initialize(*Target); // Initialize the ASTContext Context.InitBuiltinTypes(*Target); InitializedLanguage = true; return false; } virtual bool ReadTargetTriple(StringRef Triple) { // If we've already initialized the target, don't do it again. if (Target) return false; // FIXME: This is broken, we should store the TargetOptions in the AST file. TargetOptions TargetOpts; TargetOpts.ABI = ""; TargetOpts.CXXABI = ""; TargetOpts.CPU = ""; TargetOpts.Features.clear(); TargetOpts.Triple = Triple; Target = TargetInfo::CreateTargetInfo(PP.getDiagnostics(), TargetOpts); return false; } virtual bool ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers, StringRef OriginalFileName, std::string &SuggestedPredefines, FileManager &FileMgr) { Predefines = Buffers[0].Data; for (unsigned I = 1, N = Buffers.size(); I != N; ++I) { Predefines += Buffers[I].Data; } return false; } virtual void ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) { HSI.setHeaderFileInfoForUID(HFI, NumHeaderInfos++); } virtual void ReadCounter(unsigned Value) { Counter = Value; } }; class StoredDiagnosticConsumer : public DiagnosticConsumer { SmallVectorImpl<StoredDiagnostic> &StoredDiags; public: explicit StoredDiagnosticConsumer( SmallVectorImpl<StoredDiagnostic> &StoredDiags) : StoredDiags(StoredDiags) { } virtual void HandleDiagnostic(DiagnosticsEngine::Level Level, const Diagnostic &Info); DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { // Just drop any diagnostics that come from cloned consumers; they'll // have different source managers anyway. // FIXME: We'd like to be able to capture these somehow, even if it's just // file/line/column, because they could occur when parsing module maps or // building modules on-demand. return new IgnoringDiagConsumer(); } }; /// \brief RAII object that optionally captures diagnostics, if /// there is no diagnostic client to capture them already. class CaptureDroppedDiagnostics { DiagnosticsEngine &Diags; StoredDiagnosticConsumer Client; DiagnosticConsumer *PreviousClient; public: CaptureDroppedDiagnostics(bool RequestCapture, DiagnosticsEngine &Diags, SmallVectorImpl<StoredDiagnostic> &StoredDiags) : Diags(Diags), Client(StoredDiags), PreviousClient(0) { if (RequestCapture || Diags.getClient() == 0) { PreviousClient = Diags.takeClient(); Diags.setClient(&Client); } } ~CaptureDroppedDiagnostics() { if (Diags.getClient() == &Client) { Diags.takeClient(); Diags.setClient(PreviousClient); } } }; } // anonymous namespace void StoredDiagnosticConsumer::HandleDiagnostic(DiagnosticsEngine::Level Level, const Diagnostic &Info) { // Default implementation (Warnings/errors count). DiagnosticConsumer::HandleDiagnostic(Level, Info); StoredDiags.push_back(StoredDiagnostic(Level, Info)); } const std::string &ASTUnit::getOriginalSourceFileName() { return OriginalSourceFile; } llvm::MemoryBuffer *ASTUnit::getBufferForFile(StringRef Filename, std::string *ErrorStr) { assert(FileMgr); return FileMgr->getBufferForFile(Filename, ErrorStr); } /// \brief Configure the diagnostics object for use with ASTUnit. void ASTUnit::ConfigureDiags(IntrusiveRefCntPtr<DiagnosticsEngine> &Diags, const char **ArgBegin, const char **ArgEnd, ASTUnit &AST, bool CaptureDiagnostics) { if (!Diags.getPtr()) { // No diagnostics engine was provided, so create our own diagnostics object // with the default options. DiagnosticOptions DiagOpts; DiagnosticConsumer *Client = 0; if (CaptureDiagnostics) Client = new StoredDiagnosticConsumer(AST.StoredDiagnostics); Diags = CompilerInstance::createDiagnostics(DiagOpts, ArgEnd-ArgBegin, ArgBegin, Client, /*ShouldOwnClient=*/true, /*ShouldCloneClient=*/false); } else if (CaptureDiagnostics) { Diags->setClient(new StoredDiagnosticConsumer(AST.StoredDiagnostics)); } } ASTUnit *ASTUnit::LoadFromASTFile(const std::string &Filename, IntrusiveRefCntPtr<DiagnosticsEngine> Diags, const FileSystemOptions &FileSystemOpts, bool OnlyLocalDecls, RemappedFile *RemappedFiles, unsigned NumRemappedFiles, bool CaptureDiagnostics, bool AllowPCHWithCompilerErrors) { OwningPtr<ASTUnit> AST(new ASTUnit(true)); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit> ASTUnitCleanup(AST.get()); llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine, llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> > DiagCleanup(Diags.getPtr()); ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics); AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; AST->Diagnostics = Diags; AST->FileMgr = new FileManager(FileSystemOpts); AST->SourceMgr = new SourceManager(AST->getDiagnostics(), AST->getFileManager()); AST->HeaderInfo.reset(new HeaderSearch(AST->getFileManager(), AST->getDiagnostics(), AST->ASTFileLangOpts, /*Target=*/0)); for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) { // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = AST->getFileManager().getVirtualFile(RemappedFiles[I].first, memBuf->getBufferSize(), 0); if (!FromFile) { AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file) << RemappedFiles[I].first; delete memBuf; continue; } // Override the contents of the "from" file with the contents of // the "to" file. AST->getSourceManager().overrideFileContents(FromFile, memBuf); } else { const char *fname = fileOrBuf.get<const char *>(); const FileEntry *ToFile = AST->FileMgr->getFile(fname); if (!ToFile) { AST->getDiagnostics().Report(diag::err_fe_remap_missing_to_file) << RemappedFiles[I].first << fname; continue; } // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = AST->getFileManager().getVirtualFile(RemappedFiles[I].first, ToFile->getSize(), 0); if (!FromFile) { AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file) << RemappedFiles[I].first; delete memBuf; continue; } // Override the contents of the "from" file with the contents of // the "to" file. AST->getSourceManager().overrideFileContents(FromFile, ToFile); } } // Gather Info for preprocessor construction later on. HeaderSearch &HeaderInfo = *AST->HeaderInfo.get(); std::string Predefines; unsigned Counter; OwningPtr<ASTReader> Reader; AST->PP = new Preprocessor(AST->getDiagnostics(), AST->ASTFileLangOpts, /*Target=*/0, AST->getSourceManager(), HeaderInfo, *AST, /*IILookup=*/0, /*OwnsHeaderSearch=*/false, /*DelayInitialization=*/true); Preprocessor &PP = *AST->PP; AST->Ctx = new ASTContext(AST->ASTFileLangOpts, AST->getSourceManager(), /*Target=*/0, PP.getIdentifierTable(), PP.getSelectorTable(), PP.getBuiltinInfo(), /* size_reserve = */0, /*DelayInitialization=*/true); ASTContext &Context = *AST->Ctx; Reader.reset(new ASTReader(PP, Context, /*isysroot=*/"", /*DisableValidation=*/false, /*DisableStatCache=*/false, AllowPCHWithCompilerErrors)); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<ASTReader> ReaderCleanup(Reader.get()); Reader->setListener(new ASTInfoCollector(*AST->PP, Context, AST->ASTFileLangOpts, HeaderInfo, AST->Target, Predefines, Counter)); switch (Reader->ReadAST(Filename, serialization::MK_MainFile)) { case ASTReader::Success: break; case ASTReader::Failure: case ASTReader::IgnorePCH: AST->getDiagnostics().Report(diag::err_fe_unable_to_load_pch); return NULL; } AST->OriginalSourceFile = Reader->getOriginalSourceFile(); PP.setPredefines(Reader->getSuggestedPredefines()); PP.setCounterValue(Counter); // Attach the AST reader to the AST context as an external AST // source, so that declarations will be deserialized from the // AST file as needed. ASTReader *ReaderPtr = Reader.get(); OwningPtr<ExternalASTSource> Source(Reader.take()); // Unregister the cleanup for ASTReader. It will get cleaned up // by the ASTUnit cleanup. ReaderCleanup.unregister(); Context.setExternalSource(Source); // Create an AST consumer, even though it isn't used. AST->Consumer.reset(new ASTConsumer); // Create a semantic analysis object and tell the AST reader about it. AST->TheSema.reset(new Sema(PP, Context, *AST->Consumer)); AST->TheSema->Initialize(); ReaderPtr->InitializeSema(*AST->TheSema); AST->Reader = ReaderPtr; return AST.take(); } namespace { /// \brief Preprocessor callback class that updates a hash value with the names /// of all macros that have been defined by the translation unit. class MacroDefinitionTrackerPPCallbacks : public PPCallbacks { unsigned &Hash; public: explicit MacroDefinitionTrackerPPCallbacks(unsigned &Hash) : Hash(Hash) { } virtual void MacroDefined(const Token &MacroNameTok, const MacroInfo *MI) { Hash = llvm::HashString(MacroNameTok.getIdentifierInfo()->getName(), Hash); } }; /// \brief Add the given declaration to the hash of all top-level entities. void AddTopLevelDeclarationToHash(Decl *D, unsigned &Hash) { if (!D) return; DeclContext *DC = D->getDeclContext(); if (!DC) return; if (!(DC->isTranslationUnit() || DC->getLookupParent()->isTranslationUnit())) return; if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) { if (ND->getIdentifier()) Hash = llvm::HashString(ND->getIdentifier()->getName(), Hash); else if (DeclarationName Name = ND->getDeclName()) { std::string NameStr = Name.getAsString(); Hash = llvm::HashString(NameStr, Hash); } return; } } class TopLevelDeclTrackerConsumer : public ASTConsumer { ASTUnit &Unit; unsigned &Hash; public: TopLevelDeclTrackerConsumer(ASTUnit &_Unit, unsigned &Hash) : Unit(_Unit), Hash(Hash) { Hash = 0; } void handleTopLevelDecl(Decl *D) { if (!D) return; // FIXME: Currently ObjC method declarations are incorrectly being // reported as top-level declarations, even though their DeclContext // is the containing ObjC @interface/@implementation. This is a // fundamental problem in the parser right now. if (isa<ObjCMethodDecl>(D)) return; AddTopLevelDeclarationToHash(D, Hash); Unit.addTopLevelDecl(D); handleFileLevelDecl(D); } void handleFileLevelDecl(Decl *D) { Unit.addFileLevelDecl(D); if (NamespaceDecl *NSD = dyn_cast<NamespaceDecl>(D)) { for (NamespaceDecl::decl_iterator I = NSD->decls_begin(), E = NSD->decls_end(); I != E; ++I) handleFileLevelDecl(*I); } } bool HandleTopLevelDecl(DeclGroupRef D) { for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) handleTopLevelDecl(*it); return true; } // We're not interested in "interesting" decls. void HandleInterestingDecl(DeclGroupRef) {} void HandleTopLevelDeclInObjCContainer(DeclGroupRef D) { for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) handleTopLevelDecl(*it); } }; class TopLevelDeclTrackerAction : public ASTFrontendAction { public: ASTUnit &Unit; virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { CI.getPreprocessor().addPPCallbacks( new MacroDefinitionTrackerPPCallbacks(Unit.getCurrentTopLevelHashValue())); return new TopLevelDeclTrackerConsumer(Unit, Unit.getCurrentTopLevelHashValue()); } public: TopLevelDeclTrackerAction(ASTUnit &_Unit) : Unit(_Unit) {} virtual bool hasCodeCompletionSupport() const { return false; } virtual TranslationUnitKind getTranslationUnitKind() { return Unit.getTranslationUnitKind(); } }; class PrecompilePreambleConsumer : public PCHGenerator { ASTUnit &Unit; unsigned &Hash; std::vector<Decl *> TopLevelDecls; public: PrecompilePreambleConsumer(ASTUnit &Unit, const Preprocessor &PP, StringRef isysroot, raw_ostream *Out) : PCHGenerator(PP, "", 0, isysroot, Out), Unit(Unit), Hash(Unit.getCurrentTopLevelHashValue()) { Hash = 0; } virtual bool HandleTopLevelDecl(DeclGroupRef D) { for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) { Decl *D = *it; // FIXME: Currently ObjC method declarations are incorrectly being // reported as top-level declarations, even though their DeclContext // is the containing ObjC @interface/@implementation. This is a // fundamental problem in the parser right now. if (isa<ObjCMethodDecl>(D)) continue; AddTopLevelDeclarationToHash(D, Hash); TopLevelDecls.push_back(D); } return true; } virtual void HandleTranslationUnit(ASTContext &Ctx) { PCHGenerator::HandleTranslationUnit(Ctx); if (!Unit.getDiagnostics().hasErrorOccurred()) { // Translate the top-level declarations we captured during // parsing into declaration IDs in the precompiled // preamble. This will allow us to deserialize those top-level // declarations when requested. for (unsigned I = 0, N = TopLevelDecls.size(); I != N; ++I) Unit.addTopLevelDeclFromPreamble( getWriter().getDeclID(TopLevelDecls[I])); } } }; class PrecompilePreambleAction : public ASTFrontendAction { ASTUnit &Unit; public: explicit PrecompilePreambleAction(ASTUnit &Unit) : Unit(Unit) {} virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { std::string Sysroot; std::string OutputFile; raw_ostream *OS = 0; if (GeneratePCHAction::ComputeASTConsumerArguments(CI, InFile, Sysroot, OutputFile, OS)) return 0; if (!CI.getFrontendOpts().RelocatablePCH) Sysroot.clear(); CI.getPreprocessor().addPPCallbacks( new MacroDefinitionTrackerPPCallbacks(Unit.getCurrentTopLevelHashValue())); return new PrecompilePreambleConsumer(Unit, CI.getPreprocessor(), Sysroot, OS); } virtual bool hasCodeCompletionSupport() const { return false; } virtual bool hasASTFileSupport() const { return false; } virtual TranslationUnitKind getTranslationUnitKind() { return TU_Prefix; } }; } static void checkAndRemoveNonDriverDiags(SmallVectorImpl<StoredDiagnostic> & StoredDiagnostics) { // Get rid of stored diagnostics except the ones from the driver which do not // have a source location. for (unsigned I = 0; I < StoredDiagnostics.size(); ++I) { if (StoredDiagnostics[I].getLocation().isValid()) { StoredDiagnostics.erase(StoredDiagnostics.begin()+I); --I; } } } static void checkAndSanitizeDiags(SmallVectorImpl<StoredDiagnostic> & StoredDiagnostics, SourceManager &SM) { // The stored diagnostic has the old source manager in it; update // the locations to refer into the new source manager. Since we've // been careful to make sure that the source manager's state // before and after are identical, so that we can reuse the source // location itself. for (unsigned I = 0, N = StoredDiagnostics.size(); I < N; ++I) { if (StoredDiagnostics[I].getLocation().isValid()) { FullSourceLoc Loc(StoredDiagnostics[I].getLocation(), SM); StoredDiagnostics[I].setLocation(Loc); } } } /// Parse the source file into a translation unit using the given compiler /// invocation, replacing the current translation unit. /// /// \returns True if a failure occurred that causes the ASTUnit not to /// contain any translation-unit information, false otherwise. bool ASTUnit::Parse(llvm::MemoryBuffer *OverrideMainBuffer) { delete SavedMainFileBuffer; SavedMainFileBuffer = 0; if (!Invocation) { delete OverrideMainBuffer; return true; } // Create the compiler instance to use for building the AST. OwningPtr<CompilerInstance> Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance> CICleanup(Clang.get()); IntrusiveRefCntPtr<CompilerInvocation> CCInvocation(new CompilerInvocation(*Invocation)); Clang->setInvocation(CCInvocation.getPtr()); OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].File; // Set up diagnostics, capturing any diagnostics that would // otherwise be dropped. Clang->setDiagnostics(&getDiagnostics()); // Create the target instance. Clang->getTargetOpts().Features = TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) { delete OverrideMainBuffer; return true; } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_LLVM_IR && "IR inputs not support here!"); // Configure the various subsystems. // FIXME: Should we retain the previous file manager? LangOpts = &Clang->getLangOpts(); FileSystemOpts = Clang->getFileSystemOpts(); FileMgr = new FileManager(FileSystemOpts); SourceMgr = new SourceManager(getDiagnostics(), *FileMgr); TheSema.reset(); Ctx = 0; PP = 0; Reader = 0; // Clear out old caches and data. TopLevelDecls.clear(); clearFileLevelDecls(); CleanTemporaryFiles(); if (!OverrideMainBuffer) { checkAndRemoveNonDriverDiags(StoredDiagnostics); TopLevelDeclsInPreamble.clear(); } // Create a file manager object to provide access to and cache the filesystem. Clang->setFileManager(&getFileManager()); // Create the source manager. Clang->setSourceManager(&getSourceManager()); // If the main file has been overridden due to the use of a preamble, // make that override happen and introduce the preamble. PreprocessorOptions &PreprocessorOpts = Clang->getPreprocessorOpts(); if (OverrideMainBuffer) { PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer); PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size(); PreprocessorOpts.PrecompiledPreambleBytes.second = PreambleEndsAtStartOfLine; PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this); PreprocessorOpts.DisablePCHValidation = true; // The stored diagnostic has the old source manager in it; update // the locations to refer into the new source manager. Since we've // been careful to make sure that the source manager's state // before and after are identical, so that we can reuse the source // location itself. checkAndSanitizeDiags(StoredDiagnostics, getSourceManager()); // Keep track of the override buffer; SavedMainFileBuffer = OverrideMainBuffer; } OwningPtr<TopLevelDeclTrackerAction> Act( new TopLevelDeclTrackerAction(*this)); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction> ActCleanup(Act.get()); if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) goto error; if (OverrideMainBuffer) { std::string ModName = getPreambleFile(this); TranslateStoredDiagnostics(Clang->getModuleManager(), ModName, getSourceManager(), PreambleDiagnostics, StoredDiagnostics); } Act->Execute(); transferASTDataFromCompilerInstance(*Clang); Act->EndSourceFile(); FailedParseDiagnostics.clear(); return false; error: // Remove the overridden buffer we used for the preamble. if (OverrideMainBuffer) { delete OverrideMainBuffer; SavedMainFileBuffer = 0; } // Keep the ownership of the data in the ASTUnit because the client may // want to see the diagnostics. transferASTDataFromCompilerInstance(*Clang); FailedParseDiagnostics.swap(StoredDiagnostics); StoredDiagnostics.clear(); NumStoredDiagnosticsFromDriver = 0; return true; } /// \brief Simple function to retrieve a path for a preamble precompiled header. static std::string GetPreamblePCHPath() { // FIXME: This is lame; sys::Path should provide this function (in particular, // it should know how to find the temporary files dir). // FIXME: This is really lame. I copied this code from the Driver! // FIXME: This is a hack so that we can override the preamble file during // crash-recovery testing, which is the only case where the preamble files // are not necessarily cleaned up. const char *TmpFile = ::getenv("CINDEXTEST_PREAMBLE_FILE"); if (TmpFile) return TmpFile; std::string Error; const char *TmpDir = ::getenv("TMPDIR"); if (!TmpDir) TmpDir = ::getenv("TEMP"); if (!TmpDir) TmpDir = ::getenv("TMP"); #ifdef LLVM_ON_WIN32 if (!TmpDir) TmpDir = ::getenv("USERPROFILE"); #endif if (!TmpDir) TmpDir = "/tmp"; llvm::sys::Path P(TmpDir); P.createDirectoryOnDisk(true); P.appendComponent("preamble"); P.appendSuffix("pch"); if (P.makeUnique(/*reuse_current=*/false, /*ErrMsg*/0)) return std::string(); return P.str(); } /// \brief Compute the preamble for the main file, providing the source buffer /// that corresponds to the main file along with a pair (bytes, start-of-line) /// that describes the preamble. std::pair<llvm::MemoryBuffer *, std::pair<unsigned, bool> > ASTUnit::ComputePreamble(CompilerInvocation &Invocation, unsigned MaxLines, bool &CreatedBuffer) { FrontendOptions &FrontendOpts = Invocation.getFrontendOpts(); PreprocessorOptions &PreprocessorOpts = Invocation.getPreprocessorOpts(); CreatedBuffer = false; // Try to determine if the main file has been remapped, either from the // command line (to another file) or directly through the compiler invocation // (to a memory buffer). llvm::MemoryBuffer *Buffer = 0; llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].File); if (const llvm::sys::FileStatus *MainFileStatus = MainFilePath.getFileStatus()) { // Check whether there is a file-file remapping of the main file for (PreprocessorOptions::remapped_file_iterator M = PreprocessorOpts.remapped_file_begin(), E = PreprocessorOpts.remapped_file_end(); M != E; ++M) { llvm::sys::PathWithStatus MPath(M->first); if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) { if (MainFileStatus->uniqueID == MStatus->uniqueID) { // We found a remapping. Try to load the resulting, remapped source. if (CreatedBuffer) { delete Buffer; CreatedBuffer = false; } Buffer = getBufferForFile(M->second); if (!Buffer) return std::make_pair((llvm::MemoryBuffer*)0, std::make_pair(0, true)); CreatedBuffer = true; } } } // Check whether there is a file-buffer remapping. It supercedes the // file-file remapping. for (PreprocessorOptions::remapped_file_buffer_iterator M = PreprocessorOpts.remapped_file_buffer_begin(), E = PreprocessorOpts.remapped_file_buffer_end(); M != E; ++M) { llvm::sys::PathWithStatus MPath(M->first); if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) { if (MainFileStatus->uniqueID == MStatus->uniqueID) { // We found a remapping. if (CreatedBuffer) { delete Buffer; CreatedBuffer = false; } Buffer = const_cast<llvm::MemoryBuffer *>(M->second); } } } } // If the main source file was not remapped, load it now. if (!Buffer) { Buffer = getBufferForFile(FrontendOpts.Inputs[0].File); if (!Buffer) return std::make_pair((llvm::MemoryBuffer*)0, std::make_pair(0, true)); CreatedBuffer = true; } return std::make_pair(Buffer, Lexer::ComputePreamble(Buffer, *Invocation.getLangOpts(), MaxLines)); } static llvm::MemoryBuffer *CreatePaddedMainFileBuffer(llvm::MemoryBuffer *Old, unsigned NewSize, StringRef NewName) { llvm::MemoryBuffer *Result = llvm::MemoryBuffer::getNewUninitMemBuffer(NewSize, NewName); memcpy(const_cast<char*>(Result->getBufferStart()), Old->getBufferStart(), Old->getBufferSize()); memset(const_cast<char*>(Result->getBufferStart()) + Old->getBufferSize(), ' ', NewSize - Old->getBufferSize() - 1); const_cast<char*>(Result->getBufferEnd())[-1] = '\n'; return Result; } /// \brief Attempt to build or re-use a precompiled preamble when (re-)parsing /// the source file. /// /// This routine will compute the preamble of the main source file. If a /// non-trivial preamble is found, it will precompile that preamble into a /// precompiled header so that the precompiled preamble can be used to reduce /// reparsing time. If a precompiled preamble has already been constructed, /// this routine will determine if it is still valid and, if so, avoid /// rebuilding the precompiled preamble. /// /// \param AllowRebuild When true (the default), this routine is /// allowed to rebuild the precompiled preamble if it is found to be /// out-of-date. /// /// \param MaxLines When non-zero, the maximum number of lines that /// can occur within the preamble. /// /// \returns If the precompiled preamble can be used, returns a newly-allocated /// buffer that should be used in place of the main file when doing so. /// Otherwise, returns a NULL pointer. llvm::MemoryBuffer *ASTUnit::getMainBufferWithPrecompiledPreamble( const CompilerInvocation &PreambleInvocationIn, bool AllowRebuild, unsigned MaxLines) { IntrusiveRefCntPtr<CompilerInvocation> PreambleInvocation(new CompilerInvocation(PreambleInvocationIn)); FrontendOptions &FrontendOpts = PreambleInvocation->getFrontendOpts(); PreprocessorOptions &PreprocessorOpts = PreambleInvocation->getPreprocessorOpts(); bool CreatedPreambleBuffer = false; std::pair<llvm::MemoryBuffer *, std::pair<unsigned, bool> > NewPreamble = ComputePreamble(*PreambleInvocation, MaxLines, CreatedPreambleBuffer); // If ComputePreamble() Take ownership of the preamble buffer. OwningPtr<llvm::MemoryBuffer> OwnedPreambleBuffer; if (CreatedPreambleBuffer) OwnedPreambleBuffer.reset(NewPreamble.first); if (!NewPreamble.second.first) { // We couldn't find a preamble in the main source. Clear out the current // preamble, if we have one. It's obviously no good any more. Preamble.clear(); erasePreambleFile(this); // The next time we actually see a preamble, precompile it. PreambleRebuildCounter = 1; return 0; } if (!Preamble.empty()) { // We've previously computed a preamble. Check whether we have the same // preamble now that we did before, and that there's enough space in // the main-file buffer within the precompiled preamble to fit the // new main file. if (Preamble.size() == NewPreamble.second.first && PreambleEndsAtStartOfLine == NewPreamble.second.second && NewPreamble.first->getBufferSize() < PreambleReservedSize-2 && memcmp(Preamble.getBufferStart(), NewPreamble.first->getBufferStart(), NewPreamble.second.first) == 0) { // The preamble has not changed. We may be able to re-use the precompiled // preamble. // Check that none of the files used by the preamble have changed. bool AnyFileChanged = false; // First, make a record of those files that have been overridden via // remapping or unsaved_files. llvm::StringMap<std::pair<off_t, time_t> > OverriddenFiles; for (PreprocessorOptions::remapped_file_iterator R = PreprocessorOpts.remapped_file_begin(), REnd = PreprocessorOpts.remapped_file_end(); !AnyFileChanged && R != REnd; ++R) { struct stat StatBuf; if (FileMgr->getNoncachedStatValue(R->second, StatBuf)) { // If we can't stat the file we're remapping to, assume that something // horrible happened. AnyFileChanged = true; break; } OverriddenFiles[R->first] = std::make_pair(StatBuf.st_size, StatBuf.st_mtime); } for (PreprocessorOptions::remapped_file_buffer_iterator R = PreprocessorOpts.remapped_file_buffer_begin(), REnd = PreprocessorOpts.remapped_file_buffer_end(); !AnyFileChanged && R != REnd; ++R) { // FIXME: Should we actually compare the contents of file->buffer // remappings? OverriddenFiles[R->first] = std::make_pair(R->second->getBufferSize(), 0); } // Check whether anything has changed. for (llvm::StringMap<std::pair<off_t, time_t> >::iterator F = FilesInPreamble.begin(), FEnd = FilesInPreamble.end(); !AnyFileChanged && F != FEnd; ++F) { llvm::StringMap<std::pair<off_t, time_t> >::iterator Overridden = OverriddenFiles.find(F->first()); if (Overridden != OverriddenFiles.end()) { // This file was remapped; check whether the newly-mapped file // matches up with the previous mapping. if (Overridden->second != F->second) AnyFileChanged = true; continue; } // The file was not remapped; check whether it has changed on disk. struct stat StatBuf; if (FileMgr->getNoncachedStatValue(F->first(), StatBuf)) { // If we can't stat the file, assume that something horrible happened. AnyFileChanged = true; } else if (StatBuf.st_size != F->second.first || StatBuf.st_mtime != F->second.second) AnyFileChanged = true; } if (!AnyFileChanged) { // Okay! We can re-use the precompiled preamble. // Set the state of the diagnostic object to mimic its state // after parsing the preamble. getDiagnostics().Reset(); ProcessWarningOptions(getDiagnostics(), PreambleInvocation->getDiagnosticOpts()); getDiagnostics().setNumWarnings(NumWarningsInPreamble); // Create a version of the main file buffer that is padded to // buffer size we reserved when creating the preamble. return CreatePaddedMainFileBuffer(NewPreamble.first, PreambleReservedSize, FrontendOpts.Inputs[0].File); } } // If we aren't allowed to rebuild the precompiled preamble, just // return now. if (!AllowRebuild) return 0; // We can't reuse the previously-computed preamble. Build a new one. Preamble.clear(); PreambleDiagnostics.clear(); erasePreambleFile(this); PreambleRebuildCounter = 1; } else if (!AllowRebuild) { // We aren't allowed to rebuild the precompiled preamble; just // return now. return 0; } // If the preamble rebuild counter > 1, it's because we previously // failed to build a preamble and we're not yet ready to try // again. Decrement the counter and return a failure. if (PreambleRebuildCounter > 1) { --PreambleRebuildCounter; return 0; } // Create a temporary file for the precompiled preamble. In rare // circumstances, this can fail. std::string PreamblePCHPath = GetPreamblePCHPath(); if (PreamblePCHPath.empty()) { // Try again next time. PreambleRebuildCounter = 1; return 0; } // We did not previously compute a preamble, or it can't be reused anyway. SimpleTimer PreambleTimer(WantTiming); PreambleTimer.setOutput("Precompiling preamble"); // Create a new buffer that stores the preamble. The buffer also contains // extra space for the original contents of the file (which will be present // when we actually parse the file) along with more room in case the file // grows. PreambleReservedSize = NewPreamble.first->getBufferSize(); if (PreambleReservedSize < 4096) PreambleReservedSize = 8191; else PreambleReservedSize *= 2; // Save the preamble text for later; we'll need to compare against it for // subsequent reparses. StringRef MainFilename = PreambleInvocation->getFrontendOpts().Inputs[0].File; Preamble.assign(FileMgr->getFile(MainFilename), NewPreamble.first->getBufferStart(), NewPreamble.first->getBufferStart() + NewPreamble.second.first); PreambleEndsAtStartOfLine = NewPreamble.second.second; delete PreambleBuffer; PreambleBuffer = llvm::MemoryBuffer::getNewUninitMemBuffer(PreambleReservedSize, FrontendOpts.Inputs[0].File); memcpy(const_cast<char*>(PreambleBuffer->getBufferStart()), NewPreamble.first->getBufferStart(), Preamble.size()); memset(const_cast<char*>(PreambleBuffer->getBufferStart()) + Preamble.size(), ' ', PreambleReservedSize - Preamble.size() - 1); const_cast<char*>(PreambleBuffer->getBufferEnd())[-1] = '\n'; // Remap the main source file to the preamble buffer. llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].File); PreprocessorOpts.addRemappedFile(MainFilePath.str(), PreambleBuffer); // Tell the compiler invocation to generate a temporary precompiled header. FrontendOpts.ProgramAction = frontend::GeneratePCH; // FIXME: Generate the precompiled header into memory? FrontendOpts.OutputFile = PreamblePCHPath; PreprocessorOpts.PrecompiledPreambleBytes.first = 0; PreprocessorOpts.PrecompiledPreambleBytes.second = false; // Create the compiler instance to use for building the precompiled preamble. OwningPtr<CompilerInstance> Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance> CICleanup(Clang.get()); Clang->setInvocation(&*PreambleInvocation); OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].File; // Set up diagnostics, capturing all of the diagnostics produced. Clang->setDiagnostics(&getDiagnostics()); // Create the target instance. Clang->getTargetOpts().Features = TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) { llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk(); Preamble.clear(); PreambleRebuildCounter = DefaultPreambleRebuildInterval; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); return 0; } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_LLVM_IR && "IR inputs not support here!"); // Clear out old caches and data. getDiagnostics().Reset(); ProcessWarningOptions(getDiagnostics(), Clang->getDiagnosticOpts()); checkAndRemoveNonDriverDiags(StoredDiagnostics); TopLevelDecls.clear(); TopLevelDeclsInPreamble.clear(); // Create a file manager object to provide access to and cache the filesystem. Clang->setFileManager(new FileManager(Clang->getFileSystemOpts())); // Create the source manager. Clang->setSourceManager(new SourceManager(getDiagnostics(), Clang->getFileManager())); OwningPtr<PrecompilePreambleAction> Act; Act.reset(new PrecompilePreambleAction(*this)); if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) { llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk(); Preamble.clear(); PreambleRebuildCounter = DefaultPreambleRebuildInterval; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); return 0; } Act->Execute(); Act->EndSourceFile(); if (Diagnostics->hasErrorOccurred()) { // There were errors parsing the preamble, so no precompiled header was // generated. Forget that we even tried. // FIXME: Should we leave a note for ourselves to try again? llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk(); Preamble.clear(); TopLevelDeclsInPreamble.clear(); PreambleRebuildCounter = DefaultPreambleRebuildInterval; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); return 0; } // Transfer any diagnostics generated when parsing the preamble into the set // of preamble diagnostics. PreambleDiagnostics.clear(); PreambleDiagnostics.insert(PreambleDiagnostics.end(), stored_diag_afterDriver_begin(), stored_diag_end()); checkAndRemoveNonDriverDiags(StoredDiagnostics); // Keep track of the preamble we precompiled. setPreambleFile(this, FrontendOpts.OutputFile); NumWarningsInPreamble = getDiagnostics().getNumWarnings(); // Keep track of all of the files that the source manager knows about, // so we can verify whether they have changed or not. FilesInPreamble.clear(); SourceManager &SourceMgr = Clang->getSourceManager(); const llvm::MemoryBuffer *MainFileBuffer = SourceMgr.getBuffer(SourceMgr.getMainFileID()); for (SourceManager::fileinfo_iterator F = SourceMgr.fileinfo_begin(), FEnd = SourceMgr.fileinfo_end(); F != FEnd; ++F) { const FileEntry *File = F->second->OrigEntry; if (!File || F->second->getRawBuffer() == MainFileBuffer) continue; FilesInPreamble[File->getName()] = std::make_pair(F->second->getSize(), File->getModificationTime()); } PreambleRebuildCounter = 1; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); // If the hash of top-level entities differs from the hash of the top-level // entities the last time we rebuilt the preamble, clear out the completion // cache. if (CurrentTopLevelHashValue != PreambleTopLevelHashValue) { CompletionCacheTopLevelHashValue = 0; PreambleTopLevelHashValue = CurrentTopLevelHashValue; } return CreatePaddedMainFileBuffer(NewPreamble.first, PreambleReservedSize, FrontendOpts.Inputs[0].File); } void ASTUnit::RealizeTopLevelDeclsFromPreamble() { std::vector<Decl *> Resolved; Resolved.reserve(TopLevelDeclsInPreamble.size()); ExternalASTSource &Source = *getASTContext().getExternalSource(); for (unsigned I = 0, N = TopLevelDeclsInPreamble.size(); I != N; ++I) { // Resolve the declaration ID to an actual declaration, possibly // deserializing the declaration in the process. Decl *D = Source.GetExternalDecl(TopLevelDeclsInPreamble[I]); if (D) Resolved.push_back(D); } TopLevelDeclsInPreamble.clear(); TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end()); } void ASTUnit::transferASTDataFromCompilerInstance(CompilerInstance &CI) { // Steal the created target, context, and preprocessor. TheSema.reset(CI.takeSema()); Consumer.reset(CI.takeASTConsumer()); Ctx = &CI.getASTContext(); PP = &CI.getPreprocessor(); CI.setSourceManager(0); CI.setFileManager(0); Target = &CI.getTarget(); Reader = CI.getModuleManager(); } StringRef ASTUnit::getMainFileName() const { return Invocation->getFrontendOpts().Inputs[0].File; } ASTUnit *ASTUnit::create(CompilerInvocation *CI, IntrusiveRefCntPtr<DiagnosticsEngine> Diags, bool CaptureDiagnostics) { OwningPtr<ASTUnit> AST; AST.reset(new ASTUnit(false)); ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics); AST->Diagnostics = Diags; AST->Invocation = CI; AST->FileSystemOpts = CI->getFileSystemOpts(); AST->FileMgr = new FileManager(AST->FileSystemOpts); AST->SourceMgr = new SourceManager(AST->getDiagnostics(), *AST->FileMgr); return AST.take(); } ASTUnit *ASTUnit::LoadFromCompilerInvocationAction(CompilerInvocation *CI, IntrusiveRefCntPtr<DiagnosticsEngine> Diags, ASTFrontendAction *Action, ASTUnit *Unit, bool Persistent, StringRef ResourceFilesPath, bool OnlyLocalDecls, bool CaptureDiagnostics, bool PrecompilePreamble, bool CacheCodeCompletionResults, OwningPtr<ASTUnit> *ErrAST) { assert(CI && "A CompilerInvocation is required"); OwningPtr<ASTUnit> OwnAST; ASTUnit *AST = Unit; if (!AST) { // Create the AST unit. OwnAST.reset(create(CI, Diags, CaptureDiagnostics)); AST = OwnAST.get(); } if (!ResourceFilesPath.empty()) { // Override the resources path. CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath; } AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; if (PrecompilePreamble) AST->PreambleRebuildCounter = 2; AST->TUKind = Action ? Action->getTranslationUnitKind() : TU_Complete; AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults; // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit> ASTUnitCleanup(OwnAST.get()); llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine, llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> > DiagCleanup(Diags.getPtr()); // We'll manage file buffers ourselves. CI->getPreprocessorOpts().RetainRemappedFileBuffers = true; CI->getFrontendOpts().DisableFree = false; ProcessWarningOptions(AST->getDiagnostics(), CI->getDiagnosticOpts()); // Save the target features. AST->TargetFeatures = CI->getTargetOpts().Features; // Create the compiler instance to use for building the AST. OwningPtr<CompilerInstance> Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance> CICleanup(Clang.get()); Clang->setInvocation(CI); AST->OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].File; // Set up diagnostics, capturing any diagnostics that would // otherwise be dropped. Clang->setDiagnostics(&AST->getDiagnostics()); // Create the target instance. Clang->getTargetOpts().Features = AST->TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) return 0; // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_LLVM_IR && "IR inputs not supported here!"); // Configure the various subsystems. AST->TheSema.reset(); AST->Ctx = 0; AST->PP = 0; AST->Reader = 0; // Create a file manager object to provide access to and cache the filesystem. Clang->setFileManager(&AST->getFileManager()); // Create the source manager. Clang->setSourceManager(&AST->getSourceManager()); ASTFrontendAction *Act = Action; OwningPtr<TopLevelDeclTrackerAction> TrackerAct; if (!Act) { TrackerAct.reset(new TopLevelDeclTrackerAction(*AST)); Act = TrackerAct.get(); } // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction> ActCleanup(TrackerAct.get()); if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) { AST->transferASTDataFromCompilerInstance(*Clang); if (OwnAST && ErrAST) ErrAST->swap(OwnAST); return 0; } if (Persistent && !TrackerAct) { Clang->getPreprocessor().addPPCallbacks( new MacroDefinitionTrackerPPCallbacks(AST->getCurrentTopLevelHashValue())); std::vector<ASTConsumer*> Consumers; if (Clang->hasASTConsumer()) Consumers.push_back(Clang->takeASTConsumer()); Consumers.push_back(new TopLevelDeclTrackerConsumer(*AST, AST->getCurrentTopLevelHashValue())); Clang->setASTConsumer(new MultiplexConsumer(Consumers)); } Act->Execute(); // Steal the created target, context, and preprocessor. AST->transferASTDataFromCompilerInstance(*Clang); Act->EndSourceFile(); if (OwnAST) return OwnAST.take(); else return AST; } bool ASTUnit::LoadFromCompilerInvocation(bool PrecompilePreamble) { if (!Invocation) return true; // We'll manage file buffers ourselves. Invocation->getPreprocessorOpts().RetainRemappedFileBuffers = true; Invocation->getFrontendOpts().DisableFree = false; ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts()); // Save the target features. TargetFeatures = Invocation->getTargetOpts().Features; llvm::MemoryBuffer *OverrideMainBuffer = 0; if (PrecompilePreamble) { PreambleRebuildCounter = 2; OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation); } SimpleTimer ParsingTimer(WantTiming); ParsingTimer.setOutput("Parsing " + getMainFileName()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<llvm::MemoryBuffer> MemBufferCleanup(OverrideMainBuffer); return Parse(OverrideMainBuffer); } ASTUnit *ASTUnit::LoadFromCompilerInvocation(CompilerInvocation *CI, IntrusiveRefCntPtr<DiagnosticsEngine> Diags, bool OnlyLocalDecls, bool CaptureDiagnostics, bool PrecompilePreamble, TranslationUnitKind TUKind, bool CacheCodeCompletionResults) { // Create the AST unit. OwningPtr<ASTUnit> AST; AST.reset(new ASTUnit(false)); ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics); AST->Diagnostics = Diags; AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; AST->TUKind = TUKind; AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults; AST->Invocation = CI; // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit> ASTUnitCleanup(AST.get()); llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine, llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> > DiagCleanup(Diags.getPtr()); return AST->LoadFromCompilerInvocation(PrecompilePreamble)? 0 : AST.take(); } ASTUnit *ASTUnit::LoadFromCommandLine(const char **ArgBegin, const char **ArgEnd, IntrusiveRefCntPtr<DiagnosticsEngine> Diags, StringRef ResourceFilesPath, bool OnlyLocalDecls, bool CaptureDiagnostics, RemappedFile *RemappedFiles, unsigned NumRemappedFiles, bool RemappedFilesKeepOriginalName, bool PrecompilePreamble, TranslationUnitKind TUKind, bool CacheCodeCompletionResults, bool AllowPCHWithCompilerErrors, bool SkipFunctionBodies, OwningPtr<ASTUnit> *ErrAST) { if (!Diags.getPtr()) { // No diagnostics engine was provided, so create our own diagnostics object // with the default options. DiagnosticOptions DiagOpts; Diags = CompilerInstance::createDiagnostics(DiagOpts, ArgEnd - ArgBegin, ArgBegin); } SmallVector<StoredDiagnostic, 4> StoredDiagnostics; IntrusiveRefCntPtr<CompilerInvocation> CI; { CaptureDroppedDiagnostics Capture(CaptureDiagnostics, *Diags, StoredDiagnostics); CI = clang::createInvocationFromCommandLine( llvm::makeArrayRef(ArgBegin, ArgEnd), Diags); if (!CI) return 0; } // Override any files that need remapping for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) { CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, memBuf); } else { const char *fname = fileOrBuf.get<const char *>(); CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, fname); } } PreprocessorOptions &PPOpts = CI->getPreprocessorOpts(); PPOpts.RemappedFilesKeepOriginalName = RemappedFilesKeepOriginalName; PPOpts.AllowPCHWithCompilerErrors = AllowPCHWithCompilerErrors; // Override the resources path. CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath; CI->getFrontendOpts().SkipFunctionBodies = SkipFunctionBodies; // Create the AST unit. OwningPtr<ASTUnit> AST; AST.reset(new ASTUnit(false)); ConfigureDiags(Diags, ArgBegin, ArgEnd, *AST, CaptureDiagnostics); AST->Diagnostics = Diags; Diags = 0; // Zero out now to ease cleanup during crash recovery. AST->FileSystemOpts = CI->getFileSystemOpts(); AST->FileMgr = new FileManager(AST->FileSystemOpts); AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; AST->TUKind = TUKind; AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults; AST->NumStoredDiagnosticsFromDriver = StoredDiagnostics.size(); AST->StoredDiagnostics.swap(StoredDiagnostics); AST->Invocation = CI; CI = 0; // Zero out now to ease cleanup during crash recovery. // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit> ASTUnitCleanup(AST.get()); if (AST->LoadFromCompilerInvocation(PrecompilePreamble)) { // Some error occurred, if caller wants to examine diagnostics, pass it the // ASTUnit. if (ErrAST) { AST->StoredDiagnostics.swap(AST->FailedParseDiagnostics); ErrAST->swap(AST); } return 0; } return AST.take(); } bool ASTUnit::Reparse(RemappedFile *RemappedFiles, unsigned NumRemappedFiles) { if (!Invocation) return true; clearFileLevelDecls(); SimpleTimer ParsingTimer(WantTiming); ParsingTimer.setOutput("Reparsing " + getMainFileName()); // Remap files. PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); PPOpts.DisableStatCache = true; for (PreprocessorOptions::remapped_file_buffer_iterator R = PPOpts.remapped_file_buffer_begin(), REnd = PPOpts.remapped_file_buffer_end(); R != REnd; ++R) { delete R->second; } Invocation->getPreprocessorOpts().clearRemappedFiles(); for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) { Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, memBuf); } else { const char *fname = fileOrBuf.get<const char *>(); Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, fname); } } // If we have a preamble file lying around, or if we might try to // build a precompiled preamble, do so now. llvm::MemoryBuffer *OverrideMainBuffer = 0; if (!getPreambleFile(this).empty() || PreambleRebuildCounter > 0) OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation); // Clear out the diagnostics state. getDiagnostics().Reset(); ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts()); if (OverrideMainBuffer) getDiagnostics().setNumWarnings(NumWarningsInPreamble); // Parse the sources bool Result = Parse(OverrideMainBuffer); // If we're caching global code-completion results, and the top-level // declarations have changed, clear out the code-completion cache. if (!Result && ShouldCacheCodeCompletionResults && CurrentTopLevelHashValue != CompletionCacheTopLevelHashValue) CacheCodeCompletionResults(); // We now need to clear out the completion info related to this translation // unit; it'll be recreated if necessary. CCTUInfo.reset(); return Result; } //----------------------------------------------------------------------------// // Code completion //----------------------------------------------------------------------------// namespace { /// \brief Code completion consumer that combines the cached code-completion /// results from an ASTUnit with the code-completion results provided to it, /// then passes the result on to class AugmentedCodeCompleteConsumer : public CodeCompleteConsumer { unsigned long long NormalContexts; ASTUnit &AST; CodeCompleteConsumer &Next; public: AugmentedCodeCompleteConsumer(ASTUnit &AST, CodeCompleteConsumer &Next, bool IncludeMacros, bool IncludeCodePatterns, bool IncludeGlobals) : CodeCompleteConsumer(IncludeMacros, IncludeCodePatterns, IncludeGlobals, Next.isOutputBinary()), AST(AST), Next(Next) { // Compute the set of contexts in which we will look when we don't have // any information about the specific context. NormalContexts = (1LL << (CodeCompletionContext::CCC_TopLevel - 1)) | (1LL << (CodeCompletionContext::CCC_ObjCInterface - 1)) | (1LL << (CodeCompletionContext::CCC_ObjCImplementation - 1)) | (1LL << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1LL << (CodeCompletionContext::CCC_Statement - 1)) | (1LL << (CodeCompletionContext::CCC_Expression - 1)) | (1LL << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)) | (1LL << (CodeCompletionContext::CCC_DotMemberAccess - 1)) | (1LL << (CodeCompletionContext::CCC_ArrowMemberAccess - 1)) | (1LL << (CodeCompletionContext::CCC_ObjCPropertyAccess - 1)) | (1LL << (CodeCompletionContext::CCC_ObjCProtocolName - 1)) | (1LL << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)) | (1LL << (CodeCompletionContext::CCC_Recovery - 1)); if (AST.getASTContext().getLangOpts().CPlusPlus) NormalContexts |= (1LL << (CodeCompletionContext::CCC_EnumTag - 1)) | (1LL << (CodeCompletionContext::CCC_UnionTag - 1)) | (1LL << (CodeCompletionContext::CCC_ClassOrStructTag - 1)); } virtual void ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context, CodeCompletionResult *Results, unsigned NumResults); virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, OverloadCandidate *Candidates, unsigned NumCandidates) { Next.ProcessOverloadCandidates(S, CurrentArg, Candidates, NumCandidates); } virtual CodeCompletionAllocator &getAllocator() { return Next.getAllocator(); } virtual CodeCompletionTUInfo &getCodeCompletionTUInfo() { return Next.getCodeCompletionTUInfo(); } }; } /// \brief Helper function that computes which global names are hidden by the /// local code-completion results. static void CalculateHiddenNames(const CodeCompletionContext &Context, CodeCompletionResult *Results, unsigned NumResults, ASTContext &Ctx, llvm::StringSet<llvm::BumpPtrAllocator> &HiddenNames){ bool OnlyTagNames = false; switch (Context.getKind()) { case CodeCompletionContext::CCC_Recovery: case CodeCompletionContext::CCC_TopLevel: case CodeCompletionContext::CCC_ObjCInterface: case CodeCompletionContext::CCC_ObjCImplementation: case CodeCompletionContext::CCC_ObjCIvarList: case CodeCompletionContext::CCC_ClassStructUnion: case CodeCompletionContext::CCC_Statement: case CodeCompletionContext::CCC_Expression: case CodeCompletionContext::CCC_ObjCMessageReceiver: case CodeCompletionContext::CCC_DotMemberAccess: case CodeCompletionContext::CCC_ArrowMemberAccess: case CodeCompletionContext::CCC_ObjCPropertyAccess: case CodeCompletionContext::CCC_Namespace: case CodeCompletionContext::CCC_Type: case CodeCompletionContext::CCC_Name: case CodeCompletionContext::CCC_PotentiallyQualifiedName: case CodeCompletionContext::CCC_ParenthesizedExpression: case CodeCompletionContext::CCC_ObjCInterfaceName: break; case CodeCompletionContext::CCC_EnumTag: case CodeCompletionContext::CCC_UnionTag: case CodeCompletionContext::CCC_ClassOrStructTag: OnlyTagNames = true; break; case CodeCompletionContext::CCC_ObjCProtocolName: case CodeCompletionContext::CCC_MacroName: case CodeCompletionContext::CCC_MacroNameUse: case CodeCompletionContext::CCC_PreprocessorExpression: case CodeCompletionContext::CCC_PreprocessorDirective: case CodeCompletionContext::CCC_NaturalLanguage: case CodeCompletionContext::CCC_SelectorName: case CodeCompletionContext::CCC_TypeQualifiers: case CodeCompletionContext::CCC_Other: case CodeCompletionContext::CCC_OtherWithMacros: case CodeCompletionContext::CCC_ObjCInstanceMessage: case CodeCompletionContext::CCC_ObjCClassMessage: case CodeCompletionContext::CCC_ObjCCategoryName: // We're looking for nothing, or we're looking for names that cannot // be hidden. return; } typedef CodeCompletionResult Result; for (unsigned I = 0; I != NumResults; ++I) { if (Results[I].Kind != Result::RK_Declaration) continue; unsigned IDNS = Results[I].Declaration->getUnderlyingDecl()->getIdentifierNamespace(); bool Hiding = false; if (OnlyTagNames) Hiding = (IDNS & Decl::IDNS_Tag); else { unsigned HiddenIDNS = (Decl::IDNS_Type | Decl::IDNS_Member | Decl::IDNS_Namespace | Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator); if (Ctx.getLangOpts().CPlusPlus) HiddenIDNS |= Decl::IDNS_Tag; Hiding = (IDNS & HiddenIDNS); } if (!Hiding) continue; DeclarationName Name = Results[I].Declaration->getDeclName(); if (IdentifierInfo *Identifier = Name.getAsIdentifierInfo()) HiddenNames.insert(Identifier->getName()); else HiddenNames.insert(Name.getAsString()); } } void AugmentedCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context, CodeCompletionResult *Results, unsigned NumResults) { // Merge the results we were given with the results we cached. bool AddedResult = false; unsigned InContexts = (Context.getKind() == CodeCompletionContext::CCC_Recovery? NormalContexts : (1ULL << (Context.getKind() - 1))); // Contains the set of names that are hidden by "local" completion results. llvm::StringSet<llvm::BumpPtrAllocator> HiddenNames; typedef CodeCompletionResult Result; SmallVector<Result, 8> AllResults; for (ASTUnit::cached_completion_iterator C = AST.cached_completion_begin(), CEnd = AST.cached_completion_end(); C != CEnd; ++C) { // If the context we are in matches any of the contexts we are // interested in, we'll add this result. if ((C->ShowInContexts & InContexts) == 0) continue; // If we haven't added any results previously, do so now. if (!AddedResult) { CalculateHiddenNames(Context, Results, NumResults, S.Context, HiddenNames); AllResults.insert(AllResults.end(), Results, Results + NumResults); AddedResult = true; } // Determine whether this global completion result is hidden by a local // completion result. If so, skip it. if (C->Kind != CXCursor_MacroDefinition && HiddenNames.count(C->Completion->getTypedText())) continue; // Adjust priority based on similar type classes. unsigned Priority = C->Priority; CXCursorKind CursorKind = C->Kind; CodeCompletionString *Completion = C->Completion; if (!Context.getPreferredType().isNull()) { if (C->Kind == CXCursor_MacroDefinition) { Priority = getMacroUsagePriority(C->Completion->getTypedText(), S.getLangOpts(), Context.getPreferredType()->isAnyPointerType()); } else if (C->Type) { CanQualType Expected = S.Context.getCanonicalType( Context.getPreferredType().getUnqualifiedType()); SimplifiedTypeClass ExpectedSTC = getSimplifiedTypeClass(Expected); if (ExpectedSTC == C->TypeClass) { // We know this type is similar; check for an exact match. llvm::StringMap<unsigned> &CachedCompletionTypes = AST.getCachedCompletionTypes(); llvm::StringMap<unsigned>::iterator Pos = CachedCompletionTypes.find(QualType(Expected).getAsString()); if (Pos != CachedCompletionTypes.end() && Pos->second == C->Type) Priority /= CCF_ExactTypeMatch; else Priority /= CCF_SimilarTypeMatch; } } } // Adjust the completion string, if required. if (C->Kind == CXCursor_MacroDefinition && Context.getKind() == CodeCompletionContext::CCC_MacroNameUse) { // Create a new code-completion string that just contains the // macro name, without its arguments. CodeCompletionBuilder Builder(getAllocator(), getCodeCompletionTUInfo(), CCP_CodePattern, C->Availability); Builder.AddTypedTextChunk(C->Completion->getTypedText()); CursorKind = CXCursor_NotImplemented; Priority = CCP_CodePattern; Completion = Builder.TakeString(); } AllResults.push_back(Result(Completion, Priority, CursorKind, C->Availability)); } // If we did not add any cached completion results, just forward the // results we were given to the next consumer. if (!AddedResult) { Next.ProcessCodeCompleteResults(S, Context, Results, NumResults); return; } Next.ProcessCodeCompleteResults(S, Context, AllResults.data(), AllResults.size()); } void ASTUnit::CodeComplete(StringRef File, unsigned Line, unsigned Column, RemappedFile *RemappedFiles, unsigned NumRemappedFiles, bool IncludeMacros, bool IncludeCodePatterns, CodeCompleteConsumer &Consumer, DiagnosticsEngine &Diag, LangOptions &LangOpts, SourceManager &SourceMgr, FileManager &FileMgr, SmallVectorImpl<StoredDiagnostic> &StoredDiagnostics, SmallVectorImpl<const llvm::MemoryBuffer *> &OwnedBuffers) { if (!Invocation) return; SimpleTimer CompletionTimer(WantTiming); CompletionTimer.setOutput("Code completion @ " + File + ":" + Twine(Line) + ":" + Twine(Column)); IntrusiveRefCntPtr<CompilerInvocation> CCInvocation(new CompilerInvocation(*Invocation)); FrontendOptions &FrontendOpts = CCInvocation->getFrontendOpts(); PreprocessorOptions &PreprocessorOpts = CCInvocation->getPreprocessorOpts(); FrontendOpts.ShowMacrosInCodeCompletion = IncludeMacros && CachedCompletionResults.empty(); FrontendOpts.ShowCodePatternsInCodeCompletion = IncludeCodePatterns; FrontendOpts.ShowGlobalSymbolsInCodeCompletion = CachedCompletionResults.empty(); FrontendOpts.CodeCompletionAt.FileName = File; FrontendOpts.CodeCompletionAt.Line = Line; FrontendOpts.CodeCompletionAt.Column = Column; // Set the language options appropriately. LangOpts = *CCInvocation->getLangOpts(); OwningPtr<CompilerInstance> Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance> CICleanup(Clang.get()); Clang->setInvocation(&*CCInvocation); OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].File; // Set up diagnostics, capturing any diagnostics produced. Clang->setDiagnostics(&Diag); ProcessWarningOptions(Diag, CCInvocation->getDiagnosticOpts()); CaptureDroppedDiagnostics Capture(true, Clang->getDiagnostics(), StoredDiagnostics); // Create the target instance. Clang->getTargetOpts().Features = TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) { Clang->setInvocation(0); return; } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].Kind != IK_LLVM_IR && "IR inputs not support here!"); // Use the source and file managers that we were given. Clang->setFileManager(&FileMgr); Clang->setSourceManager(&SourceMgr); // Remap files. PreprocessorOpts.clearRemappedFiles(); PreprocessorOpts.RetainRemappedFileBuffers = true; for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) { PreprocessorOpts.addRemappedFile(RemappedFiles[I].first, memBuf); OwnedBuffers.push_back(memBuf); } else { const char *fname = fileOrBuf.get<const char *>(); PreprocessorOpts.addRemappedFile(RemappedFiles[I].first, fname); } } // Use the code completion consumer we were given, but adding any cached // code-completion results. AugmentedCodeCompleteConsumer *AugmentedConsumer = new AugmentedCodeCompleteConsumer(*this, Consumer, FrontendOpts.ShowMacrosInCodeCompletion, FrontendOpts.ShowCodePatternsInCodeCompletion, FrontendOpts.ShowGlobalSymbolsInCodeCompletion); Clang->setCodeCompletionConsumer(AugmentedConsumer); Clang->getFrontendOpts().SkipFunctionBodies = true; // If we have a precompiled preamble, try to use it. We only allow // the use of the precompiled preamble if we're if the completion // point is within the main file, after the end of the precompiled // preamble. llvm::MemoryBuffer *OverrideMainBuffer = 0; if (!getPreambleFile(this).empty()) { using llvm::sys::FileStatus; llvm::sys::PathWithStatus CompleteFilePath(File); llvm::sys::PathWithStatus MainPath(OriginalSourceFile); if (const FileStatus *CompleteFileStatus = CompleteFilePath.getFileStatus()) if (const FileStatus *MainStatus = MainPath.getFileStatus()) if (CompleteFileStatus->getUniqueID() == MainStatus->getUniqueID() && Line > 1) OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*CCInvocation, false, Line - 1); } // If the main file has been overridden due to the use of a preamble, // make that override happen and introduce the preamble. PreprocessorOpts.DisableStatCache = true; StoredDiagnostics.insert(StoredDiagnostics.end(), stored_diag_begin(), stored_diag_afterDriver_begin()); if (OverrideMainBuffer) { PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer); PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size(); PreprocessorOpts.PrecompiledPreambleBytes.second = PreambleEndsAtStartOfLine; PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this); PreprocessorOpts.DisablePCHValidation = true; OwnedBuffers.push_back(OverrideMainBuffer); } else { PreprocessorOpts.PrecompiledPreambleBytes.first = 0; PreprocessorOpts.PrecompiledPreambleBytes.second = false; } // Disable the preprocessing record PreprocessorOpts.DetailedRecord = false; OwningPtr<SyntaxOnlyAction> Act; Act.reset(new SyntaxOnlyAction); if (Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) { if (OverrideMainBuffer) { std::string ModName = getPreambleFile(this); TranslateStoredDiagnostics(Clang->getModuleManager(), ModName, getSourceManager(), PreambleDiagnostics, StoredDiagnostics); } Act->Execute(); Act->EndSourceFile(); } checkAndSanitizeDiags(StoredDiagnostics, getSourceManager()); } CXSaveError ASTUnit::Save(StringRef File) { // Write to a temporary file and later rename it to the actual file, to avoid // possible race conditions. SmallString<128> TempPath; TempPath = File; TempPath += "-%%%%%%%%"; int fd; if (llvm::sys::fs::unique_file(TempPath.str(), fd, TempPath, /*makeAbsolute=*/false)) return CXSaveError_Unknown; // FIXME: Can we somehow regenerate the stat cache here, or do we need to // unconditionally create a stat cache when we parse the file? llvm::raw_fd_ostream Out(fd, /*shouldClose=*/true); serialize(Out); Out.close(); if (Out.has_error()) { Out.clear_error(); return CXSaveError_Unknown; } if (llvm::sys::fs::rename(TempPath.str(), File)) { bool exists; llvm::sys::fs::remove(TempPath.str(), exists); return CXSaveError_Unknown; } return CXSaveError_None; } bool ASTUnit::serialize(raw_ostream &OS) { bool hasErrors = getDiagnostics().hasErrorOccurred(); SmallString<128> Buffer; llvm::BitstreamWriter Stream(Buffer); ASTWriter Writer(Stream); // FIXME: Handle modules Writer.WriteAST(getSema(), 0, std::string(), 0, "", hasErrors); // Write the generated bitstream to "Out". if (!Buffer.empty()) OS.write((char *)&Buffer.front(), Buffer.size()); return false; } typedef ContinuousRangeMap<unsigned, int, 2> SLocRemap; static void TranslateSLoc(SourceLocation &L, SLocRemap &Remap) { unsigned Raw = L.getRawEncoding(); const unsigned MacroBit = 1U << 31; L = SourceLocation::getFromRawEncoding((Raw & MacroBit) | ((Raw & ~MacroBit) + Remap.find(Raw & ~MacroBit)->second)); } void ASTUnit::TranslateStoredDiagnostics( ASTReader *MMan, StringRef ModName, SourceManager &SrcMgr, const SmallVectorImpl<StoredDiagnostic> &Diags, SmallVectorImpl<StoredDiagnostic> &Out) { // The stored diagnostic has the old source manager in it; update // the locations to refer into the new source manager. We also need to remap // all the locations to the new view. This includes the diag location, any // associated source ranges, and the source ranges of associated fix-its. // FIXME: There should be a cleaner way to do this. SmallVector<StoredDiagnostic, 4> Result; Result.reserve(Diags.size()); assert(MMan && "Don't have a module manager"); serialization::ModuleFile *Mod = MMan->ModuleMgr.lookup(ModName); assert(Mod && "Don't have preamble module"); SLocRemap &Remap = Mod->SLocRemap; for (unsigned I = 0, N = Diags.size(); I != N; ++I) { // Rebuild the StoredDiagnostic. const StoredDiagnostic &SD = Diags[I]; SourceLocation L = SD.getLocation(); TranslateSLoc(L, Remap); FullSourceLoc Loc(L, SrcMgr); SmallVector<CharSourceRange, 4> Ranges; Ranges.reserve(SD.range_size()); for (StoredDiagnostic::range_iterator I = SD.range_begin(), E = SD.range_end(); I != E; ++I) { SourceLocation BL = I->getBegin(); TranslateSLoc(BL, Remap); SourceLocation EL = I->getEnd(); TranslateSLoc(EL, Remap); Ranges.push_back(CharSourceRange(SourceRange(BL, EL), I->isTokenRange())); } SmallVector<FixItHint, 2> FixIts; FixIts.reserve(SD.fixit_size()); for (StoredDiagnostic::fixit_iterator I = SD.fixit_begin(), E = SD.fixit_end(); I != E; ++I) { FixIts.push_back(FixItHint()); FixItHint &FH = FixIts.back(); FH.CodeToInsert = I->CodeToInsert; SourceLocation BL = I->RemoveRange.getBegin(); TranslateSLoc(BL, Remap); SourceLocation EL = I->RemoveRange.getEnd(); TranslateSLoc(EL, Remap); FH.RemoveRange = CharSourceRange(SourceRange(BL, EL), I->RemoveRange.isTokenRange()); } Result.push_back(StoredDiagnostic(SD.getLevel(), SD.getID(), SD.getMessage(), Loc, Ranges, FixIts)); } Result.swap(Out); } static inline bool compLocDecl(std::pair<unsigned, Decl *> L, std::pair<unsigned, Decl *> R) { return L.first < R.first; } void ASTUnit::addFileLevelDecl(Decl *D) { assert(D); // We only care about local declarations. if (D->isFromASTFile()) return; SourceManager &SM = *SourceMgr; SourceLocation Loc = D->getLocation(); if (Loc.isInvalid() || !SM.isLocalSourceLocation(Loc)) return; // We only keep track of the file-level declarations of each file. if (!D->getLexicalDeclContext()->isFileContext()) return; SourceLocation FileLoc = SM.getFileLoc(Loc); assert(SM.isLocalSourceLocation(FileLoc)); FileID FID; unsigned Offset; llvm::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc); if (FID.isInvalid()) return; LocDeclsTy *&Decls = FileDecls[FID]; if (!Decls) Decls = new LocDeclsTy(); std::pair<unsigned, Decl *> LocDecl(Offset, D); if (Decls->empty() || Decls->back().first <= Offset) { Decls->push_back(LocDecl); return; } LocDeclsTy::iterator I = std::upper_bound(Decls->begin(), Decls->end(), LocDecl, compLocDecl); Decls->insert(I, LocDecl); } void ASTUnit::findFileRegionDecls(FileID File, unsigned Offset, unsigned Length, SmallVectorImpl<Decl *> &Decls) { if (File.isInvalid()) return; if (SourceMgr->isLoadedFileID(File)) { assert(Ctx->getExternalSource() && "No external source!"); return Ctx->getExternalSource()->FindFileRegionDecls(File, Offset, Length, Decls); } FileDeclsTy::iterator I = FileDecls.find(File); if (I == FileDecls.end()) return; LocDeclsTy &LocDecls = *I->second; if (LocDecls.empty()) return; LocDeclsTy::iterator BeginIt = std::lower_bound(LocDecls.begin(), LocDecls.end(), std::make_pair(Offset, (Decl*)0), compLocDecl); if (BeginIt != LocDecls.begin()) --BeginIt; // If we are pointing at a top-level decl inside an objc container, we need // to backtrack until we find it otherwise we will fail to report that the // region overlaps with an objc container. while (BeginIt != LocDecls.begin() && BeginIt->second->isTopLevelDeclInObjCContainer()) --BeginIt; LocDeclsTy::iterator EndIt = std::upper_bound(LocDecls.begin(), LocDecls.end(), std::make_pair(Offset+Length, (Decl*)0), compLocDecl); if (EndIt != LocDecls.end()) ++EndIt; for (LocDeclsTy::iterator DIt = BeginIt; DIt != EndIt; ++DIt) Decls.push_back(DIt->second); } SourceLocation ASTUnit::getLocation(const FileEntry *File, unsigned Line, unsigned Col) const { const SourceManager &SM = getSourceManager(); SourceLocation Loc = SM.translateFileLineCol(File, Line, Col); return SM.getMacroArgExpandedLocation(Loc); } SourceLocation ASTUnit::getLocation(const FileEntry *File, unsigned Offset) const { const SourceManager &SM = getSourceManager(); SourceLocation FileLoc = SM.translateFileLineCol(File, 1, 1); return SM.getMacroArgExpandedLocation(FileLoc.getLocWithOffset(Offset)); } /// \brief If \arg Loc is a loaded location from the preamble, returns /// the corresponding local location of the main file, otherwise it returns /// \arg Loc. SourceLocation ASTUnit::mapLocationFromPreamble(SourceLocation Loc) { FileID PreambleID; if (SourceMgr) PreambleID = SourceMgr->getPreambleFileID(); if (Loc.isInvalid() || Preamble.empty() || PreambleID.isInvalid()) return Loc; unsigned Offs; if (SourceMgr->isInFileID(Loc, PreambleID, &Offs) && Offs < Preamble.size()) { SourceLocation FileLoc = SourceMgr->getLocForStartOfFile(SourceMgr->getMainFileID()); return FileLoc.getLocWithOffset(Offs); } return Loc; } /// \brief If \arg Loc is a local location of the main file but inside the /// preamble chunk, returns the corresponding loaded location from the /// preamble, otherwise it returns \arg Loc. SourceLocation ASTUnit::mapLocationToPreamble(SourceLocation Loc) { FileID PreambleID; if (SourceMgr) PreambleID = SourceMgr->getPreambleFileID(); if (Loc.isInvalid() || Preamble.empty() || PreambleID.isInvalid()) return Loc; unsigned Offs; if (SourceMgr->isInFileID(Loc, SourceMgr->getMainFileID(), &Offs) && Offs < Preamble.size()) { SourceLocation FileLoc = SourceMgr->getLocForStartOfFile(PreambleID); return FileLoc.getLocWithOffset(Offs); } return Loc; } bool ASTUnit::isInPreambleFileID(SourceLocation Loc) { FileID FID; if (SourceMgr) FID = SourceMgr->getPreambleFileID(); if (Loc.isInvalid() || FID.isInvalid()) return false; return SourceMgr->isInFileID(Loc, FID); } bool ASTUnit::isInMainFileID(SourceLocation Loc) { FileID FID; if (SourceMgr) FID = SourceMgr->getMainFileID(); if (Loc.isInvalid() || FID.isInvalid()) return false; return SourceMgr->isInFileID(Loc, FID); } SourceLocation ASTUnit::getEndOfPreambleFileID() { FileID FID; if (SourceMgr) FID = SourceMgr->getPreambleFileID(); if (FID.isInvalid()) return SourceLocation(); return SourceMgr->getLocForEndOfFile(FID); } SourceLocation ASTUnit::getStartOfMainFileID() { FileID FID; if (SourceMgr) FID = SourceMgr->getMainFileID(); if (FID.isInvalid()) return SourceLocation(); return SourceMgr->getLocForStartOfFile(FID); } void ASTUnit::PreambleData::countLines() const { NumLines = 0; if (empty()) return; for (std::vector<char>::const_iterator I = Buffer.begin(), E = Buffer.end(); I != E; ++I) { if (*I == '\n') ++NumLines; } if (Buffer.back() != '\n') ++NumLines; } #ifndef NDEBUG ASTUnit::ConcurrencyState::ConcurrencyState() { Mutex = new llvm::sys::MutexImpl(/*recursive=*/true); } ASTUnit::ConcurrencyState::~ConcurrencyState() { delete static_cast<llvm::sys::MutexImpl *>(Mutex); } void ASTUnit::ConcurrencyState::start() { bool acquired = static_cast<llvm::sys::MutexImpl *>(Mutex)->tryacquire(); assert(acquired && "Concurrent access to ASTUnit!"); } void ASTUnit::ConcurrencyState::finish() { static_cast<llvm::sys::MutexImpl *>(Mutex)->release(); } #else // NDEBUG ASTUnit::ConcurrencyState::ConcurrencyState() {} ASTUnit::ConcurrencyState::~ConcurrencyState() {} void ASTUnit::ConcurrencyState::start() {} void ASTUnit::ConcurrencyState::finish() {} #endif