Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Lex/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Lex/PTHLexer.cpp |
//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PTHLexer interface. // //===----------------------------------------------------------------------===// #include "clang/Basic/TokenKinds.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemStatCache.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/OnDiskHashTable.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Lex/PTHLexer.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PTHManager.h" #include "clang/Lex/Token.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/system_error.h" using namespace clang; using namespace clang::io; #define DISK_TOKEN_SIZE (1+1+2+4+4) //===----------------------------------------------------------------------===// // PTHLexer methods. //===----------------------------------------------------------------------===// PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D, const unsigned char *ppcond, PTHManager &PM) : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0), PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) { FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID); } void PTHLexer::Lex(Token& Tok) { LexNextToken: //===--------------------------------------==// // Read the raw token data. //===--------------------------------------==// // Shadow CurPtr into an automatic variable. const unsigned char *CurPtrShadow = CurPtr; // Read in the data for the token. unsigned Word0 = ReadLE32(CurPtrShadow); uint32_t IdentifierID = ReadLE32(CurPtrShadow); uint32_t FileOffset = ReadLE32(CurPtrShadow); tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF); Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF); uint32_t Len = Word0 >> 16; CurPtr = CurPtrShadow; //===--------------------------------------==// // Construct the token itself. //===--------------------------------------==// Tok.startToken(); Tok.setKind(TKind); Tok.setFlag(TFlags); assert(!LexingRawMode); Tok.setLocation(FileStartLoc.getLocWithOffset(FileOffset)); Tok.setLength(Len); // Handle identifiers. if (Tok.isLiteral()) { Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID)); } else if (IdentifierID) { MIOpt.ReadToken(); IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1); Tok.setIdentifierInfo(II); // Change the kind of this identifier to the appropriate token kind, e.g. // turning "for" into a keyword. Tok.setKind(II->getTokenID()); if (II->isHandleIdentifierCase()) PP->HandleIdentifier(Tok); return; } //===--------------------------------------==// // Process the token. //===--------------------------------------==// if (TKind == tok::eof) { // Save the end-of-file token. EofToken = Tok; // Save 'PP' to 'PPCache' as LexEndOfFile can delete 'this'. Preprocessor *PPCache = PP; assert(!ParsingPreprocessorDirective); assert(!LexingRawMode); if (LexEndOfFile(Tok)) return; return PPCache->Lex(Tok); } if (TKind == tok::hash && Tok.isAtStartOfLine()) { LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE; assert(!LexingRawMode); PP->HandleDirective(Tok); if (PP->isCurrentLexer(this)) goto LexNextToken; return PP->Lex(Tok); } if (TKind == tok::eod) { assert(ParsingPreprocessorDirective); ParsingPreprocessorDirective = false; return; } MIOpt.ReadToken(); } bool PTHLexer::LexEndOfFile(Token &Result) { // If we hit the end of the file while parsing a preprocessor directive, // end the preprocessor directive first. The next token returned will // then be the end of file. if (ParsingPreprocessorDirective) { ParsingPreprocessorDirective = false; // Done parsing the "line". return true; // Have a token. } assert(!LexingRawMode); // If we are in a #if directive, emit an error. while (!ConditionalStack.empty()) { if (PP->getCodeCompletionFileLoc() != FileStartLoc) PP->Diag(ConditionalStack.back().IfLoc, diag::err_pp_unterminated_conditional); ConditionalStack.pop_back(); } // Finally, let the preprocessor handle this. return PP->HandleEndOfFile(Result); } // FIXME: We can just grab the last token instead of storing a copy // into EofToken. void PTHLexer::getEOF(Token& Tok) { assert(EofToken.is(tok::eof)); Tok = EofToken; } void PTHLexer::DiscardToEndOfLine() { assert(ParsingPreprocessorDirective && ParsingFilename == false && "Must be in a preprocessing directive!"); // We assume that if the preprocessor wishes to discard to the end of // the line that it also means to end the current preprocessor directive. ParsingPreprocessorDirective = false; // Skip tokens by only peeking at their token kind and the flags. // We don't need to actually reconstruct full tokens from the token buffer. // This saves some copies and it also reduces IdentifierInfo* lookup. const unsigned char* p = CurPtr; while (1) { // Read the token kind. Are we at the end of the file? tok::TokenKind x = (tok::TokenKind) (uint8_t) *p; if (x == tok::eof) break; // Read the token flags. Are we at the start of the next line? Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1]; if (y & Token::StartOfLine) break; // Skip to the next token. p += DISK_TOKEN_SIZE; } CurPtr = p; } /// SkipBlock - Used by Preprocessor to skip the current conditional block. bool PTHLexer::SkipBlock() { assert(CurPPCondPtr && "No cached PP conditional information."); assert(LastHashTokPtr && "No known '#' token."); const unsigned char* HashEntryI = 0; uint32_t Offset; uint32_t TableIdx; do { // Read the token offset from the side-table. Offset = ReadLE32(CurPPCondPtr); // Read the target table index from the side-table. TableIdx = ReadLE32(CurPPCondPtr); // Compute the actual memory address of the '#' token data for this entry. HashEntryI = TokBuf + Offset; // Optmization: "Sibling jumping". #if...#else...#endif blocks can // contain nested blocks. In the side-table we can jump over these // nested blocks instead of doing a linear search if the next "sibling" // entry is not at a location greater than LastHashTokPtr. if (HashEntryI < LastHashTokPtr && TableIdx) { // In the side-table we are still at an entry for a '#' token that // is earlier than the last one we saw. Check if the location we would // stride gets us closer. const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); assert(NextPPCondPtr >= CurPPCondPtr); // Read where we should jump to. uint32_t TmpOffset = ReadLE32(NextPPCondPtr); const unsigned char* HashEntryJ = TokBuf + TmpOffset; if (HashEntryJ <= LastHashTokPtr) { // Jump directly to the next entry in the side table. HashEntryI = HashEntryJ; Offset = TmpOffset; TableIdx = ReadLE32(NextPPCondPtr); CurPPCondPtr = NextPPCondPtr; } } } while (HashEntryI < LastHashTokPtr); assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'"); assert(TableIdx && "No jumping from #endifs."); // Update our side-table iterator. const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); assert(NextPPCondPtr >= CurPPCondPtr); CurPPCondPtr = NextPPCondPtr; // Read where we should jump to. HashEntryI = TokBuf + ReadLE32(NextPPCondPtr); uint32_t NextIdx = ReadLE32(NextPPCondPtr); // By construction NextIdx will be zero if this is a #endif. This is useful // to know to obviate lexing another token. bool isEndif = NextIdx == 0; // This case can occur when we see something like this: // // #if ... // /* a comment or nothing */ // #elif // // If we are skipping the first #if block it will be the case that CurPtr // already points 'elif'. Just return. if (CurPtr > HashEntryI) { assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE); // Did we reach a #endif? If so, go ahead and consume that token as well. if (isEndif) CurPtr += DISK_TOKEN_SIZE*2; else LastHashTokPtr = HashEntryI; return isEndif; } // Otherwise, we need to advance. Update CurPtr to point to the '#' token. CurPtr = HashEntryI; // Update the location of the last observed '#'. This is useful if we // are skipping multiple blocks. LastHashTokPtr = CurPtr; // Skip the '#' token. assert(((tok::TokenKind)*CurPtr) == tok::hash); CurPtr += DISK_TOKEN_SIZE; // Did we reach a #endif? If so, go ahead and consume that token as well. if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; } return isEndif; } SourceLocation PTHLexer::getSourceLocation() { // getSourceLocation is not on the hot path. It is used to get the location // of the next token when transitioning back to this lexer when done // handling a #included file. Just read the necessary data from the token // data buffer to construct the SourceLocation object. // NOTE: This is a virtual function; hence it is defined out-of-line. const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4); uint32_t Offset = ReadLE32(OffsetPtr); return FileStartLoc.getLocWithOffset(Offset); } //===----------------------------------------------------------------------===// // PTH file lookup: map from strings to file data. //===----------------------------------------------------------------------===// /// PTHFileLookup - This internal data structure is used by the PTHManager /// to map from FileEntry objects managed by FileManager to offsets within /// the PTH file. namespace { class PTHFileData { const uint32_t TokenOff; const uint32_t PPCondOff; public: PTHFileData(uint32_t tokenOff, uint32_t ppCondOff) : TokenOff(tokenOff), PPCondOff(ppCondOff) {} uint32_t getTokenOffset() const { return TokenOff; } uint32_t getPPCondOffset() const { return PPCondOff; } }; class PTHFileLookupCommonTrait { public: typedef std::pair<unsigned char, const char*> internal_key_type; static unsigned ComputeHash(internal_key_type x) { return llvm::HashString(x.second); } static std::pair<unsigned, unsigned> ReadKeyDataLength(const unsigned char*& d) { unsigned keyLen = (unsigned) ReadUnalignedLE16(d); unsigned dataLen = (unsigned) *(d++); return std::make_pair(keyLen, dataLen); } static internal_key_type ReadKey(const unsigned char* d, unsigned) { unsigned char k = *(d++); // Read the entry kind. return std::make_pair(k, (const char*) d); } }; class PTHFileLookupTrait : public PTHFileLookupCommonTrait { public: typedef const FileEntry* external_key_type; typedef PTHFileData data_type; static internal_key_type GetInternalKey(const FileEntry* FE) { return std::make_pair((unsigned char) 0x1, FE->getName()); } static bool EqualKey(internal_key_type a, internal_key_type b) { return a.first == b.first && strcmp(a.second, b.second) == 0; } static PTHFileData ReadData(const internal_key_type& k, const unsigned char* d, unsigned) { assert(k.first == 0x1 && "Only file lookups can match!"); uint32_t x = ::ReadUnalignedLE32(d); uint32_t y = ::ReadUnalignedLE32(d); return PTHFileData(x, y); } }; class PTHStringLookupTrait { public: typedef uint32_t data_type; typedef const std::pair<const char*, unsigned> external_key_type; typedef external_key_type internal_key_type; static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0 : false; } static unsigned ComputeHash(const internal_key_type& a) { return llvm::HashString(StringRef(a.first, a.second)); } // This hopefully will just get inlined and removed by the optimizer. static const internal_key_type& GetInternalKey(const external_key_type& x) { return x; } static std::pair<unsigned, unsigned> ReadKeyDataLength(const unsigned char*& d) { return std::make_pair((unsigned) ReadUnalignedLE16(d), sizeof(uint32_t)); } static std::pair<const char*, unsigned> ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return std::make_pair((const char*) d, n-1); } static uint32_t ReadData(const internal_key_type& k, const unsigned char* d, unsigned) { return ::ReadUnalignedLE32(d); } }; } // end anonymous namespace typedef OnDiskChainedHashTable<PTHFileLookupTrait> PTHFileLookup; typedef OnDiskChainedHashTable<PTHStringLookupTrait> PTHStringIdLookup; //===----------------------------------------------------------------------===// // PTHManager methods. //===----------------------------------------------------------------------===// PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup, const unsigned char* idDataTable, IdentifierInfo** perIDCache, void* stringIdLookup, unsigned numIds, const unsigned char* spellingBase, const char* originalSourceFile) : Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup), IdDataTable(idDataTable), StringIdLookup(stringIdLookup), NumIds(numIds), PP(0), SpellingBase(spellingBase), OriginalSourceFile(originalSourceFile) {} PTHManager::~PTHManager() { delete Buf; delete (PTHFileLookup*) FileLookup; delete (PTHStringIdLookup*) StringIdLookup; free(PerIDCache); } static void InvalidPTH(DiagnosticsEngine &Diags, const char *Msg) { Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, Msg)); } PTHManager *PTHManager::Create(const std::string &file, DiagnosticsEngine &Diags) { // Memory map the PTH file. OwningPtr<llvm::MemoryBuffer> File; if (llvm::MemoryBuffer::getFile(file, File)) { // FIXME: Add ec.message() to this diag. Diags.Report(diag::err_invalid_pth_file) << file; return 0; } // Get the buffer ranges and check if there are at least three 32-bit // words at the end of the file. const unsigned char *BufBeg = (unsigned char*)File->getBufferStart(); const unsigned char *BufEnd = (unsigned char*)File->getBufferEnd(); // Check the prologue of the file. if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 3 + 4) || memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth") - 1) != 0) { Diags.Report(diag::err_invalid_pth_file) << file; return 0; } // Read the PTH version. const unsigned char *p = BufBeg + (sizeof("cfe-pth") - 1); unsigned Version = ReadLE32(p); if (Version < PTHManager::Version) { InvalidPTH(Diags, Version < PTHManager::Version ? "PTH file uses an older PTH format that is no longer supported" : "PTH file uses a newer PTH format that cannot be read"); return 0; } // Compute the address of the index table at the end of the PTH file. const unsigned char *PrologueOffset = p; if (PrologueOffset >= BufEnd) { Diags.Report(diag::err_invalid_pth_file) << file; return 0; } // Construct the file lookup table. This will be used for mapping from // FileEntry*'s to cached tokens. const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2; const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset); if (!(FileTable > BufBeg && FileTable < BufEnd)) { Diags.Report(diag::err_invalid_pth_file) << file; return 0; // FIXME: Proper error diagnostic? } OwningPtr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg)); // Warn if the PTH file is empty. We still want to create a PTHManager // as the PTH could be used with -include-pth. if (FL->isEmpty()) InvalidPTH(Diags, "PTH file contains no cached source data"); // Get the location of the table mapping from persistent ids to the // data needed to reconstruct identifiers. const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0; const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset); if (!(IData >= BufBeg && IData < BufEnd)) { Diags.Report(diag::err_invalid_pth_file) << file; return 0; } // Get the location of the hashtable mapping between strings and // persistent IDs. const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1; const unsigned char* StringIdTable = BufBeg + ReadLE32(StringIdTableOffset); if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) { Diags.Report(diag::err_invalid_pth_file) << file; return 0; } OwningPtr<PTHStringIdLookup> SL(PTHStringIdLookup::Create(StringIdTable, BufBeg)); // Get the location of the spelling cache. const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3; const unsigned char* spellingBase = BufBeg + ReadLE32(spellingBaseOffset); if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) { Diags.Report(diag::err_invalid_pth_file) << file; return 0; } // Get the number of IdentifierInfos and pre-allocate the identifier cache. uint32_t NumIds = ReadLE32(IData); // Pre-allocate the persistent ID -> IdentifierInfo* cache. We use calloc() // so that we in the best case only zero out memory once when the OS returns // us new pages. IdentifierInfo** PerIDCache = 0; if (NumIds) { PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache)); if (!PerIDCache) { InvalidPTH(Diags, "Could not allocate memory for processing PTH file"); return 0; } } // Compute the address of the original source file. const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4; unsigned len = ReadUnalignedLE16(originalSourceBase); if (!len) originalSourceBase = 0; // Create the new PTHManager. return new PTHManager(File.take(), FL.take(), IData, PerIDCache, SL.take(), NumIds, spellingBase, (const char*) originalSourceBase); } IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) { // Look in the PTH file for the string data for the IdentifierInfo object. const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID; const unsigned char* IDData = (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry); assert(IDData < (const unsigned char*)Buf->getBufferEnd()); // Allocate the object. std::pair<IdentifierInfo,const unsigned char*> *Mem = Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >(); Mem->second = IDData; assert(IDData[0] != '\0'); IdentifierInfo *II = new ((void*) Mem) IdentifierInfo(); // Store the new IdentifierInfo in the cache. PerIDCache[PersistentID] = II; assert(II->getNameStart() && II->getNameStart()[0] != '\0'); return II; } IdentifierInfo* PTHManager::get(StringRef Name) { PTHStringIdLookup& SL = *((PTHStringIdLookup*)StringIdLookup); // Double check our assumption that the last character isn't '\0'. assert(Name.empty() || Name.back() != '\0'); PTHStringIdLookup::iterator I = SL.find(std::make_pair(Name.data(), Name.size())); if (I == SL.end()) // No identifier found? return 0; // Match found. Return the identifier! assert(*I > 0); return GetIdentifierInfo(*I-1); } PTHLexer *PTHManager::CreateLexer(FileID FID) { const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID); if (!FE) return 0; // Lookup the FileEntry object in our file lookup data structure. It will // return a variant that indicates whether or not there is an offset within // the PTH file that contains cached tokens. PTHFileLookup& PFL = *((PTHFileLookup*)FileLookup); PTHFileLookup::iterator I = PFL.find(FE); if (I == PFL.end()) // No tokens available? return 0; const PTHFileData& FileData = *I; const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart(); // Compute the offset of the token data within the buffer. const unsigned char* data = BufStart + FileData.getTokenOffset(); // Get the location of pp-conditional table. const unsigned char* ppcond = BufStart + FileData.getPPCondOffset(); uint32_t Len = ReadLE32(ppcond); if (Len == 0) ppcond = 0; assert(PP && "No preprocessor set yet!"); return new PTHLexer(*PP, FID, data, ppcond, *this); } //===----------------------------------------------------------------------===// // 'stat' caching. //===----------------------------------------------------------------------===// namespace { class PTHStatData { public: const bool hasStat; const ino_t ino; const dev_t dev; const mode_t mode; const time_t mtime; const off_t size; PTHStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s) : hasStat(true), ino(i), dev(d), mode(mo), mtime(m), size(s) {} PTHStatData() : hasStat(false), ino(0), dev(0), mode(0), mtime(0), size(0) {} }; class PTHStatLookupTrait : public PTHFileLookupCommonTrait { public: typedef const char* external_key_type; // const char* typedef PTHStatData data_type; static internal_key_type GetInternalKey(const char *path) { // The key 'kind' doesn't matter here because it is ignored in EqualKey. return std::make_pair((unsigned char) 0x0, path); } static bool EqualKey(internal_key_type a, internal_key_type b) { // When doing 'stat' lookups we don't care about the kind of 'a' and 'b', // just the paths. return strcmp(a.second, b.second) == 0; } static data_type ReadData(const internal_key_type& k, const unsigned char* d, unsigned) { if (k.first /* File or Directory */) { if (k.first == 0x1 /* File */) d += 4 * 2; // Skip the first 2 words. ino_t ino = (ino_t) ReadUnalignedLE32(d); dev_t dev = (dev_t) ReadUnalignedLE32(d); mode_t mode = (mode_t) ReadUnalignedLE16(d); time_t mtime = (time_t) ReadUnalignedLE64(d); return data_type(ino, dev, mode, mtime, (off_t) ReadUnalignedLE64(d)); } // Negative stat. Don't read anything. return data_type(); } }; class PTHStatCache : public FileSystemStatCache { typedef OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy; CacheTy Cache; public: PTHStatCache(PTHFileLookup &FL) : Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(), FL.getBase()) {} ~PTHStatCache() {} LookupResult getStat(const char *Path, struct stat &StatBuf, int *FileDescriptor) { // Do the lookup for the file's data in the PTH file. CacheTy::iterator I = Cache.find(Path); // If we don't get a hit in the PTH file just forward to 'stat'. if (I == Cache.end()) return statChained(Path, StatBuf, FileDescriptor); const PTHStatData &Data = *I; if (!Data.hasStat) return CacheMissing; StatBuf.st_ino = Data.ino; StatBuf.st_dev = Data.dev; StatBuf.st_mtime = Data.mtime; StatBuf.st_mode = Data.mode; StatBuf.st_size = Data.size; return CacheExists; } }; } // end anonymous namespace FileSystemStatCache *PTHManager::createStatCache() { return new PTHStatCache(*((PTHFileLookup*) FileLookup)); }