Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Parse/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Parse/ParseDecl.cpp |
//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Basic/OpenCL.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "RAIIObjectsForParser.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" using namespace clang; //===----------------------------------------------------------------------===// // C99 6.7: Declarations. //===----------------------------------------------------------------------===// /// ParseTypeName /// type-name: [C99 6.7.6] /// specifier-qualifier-list abstract-declarator[opt] /// /// Called type-id in C++. TypeResult Parser::ParseTypeName(SourceRange *Range, Declarator::TheContext Context, AccessSpecifier AS, Decl **OwnedType) { DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context); // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); ParseSpecifierQualifierList(DS, AS, DSC); if (OwnedType) *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0; // Parse the abstract-declarator, if present. Declarator DeclaratorInfo(DS, Context); ParseDeclarator(DeclaratorInfo); if (Range) *Range = DeclaratorInfo.getSourceRange(); if (DeclaratorInfo.isInvalidType()) return true; return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } /// isAttributeLateParsed - Return true if the attribute has arguments that /// require late parsing. static bool isAttributeLateParsed(const IdentifierInfo &II) { return llvm::StringSwitch<bool>(II.getName()) #include "clang/Parse/AttrLateParsed.inc" .Default(false); } /// ParseGNUAttributes - Parse a non-empty attributes list. /// /// [GNU] attributes: /// attribute /// attributes attribute /// /// [GNU] attribute: /// '__attribute__' '(' '(' attribute-list ')' ')' /// /// [GNU] attribute-list: /// attrib /// attribute_list ',' attrib /// /// [GNU] attrib: /// empty /// attrib-name /// attrib-name '(' identifier ')' /// attrib-name '(' identifier ',' nonempty-expr-list ')' /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' /// /// [GNU] attrib-name: /// identifier /// typespec /// typequal /// storageclass /// /// FIXME: The GCC grammar/code for this construct implies we need two /// token lookahead. Comment from gcc: "If they start with an identifier /// which is followed by a comma or close parenthesis, then the arguments /// start with that identifier; otherwise they are an expression list." /// /// GCC does not require the ',' between attribs in an attribute-list. /// /// At the moment, I am not doing 2 token lookahead. I am also unaware of /// any attributes that don't work (based on my limited testing). Most /// attributes are very simple in practice. Until we find a bug, I don't see /// a pressing need to implement the 2 token lookahead. void Parser::ParseGNUAttributes(ParsedAttributes &attrs, SourceLocation *endLoc, LateParsedAttrList *LateAttrs) { assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!"); while (Tok.is(tok::kw___attribute)) { ConsumeToken(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "attribute")) { SkipUntil(tok::r_paren, true); // skip until ) or ; return; } if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { SkipUntil(tok::r_paren, true); // skip until ) or ; return; } // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) while (Tok.is(tok::identifier) || isDeclarationSpecifier() || Tok.is(tok::comma)) { if (Tok.is(tok::comma)) { // allows for empty/non-empty attributes. ((__vector_size__(16),,,,)) ConsumeToken(); continue; } // we have an identifier or declaration specifier (const, int, etc.) IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); if (Tok.is(tok::l_paren)) { // handle "parameterized" attributes if (LateAttrs && isAttributeLateParsed(*AttrName)) { LateParsedAttribute *LA = new LateParsedAttribute(this, *AttrName, AttrNameLoc); LateAttrs->push_back(LA); // Attributes in a class are parsed at the end of the class, along // with other late-parsed declarations. if (!ClassStack.empty()) getCurrentClass().LateParsedDeclarations.push_back(LA); // consume everything up to and including the matching right parens ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false); Token Eof; Eof.startToken(); Eof.setLocation(Tok.getLocation()); LA->Toks.push_back(Eof); } else { ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc); } } else { attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), 0, 0); } } if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) SkipUntil(tok::r_paren, false); SourceLocation Loc = Tok.getLocation(); if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) { SkipUntil(tok::r_paren, false); } if (endLoc) *endLoc = Loc; } } /// Parse the arguments to a parameterized GNU attribute void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); // Availability attributes have their own grammar. if (AttrName->isStr("availability")) { ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc); return; } // Thread safety attributes fit into the FIXME case above, so we // just parse the arguments as a list of expressions if (IsThreadSafetyAttribute(AttrName->getName())) { ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc); return; } ConsumeParen(); // ignore the left paren loc for now IdentifierInfo *ParmName = 0; SourceLocation ParmLoc; bool BuiltinType = false; switch (Tok.getKind()) { case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_bool: case tok::kw_short: case tok::kw_int: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_float: case tok::kw_double: case tok::kw_void: case tok::kw_typeof: // __attribute__(( vec_type_hint(char) )) // FIXME: Don't just discard the builtin type token. ConsumeToken(); BuiltinType = true; break; case tok::identifier: ParmName = Tok.getIdentifierInfo(); ParmLoc = ConsumeToken(); break; default: break; } ExprVector ArgExprs(Actions); if (!BuiltinType && (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) { // Eat the comma. if (ParmLoc.isValid()) ConsumeToken(); // Parse the non-empty comma-separated list of expressions. while (1) { ExprResult ArgExpr(ParseAssignmentExpression()); if (ArgExpr.isInvalid()) { SkipUntil(tok::r_paren); return; } ArgExprs.push_back(ArgExpr.release()); if (Tok.isNot(tok::comma)) break; ConsumeToken(); // Eat the comma, move to the next argument } } else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) { if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<", tok::greater)) { while (Tok.is(tok::identifier)) { ConsumeToken(); if (Tok.is(tok::greater)) break; if (Tok.is(tok::comma)) { ConsumeToken(); continue; } } if (Tok.isNot(tok::greater)) Diag(Tok, diag::err_iboutletcollection_with_protocol); SkipUntil(tok::r_paren, false, true); // skip until ')' } } SourceLocation RParen = Tok.getLocation(); if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) { AttributeList *attr = Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc, ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size()); if (BuiltinType && attr->getKind() == AttributeList::AT_iboutletcollection) Diag(Tok, diag::err_iboutletcollection_builtintype); } } /// ParseMicrosoftDeclSpec - Parse an __declspec construct /// /// [MS] decl-specifier: /// __declspec ( extended-decl-modifier-seq ) /// /// [MS] extended-decl-modifier-seq: /// extended-decl-modifier[opt] /// extended-decl-modifier extended-decl-modifier-seq void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) { assert(Tok.is(tok::kw___declspec) && "Not a declspec!"); ConsumeToken(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "declspec")) { SkipUntil(tok::r_paren, true); // skip until ) or ; return; } while (Tok.getIdentifierInfo()) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); // FIXME: Remove this when we have proper __declspec(property()) support. // Just skip everything inside property(). if (AttrName->getName() == "property") { ConsumeParen(); SkipUntil(tok::r_paren); } if (Tok.is(tok::l_paren)) { ConsumeParen(); // FIXME: This doesn't parse __declspec(property(get=get_func_name)) // correctly. ExprResult ArgExpr(ParseAssignmentExpression()); if (!ArgExpr.isInvalid()) { Expr *ExprList = ArgExpr.take(); attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), &ExprList, 1, true); } if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) SkipUntil(tok::r_paren, false); } else { attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), 0, 0, true); } } if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) SkipUntil(tok::r_paren, false); return; } void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes // FIXME: Allow Sema to distinguish between these and real attributes! while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) || Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr32)) // FIXME: Support these properly! continue; attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), 0, 0, true); } } void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___pascal)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), 0, 0, true); } } void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___kernel)) { SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"), AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), 0, 0, false); } } void Parser::ParseOpenCLQualifiers(DeclSpec &DS) { SourceLocation Loc = Tok.getLocation(); switch(Tok.getKind()) { // OpenCL qualifiers: case tok::kw___private: case tok::kw_private: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("address_space"), Loc, 0); break; case tok::kw___global: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global); break; case tok::kw___local: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local); break; case tok::kw___constant: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant); break; case tok::kw___read_only: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only); break; case tok::kw___write_only: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only); break; case tok::kw___read_write: DS.getAttributes().addNewInteger( Actions.getASTContext(), PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write); break; default: break; } } /// \brief Parse a version number. /// /// version: /// simple-integer /// simple-integer ',' simple-integer /// simple-integer ',' simple-integer ',' simple-integer VersionTuple Parser::ParseVersionTuple(SourceRange &Range) { Range = Tok.getLocation(); if (!Tok.is(tok::numeric_constant)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, true, true, true); return VersionTuple(); } // Parse the major (and possibly minor and subminor) versions, which // are stored in the numeric constant. We utilize a quirk of the // lexer, which is that it handles something like 1.2.3 as a single // numeric constant, rather than two separate tokens. SmallString<512> Buffer; Buffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &Buffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. bool Invalid = false; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); if (Invalid) return VersionTuple(); // Parse the major version. unsigned AfterMajor = 0; unsigned Major = 0; while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) { Major = Major * 10 + ThisTokBegin[AfterMajor] - '0'; ++AfterMajor; } if (AfterMajor == 0) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, true, true, true); return VersionTuple(); } if (AfterMajor == ActualLength) { ConsumeToken(); // We only had a single version component. if (Major == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major); } if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, true, true, true); return VersionTuple(); } // Parse the minor version. unsigned AfterMinor = AfterMajor + 1; unsigned Minor = 0; while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) { Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0'; ++AfterMinor; } if (AfterMinor == ActualLength) { ConsumeToken(); // We had major.minor. if (Major == 0 && Minor == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major, Minor); } // If what follows is not a '.', we have a problem. if (ThisTokBegin[AfterMinor] != '.') { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, true, true, true); return VersionTuple(); } // Parse the subminor version. unsigned AfterSubminor = AfterMinor + 1; unsigned Subminor = 0; while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) { Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0'; ++AfterSubminor; } if (AfterSubminor != ActualLength) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, true, true, true); return VersionTuple(); } ConsumeToken(); return VersionTuple(Major, Minor, Subminor); } /// \brief Parse the contents of the "availability" attribute. /// /// availability-attribute: /// 'availability' '(' platform ',' version-arg-list, opt-message')' /// /// platform: /// identifier /// /// version-arg-list: /// version-arg /// version-arg ',' version-arg-list /// /// version-arg: /// 'introduced' '=' version /// 'deprecated' '=' version /// 'obsoleted' = version /// 'unavailable' /// opt-message: /// 'message' '=' <string> void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability, SourceLocation AvailabilityLoc, ParsedAttributes &attrs, SourceLocation *endLoc) { SourceLocation PlatformLoc; IdentifierInfo *Platform = 0; enum { Introduced, Deprecated, Obsoleted, Unknown }; AvailabilityChange Changes[Unknown]; ExprResult MessageExpr; // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected_lparen); return; } // Parse the platform name, if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_platform); SkipUntil(tok::r_paren); return; } Platform = Tok.getIdentifierInfo(); PlatformLoc = ConsumeToken(); // Parse the ',' following the platform name. if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren)) return; // If we haven't grabbed the pointers for the identifiers // "introduced", "deprecated", and "obsoleted", do so now. if (!Ident_introduced) { Ident_introduced = PP.getIdentifierInfo("introduced"); Ident_deprecated = PP.getIdentifierInfo("deprecated"); Ident_obsoleted = PP.getIdentifierInfo("obsoleted"); Ident_unavailable = PP.getIdentifierInfo("unavailable"); Ident_message = PP.getIdentifierInfo("message"); } // Parse the set of introductions/deprecations/removals. SourceLocation UnavailableLoc; do { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_change); SkipUntil(tok::r_paren); return; } IdentifierInfo *Keyword = Tok.getIdentifierInfo(); SourceLocation KeywordLoc = ConsumeToken(); if (Keyword == Ident_unavailable) { if (UnavailableLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(UnavailableLoc); } UnavailableLoc = KeywordLoc; if (Tok.isNot(tok::comma)) break; ConsumeToken(); continue; } if (Tok.isNot(tok::equal)) { Diag(Tok, diag::err_expected_equal_after) << Keyword; SkipUntil(tok::r_paren); return; } ConsumeToken(); if (Keyword == Ident_message) { if (!isTokenStringLiteral()) { Diag(Tok, diag::err_expected_string_literal); SkipUntil(tok::r_paren); return; } MessageExpr = ParseStringLiteralExpression(); break; } SourceRange VersionRange; VersionTuple Version = ParseVersionTuple(VersionRange); if (Version.empty()) { SkipUntil(tok::r_paren); return; } unsigned Index; if (Keyword == Ident_introduced) Index = Introduced; else if (Keyword == Ident_deprecated) Index = Deprecated; else if (Keyword == Ident_obsoleted) Index = Obsoleted; else Index = Unknown; if (Index < Unknown) { if (!Changes[Index].KeywordLoc.isInvalid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); } Changes[Index].KeywordLoc = KeywordLoc; Changes[Index].Version = Version; Changes[Index].VersionRange = VersionRange; } else { Diag(KeywordLoc, diag::err_availability_unknown_change) << Keyword << VersionRange; } if (Tok.isNot(tok::comma)) break; ConsumeToken(); } while (true); // Closing ')'. if (T.consumeClose()) return; if (endLoc) *endLoc = T.getCloseLocation(); // The 'unavailable' availability cannot be combined with any other // availability changes. Make sure that hasn't happened. if (UnavailableLoc.isValid()) { bool Complained = false; for (unsigned Index = Introduced; Index != Unknown; ++Index) { if (Changes[Index].KeywordLoc.isValid()) { if (!Complained) { Diag(UnavailableLoc, diag::warn_availability_and_unavailable) << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); Complained = true; } // Clear out the availability. Changes[Index] = AvailabilityChange(); } } } // Record this attribute attrs.addNew(&Availability, SourceRange(AvailabilityLoc, T.getCloseLocation()), 0, AvailabilityLoc, Platform, PlatformLoc, Changes[Introduced], Changes[Deprecated], Changes[Obsoleted], UnavailableLoc, MessageExpr.take(), false, false); } // Late Parsed Attributes: // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods void Parser::LateParsedDeclaration::ParseLexedAttributes() {} void Parser::LateParsedClass::ParseLexedAttributes() { Self->ParseLexedAttributes(*Class); } void Parser::LateParsedAttribute::ParseLexedAttributes() { Self->ParseLexedAttribute(*this, true, false); } /// Wrapper class which calls ParseLexedAttribute, after setting up the /// scope appropriately. void Parser::ParseLexedAttributes(ParsingClass &Class) { // Deal with templates // FIXME: Test cases to make sure this does the right thing for templates. bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); // Set or update the scope flags. bool AlreadyHasClassScope = Class.TopLevelClass; unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); // Enter the scope of nested classes if (!AlreadyHasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); { // Allow 'this' within late-parsed attributes. Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate, /*TypeQuals=*/0); for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){ Class.LateParsedDeclarations[i]->ParseLexedAttributes(); } } if (!AlreadyHasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); } /// \brief Parse all attributes in LAs, and attach them to Decl D. void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D, bool EnterScope, bool OnDefinition) { for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) { LAs[i]->addDecl(D); ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition); delete LAs[i]; } LAs.clear(); } /// \brief Finish parsing an attribute for which parsing was delayed. /// This will be called at the end of parsing a class declaration /// for each LateParsedAttribute. We consume the saved tokens and /// create an attribute with the arguments filled in. We add this /// to the Attribute list for the decl. void Parser::ParseLexedAttribute(LateParsedAttribute &LA, bool EnterScope, bool OnDefinition) { // Save the current token position. SourceLocation OrigLoc = Tok.getLocation(); // Append the current token at the end of the new token stream so that it // doesn't get lost. LA.Toks.push_back(Tok); PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false); // Consume the previously pushed token. ConsumeAnyToken(); if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) { Diag(Tok, diag::warn_attribute_on_function_definition) << LA.AttrName.getName(); } ParsedAttributes Attrs(AttrFactory); SourceLocation endLoc; if (LA.Decls.size() == 1) { Decl *D = LA.Decls[0]; // If the Decl is templatized, add template parameters to scope. bool HasTemplateScope = EnterScope && D->isTemplateDecl(); ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(Actions.CurScope, D); // If the Decl is on a function, add function parameters to the scope. bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate(); ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope); if (HasFunctionScope) Actions.ActOnReenterFunctionContext(Actions.CurScope, D); ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc); if (HasFunctionScope) { Actions.ActOnExitFunctionContext(); FnScope.Exit(); // Pop scope, and remove Decls from IdResolver } if (HasTemplateScope) { TempScope.Exit(); } } else if (LA.Decls.size() > 0) { // If there are multiple decls, then the decl cannot be within the // function scope. ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc); } else { Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName(); } for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) { Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs); } if (Tok.getLocation() != OrigLoc) { // Due to a parsing error, we either went over the cached tokens or // there are still cached tokens left, so we skip the leftover tokens. // Since this is an uncommon situation that should be avoided, use the // expensive isBeforeInTranslationUnit call. if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(), OrigLoc)) while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof)) ConsumeAnyToken(); } } /// \brief Wrapper around a case statement checking if AttrName is /// one of the thread safety attributes bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){ return llvm::StringSwitch<bool>(AttrName) .Case("guarded_by", true) .Case("guarded_var", true) .Case("pt_guarded_by", true) .Case("pt_guarded_var", true) .Case("lockable", true) .Case("scoped_lockable", true) .Case("no_thread_safety_analysis", true) .Case("acquired_after", true) .Case("acquired_before", true) .Case("exclusive_lock_function", true) .Case("shared_lock_function", true) .Case("exclusive_trylock_function", true) .Case("shared_trylock_function", true) .Case("unlock_function", true) .Case("lock_returned", true) .Case("locks_excluded", true) .Case("exclusive_locks_required", true) .Case("shared_locks_required", true) .Default(false); } /// \brief Parse the contents of thread safety attributes. These /// should always be parsed as an expression list. /// /// We need to special case the parsing due to the fact that if the first token /// of the first argument is an identifier, the main parse loop will store /// that token as a "parameter" and the rest of /// the arguments will be added to a list of "arguments". However, /// subsequent tokens in the first argument are lost. We instead parse each /// argument as an expression and add all arguments to the list of "arguments". /// In future, we will take advantage of this special case to also /// deal with some argument scoping issues here (for example, referring to a /// function parameter in the attribute on that function). void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ExprVector ArgExprs(Actions); bool ArgExprsOk = true; // now parse the list of expressions while (Tok.isNot(tok::r_paren)) { ExprResult ArgExpr(ParseAssignmentExpression()); if (ArgExpr.isInvalid()) { ArgExprsOk = false; T.consumeClose(); break; } else { ArgExprs.push_back(ArgExpr.release()); } if (Tok.isNot(tok::comma)) break; ConsumeToken(); // Eat the comma, move to the next argument } // Match the ')'. if (ArgExprsOk && !T.consumeClose()) { Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(), ArgExprs.take(), ArgExprs.size()); } if (EndLoc) *EndLoc = T.getCloseLocation(); } /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets /// of a C++11 attribute-specifier in a location where an attribute is not /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this /// situation. /// /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if /// this doesn't appear to actually be an attribute-specifier, and the caller /// should try to parse it. bool Parser::DiagnoseProhibitedCXX11Attribute() { assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)); switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) { case CAK_NotAttributeSpecifier: // No diagnostic: we're in Obj-C++11 and this is not actually an attribute. return false; case CAK_InvalidAttributeSpecifier: Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute); return false; case CAK_AttributeSpecifier: // Parse and discard the attributes. SourceLocation BeginLoc = ConsumeBracket(); ConsumeBracket(); SkipUntil(tok::r_square, /*StopAtSemi*/ false); assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied"); SourceLocation EndLoc = ConsumeBracket(); Diag(BeginLoc, diag::err_attributes_not_allowed) << SourceRange(BeginLoc, EndLoc); return true; } llvm_unreachable("All cases handled above."); } void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) { Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed) << attrs.Range; } /// ParseDeclaration - Parse a full 'declaration', which consists of /// declaration-specifiers, some number of declarators, and a semicolon. /// 'Context' should be a Declarator::TheContext value. This returns the /// location of the semicolon in DeclEnd. /// /// declaration: [C99 6.7] /// block-declaration -> /// simple-declaration /// others [FIXME] /// [C++] template-declaration /// [C++] namespace-definition /// [C++] using-directive /// [C++] using-declaration /// [C++11/C11] static_assert-declaration /// others... [FIXME] /// Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts, unsigned Context, SourceLocation &DeclEnd, ParsedAttributesWithRange &attrs) { ParenBraceBracketBalancer BalancerRAIIObj(*this); // Must temporarily exit the objective-c container scope for // parsing c none objective-c decls. ObjCDeclContextSwitch ObjCDC(*this); Decl *SingleDecl = 0; Decl *OwnedType = 0; switch (Tok.getKind()) { case tok::kw_template: case tok::kw_export: ProhibitAttributes(attrs); SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd); break; case tok::kw_inline: // Could be the start of an inline namespace. Allowed as an ext in C++03. if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) { ProhibitAttributes(attrs); SourceLocation InlineLoc = ConsumeToken(); SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc); break; } return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true); case tok::kw_namespace: ProhibitAttributes(attrs); SingleDecl = ParseNamespace(Context, DeclEnd); break; case tok::kw_using: SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(), DeclEnd, attrs, &OwnedType); break; case tok::kw_static_assert: case tok::kw__Static_assert: ProhibitAttributes(attrs); SingleDecl = ParseStaticAssertDeclaration(DeclEnd); break; default: return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true); } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. Alias declarations can also declare a type; // include that too if it is present. return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType); } /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] /// declaration-specifiers init-declarator-list[opt] ';' ///[C90/C++]init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive [TODO] /// /// for-range-declaration: [C++0x 6.5p1: stmt.ranged] /// attribute-specifier-seq[opt] type-specifier-seq declarator /// /// If RequireSemi is false, this does not check for a ';' at the end of the /// declaration. If it is true, it checks for and eats it. /// /// If FRI is non-null, we might be parsing a for-range-declaration instead /// of a simple-declaration. If we find that we are, we also parse the /// for-range-initializer, and place it here. Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts, unsigned Context, SourceLocation &DeclEnd, ParsedAttributes &attrs, bool RequireSemi, ForRangeInit *FRI) { // Parse the common declaration-specifiers piece. ParsingDeclSpec DS(*this); DS.takeAttributesFrom(attrs); ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, getDeclSpecContextFromDeclaratorContext(Context)); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { if (RequireSemi) ConsumeToken(); Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS); DS.complete(TheDecl); return Actions.ConvertDeclToDeclGroup(TheDecl); } return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI); } /// Returns true if this might be the start of a declarator, or a common typo /// for a declarator. bool Parser::MightBeDeclarator(unsigned Context) { switch (Tok.getKind()) { case tok::annot_cxxscope: case tok::annot_template_id: case tok::caret: case tok::code_completion: case tok::coloncolon: case tok::ellipsis: case tok::kw___attribute: case tok::kw_operator: case tok::l_paren: case tok::star: return true; case tok::amp: case tok::ampamp: return getLangOpts().CPlusPlus; case tok::l_square: // Might be an attribute on an unnamed bit-field. return Context == Declarator::MemberContext && getLangOpts().CPlusPlus0x && NextToken().is(tok::l_square); case tok::colon: // Might be a typo for '::' or an unnamed bit-field. return Context == Declarator::MemberContext || getLangOpts().CPlusPlus; case tok::identifier: switch (NextToken().getKind()) { case tok::code_completion: case tok::coloncolon: case tok::comma: case tok::equal: case tok::equalequal: // Might be a typo for '='. case tok::kw_alignas: case tok::kw_asm: case tok::kw___attribute: case tok::l_brace: case tok::l_paren: case tok::l_square: case tok::less: case tok::r_brace: case tok::r_paren: case tok::r_square: case tok::semi: return true; case tok::colon: // At namespace scope, 'identifier:' is probably a typo for 'identifier::' // and in block scope it's probably a label. Inside a class definition, // this is a bit-field. return Context == Declarator::MemberContext || (getLangOpts().CPlusPlus && Context == Declarator::FileContext); case tok::identifier: // Possible virt-specifier. return getLangOpts().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken()); default: return false; } default: return false; } } /// Skip until we reach something which seems like a sensible place to pick /// up parsing after a malformed declaration. This will sometimes stop sooner /// than SkipUntil(tok::r_brace) would, but will never stop later. void Parser::SkipMalformedDecl() { while (true) { switch (Tok.getKind()) { case tok::l_brace: // Skip until matching }, then stop. We've probably skipped over // a malformed class or function definition or similar. ConsumeBrace(); SkipUntil(tok::r_brace, /*StopAtSemi*/false); if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) { // This declaration isn't over yet. Keep skipping. continue; } if (Tok.is(tok::semi)) ConsumeToken(); return; case tok::l_square: ConsumeBracket(); SkipUntil(tok::r_square, /*StopAtSemi*/false); continue; case tok::l_paren: ConsumeParen(); SkipUntil(tok::r_paren, /*StopAtSemi*/false); continue; case tok::r_brace: return; case tok::semi: ConsumeToken(); return; case tok::kw_inline: // 'inline namespace' at the start of a line is almost certainly // a good place to pick back up parsing. if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace)) return; break; case tok::kw_namespace: // 'namespace' at the start of a line is almost certainly a good // place to pick back up parsing. if (Tok.isAtStartOfLine()) return; break; case tok::eof: return; default: break; } ConsumeAnyToken(); } } /// ParseDeclGroup - Having concluded that this is either a function /// definition or a group of object declarations, actually parse the /// result. Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS, unsigned Context, bool AllowFunctionDefinitions, SourceLocation *DeclEnd, ForRangeInit *FRI) { // Parse the first declarator. ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context)); ParseDeclarator(D); // Bail out if the first declarator didn't seem well-formed. if (!D.hasName() && !D.mayOmitIdentifier()) { SkipMalformedDecl(); return DeclGroupPtrTy(); } // Save late-parsed attributes for now; they need to be parsed in the // appropriate function scope after the function Decl has been constructed. LateParsedAttrList LateParsedAttrs; if (D.isFunctionDeclarator()) MaybeParseGNUAttributes(D, &LateParsedAttrs); // Check to see if we have a function *definition* which must have a body. if (AllowFunctionDefinitions && D.isFunctionDeclarator() && // Look at the next token to make sure that this isn't a function // declaration. We have to check this because __attribute__ might be the // start of a function definition in GCC-extended K&R C. !isDeclarationAfterDeclarator()) { if (isStartOfFunctionDefinition(D)) { if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { Diag(Tok, diag::err_function_declared_typedef); // Recover by treating the 'typedef' as spurious. DS.ClearStorageClassSpecs(); } Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs); return Actions.ConvertDeclToDeclGroup(TheDecl); } if (isDeclarationSpecifier()) { // If there is an invalid declaration specifier right after the function // prototype, then we must be in a missing semicolon case where this isn't // actually a body. Just fall through into the code that handles it as a // prototype, and let the top-level code handle the erroneous declspec // where it would otherwise expect a comma or semicolon. } else { Diag(Tok, diag::err_expected_fn_body); SkipUntil(tok::semi); return DeclGroupPtrTy(); } } if (ParseAsmAttributesAfterDeclarator(D)) return DeclGroupPtrTy(); // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we // must parse and analyze the for-range-initializer before the declaration is // analyzed. if (FRI && Tok.is(tok::colon)) { FRI->ColonLoc = ConsumeToken(); if (Tok.is(tok::l_brace)) FRI->RangeExpr = ParseBraceInitializer(); else FRI->RangeExpr = ParseExpression(); Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); Actions.ActOnCXXForRangeDecl(ThisDecl); Actions.FinalizeDeclaration(ThisDecl); D.complete(ThisDecl); return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1); } SmallVector<Decl *, 8> DeclsInGroup; Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D); if (LateParsedAttrs.size() > 0) ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false); D.complete(FirstDecl); if (FirstDecl) DeclsInGroup.push_back(FirstDecl); bool ExpectSemi = Context != Declarator::ForContext; // If we don't have a comma, it is either the end of the list (a ';') or an // error, bail out. while (Tok.is(tok::comma)) { SourceLocation CommaLoc = ConsumeToken(); if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) { // This comma was followed by a line-break and something which can't be // the start of a declarator. The comma was probably a typo for a // semicolon. Diag(CommaLoc, diag::err_expected_semi_declaration) << FixItHint::CreateReplacement(CommaLoc, ";"); ExpectSemi = false; break; } // Parse the next declarator. D.clear(); D.setCommaLoc(CommaLoc); // Accept attributes in an init-declarator. In the first declarator in a // declaration, these would be part of the declspec. In subsequent // declarators, they become part of the declarator itself, so that they // don't apply to declarators after *this* one. Examples: // short __attribute__((common)) var; -> declspec // short var __attribute__((common)); -> declarator // short x, __attribute__((common)) var; -> declarator MaybeParseGNUAttributes(D); ParseDeclarator(D); if (!D.isInvalidType()) { Decl *ThisDecl = ParseDeclarationAfterDeclarator(D); D.complete(ThisDecl); if (ThisDecl) DeclsInGroup.push_back(ThisDecl); } } if (DeclEnd) *DeclEnd = Tok.getLocation(); if (ExpectSemi && ExpectAndConsume(tok::semi, Context == Declarator::FileContext ? diag::err_invalid_token_after_toplevel_declarator : diag::err_expected_semi_declaration)) { // Okay, there was no semicolon and one was expected. If we see a // declaration specifier, just assume it was missing and continue parsing. // Otherwise things are very confused and we skip to recover. if (!isDeclarationSpecifier()) { SkipUntil(tok::r_brace, true, true); if (Tok.is(tok::semi)) ConsumeToken(); } } return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(), DeclsInGroup.size()); } /// Parse an optional simple-asm-expr and attributes, and attach them to a /// declarator. Returns true on an error. bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) { // If a simple-asm-expr is present, parse it. if (Tok.is(tok::kw_asm)) { SourceLocation Loc; ExprResult AsmLabel(ParseSimpleAsm(&Loc)); if (AsmLabel.isInvalid()) { SkipUntil(tok::semi, true, true); return true; } D.setAsmLabel(AsmLabel.release()); D.SetRangeEnd(Loc); } MaybeParseGNUAttributes(D); return false; } /// \brief Parse 'declaration' after parsing 'declaration-specifiers /// declarator'. This method parses the remainder of the declaration /// (including any attributes or initializer, among other things) and /// finalizes the declaration. /// /// init-declarator: [C99 6.7] /// declarator /// declarator '=' initializer /// [GNU] declarator simple-asm-expr[opt] attributes[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer /// [C++] declarator initializer[opt] /// /// [C++] initializer: /// [C++] '=' initializer-clause /// [C++] '(' expression-list ')' /// [C++0x] '=' 'default' [TODO] /// [C++0x] '=' 'delete' /// [C++0x] braced-init-list /// /// According to the standard grammar, =default and =delete are function /// definitions, but that definitely doesn't fit with the parser here. /// Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D, const ParsedTemplateInfo &TemplateInfo) { if (ParseAsmAttributesAfterDeclarator(D)) return 0; return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo); } Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D, const ParsedTemplateInfo &TemplateInfo) { // Inform the current actions module that we just parsed this declarator. Decl *ThisDecl = 0; switch (TemplateInfo.Kind) { case ParsedTemplateInfo::NonTemplate: ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); break; case ParsedTemplateInfo::Template: case ParsedTemplateInfo::ExplicitSpecialization: ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), MultiTemplateParamsArg(Actions, TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()), D); break; case ParsedTemplateInfo::ExplicitInstantiation: { DeclResult ThisRes = Actions.ActOnExplicitInstantiation(getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D); if (ThisRes.isInvalid()) { SkipUntil(tok::semi, true, true); return 0; } ThisDecl = ThisRes.get(); break; } } bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto; // Parse declarator '=' initializer. // If a '==' or '+=' is found, suggest a fixit to '='. if (isTokenEqualOrEqualTypo()) { ConsumeToken(); if (Tok.is(tok::kw_delete)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 1 /* delete */; else Diag(ConsumeToken(), diag::err_deleted_non_function); } else if (Tok.is(tok::kw_default)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 0 /* default */; else Diag(ConsumeToken(), diag::err_default_special_members); } else { if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { EnterScope(0); Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl); } if (Tok.is(tok::code_completion)) { Actions.CodeCompleteInitializer(getCurScope(), ThisDecl); cutOffParsing(); return 0; } ExprResult Init(ParseInitializer()); if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } if (Init.isInvalid()) { SkipUntil(tok::comma, true, true); Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.take(), /*DirectInit=*/false, TypeContainsAuto); } } else if (Tok.is(tok::l_paren)) { // Parse C++ direct initializer: '(' expression-list ')' BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ExprVector Exprs(Actions); CommaLocsTy CommaLocs; if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { EnterScope(0); Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl); } if (ParseExpressionList(Exprs, CommaLocs)) { SkipUntil(tok::r_paren); if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } } else { // Match the ')'. T.consumeClose(); assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() && "Unexpected number of commas!"); if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(), T.getCloseLocation(), move_arg(Exprs)); Actions.AddInitializerToDecl(ThisDecl, Initializer.take(), /*DirectInit=*/true, TypeContainsAuto); } } else if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) { // Parse C++0x braced-init-list. Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); if (D.getCXXScopeSpec().isSet()) { EnterScope(0); Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl); } ExprResult Init(ParseBraceInitializer()); if (D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } if (Init.isInvalid()) { Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.take(), /*DirectInit=*/true, TypeContainsAuto); } else { Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto); } Actions.FinalizeDeclaration(ThisDecl); return ThisDecl; } /// ParseSpecifierQualifierList /// specifier-qualifier-list: /// type-specifier specifier-qualifier-list[opt] /// type-qualifier specifier-qualifier-list[opt] /// [GNU] attributes specifier-qualifier-list[opt] /// void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS, DeclSpecContext DSC) { /// specifier-qualifier-list is a subset of declaration-specifiers. Just /// parse declaration-specifiers and complain about extra stuff. /// TODO: diagnose attribute-specifiers and alignment-specifiers. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC); // Validate declspec for type-name. unsigned Specs = DS.getParsedSpecifiers(); if (DSC == DSC_type_specifier && !DS.hasTypeSpecifier()) { Diag(Tok, diag::err_expected_type); DS.SetTypeSpecError(); } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() && !DS.hasAttributes()) { Diag(Tok, diag::err_typename_requires_specqual); if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); } // Issue diagnostic and remove storage class if present. if (Specs & DeclSpec::PQ_StorageClassSpecifier) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); else Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass); DS.ClearStorageClassSpecs(); } // Issue diagnostic and remove function specfier if present. if (Specs & DeclSpec::PQ_FunctionSpecifier) { if (DS.isInlineSpecified()) Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isVirtualSpecified()) Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isExplicitSpecified()) Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); DS.ClearFunctionSpecs(); } // Issue diagnostic and remove constexpr specfier if present. if (DS.isConstexprSpecified()) { Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr); DS.ClearConstexprSpec(); } } /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the /// specified token is valid after the identifier in a declarator which /// immediately follows the declspec. For example, these things are valid: /// /// int x [ 4]; // direct-declarator /// int x ( int y); // direct-declarator /// int(int x ) // direct-declarator /// int x ; // simple-declaration /// int x = 17; // init-declarator-list /// int x , y; // init-declarator-list /// int x __asm__ ("foo"); // init-declarator-list /// int x : 4; // struct-declarator /// int x { 5}; // C++'0x unified initializers /// /// This is not, because 'x' does not immediately follow the declspec (though /// ')' happens to be valid anyway). /// int (x) /// static bool isValidAfterIdentifierInDeclarator(const Token &T) { return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) || T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) || T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon); } /// ParseImplicitInt - This method is called when we have an non-typename /// identifier in a declspec (which normally terminates the decl spec) when /// the declspec has no type specifier. In this case, the declspec is either /// malformed or is "implicit int" (in K&R and C89). /// /// This method handles diagnosing this prettily and returns false if the /// declspec is done being processed. If it recovers and thinks there may be /// other pieces of declspec after it, it returns true. /// bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC) { assert(Tok.is(tok::identifier) && "should have identifier"); SourceLocation Loc = Tok.getLocation(); // If we see an identifier that is not a type name, we normally would // parse it as the identifer being declared. However, when a typename // is typo'd or the definition is not included, this will incorrectly // parse the typename as the identifier name and fall over misparsing // later parts of the diagnostic. // // As such, we try to do some look-ahead in cases where this would // otherwise be an "implicit-int" case to see if this is invalid. For // example: "static foo_t x = 4;" In this case, if we parsed foo_t as // an identifier with implicit int, we'd get a parse error because the // next token is obviously invalid for a type. Parse these as a case // with an invalid type specifier. assert(!DS.hasTypeSpecifier() && "Type specifier checked above"); // Since we know that this either implicit int (which is rare) or an // error, do lookahead to try to do better recovery. This never applies within // a type specifier. // FIXME: Don't bail out here in languages with no implicit int (like // C++ with no -fms-extensions). This is much more likely to be an undeclared // type or typo than a use of implicit int. if (DSC != DSC_type_specifier && isValidAfterIdentifierInDeclarator(NextToken())) { // If this token is valid for implicit int, e.g. "static x = 4", then // we just avoid eating the identifier, so it will be parsed as the // identifier in the declarator. return false; } // Otherwise, if we don't consume this token, we are going to emit an // error anyway. Try to recover from various common problems. Check // to see if this was a reference to a tag name without a tag specified. // This is a common problem in C (saying 'foo' instead of 'struct foo'). // // C++ doesn't need this, and isTagName doesn't take SS. if (SS == 0) { const char *TagName = 0, *FixitTagName = 0; tok::TokenKind TagKind = tok::unknown; switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) { default: break; case DeclSpec::TST_enum: TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break; case DeclSpec::TST_union: TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break; case DeclSpec::TST_struct: TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break; case DeclSpec::TST_class: TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break; } if (TagName) { Diag(Loc, diag::err_use_of_tag_name_without_tag) << Tok.getIdentifierInfo() << TagName << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName); // Parse this as a tag as if the missing tag were present. if (TagKind == tok::kw_enum) ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal); else ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS, /*EnteringContext*/ false, DSC_normal); return true; } } // This is almost certainly an invalid type name. Let the action emit a // diagnostic and attempt to recover. ParsedType T; if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc, getCurScope(), SS, T)) { // The action emitted a diagnostic, so we don't have to. if (T) { // The action has suggested that the type T could be used. Set that as // the type in the declaration specifiers, consume the would-be type // name token, and we're done. const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // There may be other declaration specifiers after this. return true; } // Fall through; the action had no suggestion for us. } else { // The action did not emit a diagnostic, so emit one now. SourceRange R; if (SS) R = SS->getRange(); Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R; } // Mark this as an error. DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // TODO: Could inject an invalid typedef decl in an enclosing scope to // avoid rippling error messages on subsequent uses of the same type, // could be useful if #include was forgotten. return false; } /// \brief Determine the declaration specifier context from the declarator /// context. /// /// \param Context the declarator context, which is one of the /// Declarator::TheContext enumerator values. Parser::DeclSpecContext Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) { if (Context == Declarator::MemberContext) return DSC_class; if (Context == Declarator::FileContext) return DSC_top_level; if (Context == Declarator::TrailingReturnContext) return DSC_trailing; return DSC_normal; } /// ParseAlignArgument - Parse the argument to an alignment-specifier. /// /// FIXME: Simply returns an alignof() expression if the argument is a /// type. Ideally, the type should be propagated directly into Sema. /// /// [C11] type-id /// [C11] constant-expression /// [C++0x] type-id ...[opt] /// [C++0x] assignment-expression ...[opt] ExprResult Parser::ParseAlignArgument(SourceLocation Start, SourceLocation &EllipsisLoc) { ExprResult ER; if (isTypeIdInParens()) { SourceLocation TypeLoc = Tok.getLocation(); ParsedType Ty = ParseTypeName().get(); SourceRange TypeRange(Start, Tok.getLocation()); ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true, Ty.getAsOpaquePtr(), TypeRange); } else ER = ParseConstantExpression(); if (getLangOpts().CPlusPlus0x && Tok.is(tok::ellipsis)) EllipsisLoc = ConsumeToken(); return ER; } /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the /// attribute to Attrs. /// /// alignment-specifier: /// [C11] '_Alignas' '(' type-id ')' /// [C11] '_Alignas' '(' constant-expression ')' /// [C++0x] 'alignas' '(' type-id ...[opt] ')' /// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')' void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs, SourceLocation *endLoc) { assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) && "Not an alignment-specifier!"); SourceLocation KWLoc = Tok.getLocation(); ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen)) return; SourceLocation EllipsisLoc; ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc); if (ArgExpr.isInvalid()) { SkipUntil(tok::r_paren); return; } T.consumeClose(); if (endLoc) *endLoc = T.getCloseLocation(); // FIXME: Handle pack-expansions here. if (EllipsisLoc.isValid()) { Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported); return; } ExprVector ArgExprs(Actions); ArgExprs.push_back(ArgExpr.release()); Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc, 0, T.getOpenLocation(), ArgExprs.take(), 1, false, true); } /// ParseDeclarationSpecifiers /// declaration-specifiers: [C99 6.7] /// storage-class-specifier declaration-specifiers[opt] /// type-specifier declaration-specifiers[opt] /// [C99] function-specifier declaration-specifiers[opt] /// [C11] alignment-specifier declaration-specifiers[opt] /// [GNU] attributes declaration-specifiers[opt] /// [Clang] '__module_private__' declaration-specifiers[opt] /// /// storage-class-specifier: [C99 6.7.1] /// 'typedef' /// 'extern' /// 'static' /// 'auto' /// 'register' /// [C++] 'mutable' /// [GNU] '__thread' /// function-specifier: [C99 6.7.4] /// [C99] 'inline' /// [C++] 'virtual' /// [C++] 'explicit' /// [OpenCL] '__kernel' /// 'friend': [C++ dcl.friend] /// 'constexpr': [C++0x dcl.constexpr] /// void Parser::ParseDeclarationSpecifiers(DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs) { if (DS.getSourceRange().isInvalid()) { DS.SetRangeStart(Tok.getLocation()); DS.SetRangeEnd(Tok.getLocation()); } bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level); while (1) { bool isInvalid = false; const char *PrevSpec = 0; unsigned DiagID = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { default: DoneWithDeclSpec: // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt] MaybeParseCXX0XAttributes(DS.getAttributes()); // If this is not a declaration specifier token, we're done reading decl // specifiers. First verify that DeclSpec's are consistent. DS.Finish(Diags, PP); return; case tok::code_completion: { Sema::ParserCompletionContext CCC = Sema::PCC_Namespace; if (DS.hasTypeSpecifier()) { bool AllowNonIdentifiers = (getCurScope()->getFlags() & (Scope::ControlScope | Scope::BlockScope | Scope::TemplateParamScope | Scope::FunctionPrototypeScope | Scope::AtCatchScope)) == 0; bool AllowNestedNameSpecifiers = DSContext == DSC_top_level || (DSContext == DSC_class && DS.isFriendSpecified()); Actions.CodeCompleteDeclSpec(getCurScope(), DS, AllowNonIdentifiers, AllowNestedNameSpecifiers); return cutOffParsing(); } if (getCurScope()->getFnParent() || getCurScope()->getBlockParent()) CCC = Sema::PCC_LocalDeclarationSpecifiers; else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate : Sema::PCC_Template; else if (DSContext == DSC_class) CCC = Sema::PCC_Class; else if (CurParsedObjCImpl) CCC = Sema::PCC_ObjCImplementation; Actions.CodeCompleteOrdinaryName(getCurScope(), CCC); return cutOffParsing(); } case tok::coloncolon: // ::foo::bar // C++ scope specifier. Annotate and loop, or bail out on error. if (TryAnnotateCXXScopeToken(true)) { if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (Tok.is(tok::coloncolon)) // ::new or ::delete goto DoneWithDeclSpec; continue; case tok::annot_cxxscope: { if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); // We are looking for a qualified typename. Token Next = NextToken(); if (Next.is(tok::annot_template_id) && static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue()) ->Kind == TNK_Type_template) { // We have a qualified template-id, e.g., N::A<int> // C++ [class.qual]p2: // In a lookup in which the constructor is an acceptable lookup // result and the nested-name-specifier nominates a class C: // // - if the name specified after the // nested-name-specifier, when looked up in C, is the // injected-class-name of C (Clause 9), or // // - if the name specified after the nested-name-specifier // is the same as the identifier or the // simple-template-id's template-name in the last // component of the nested-name-specifier, // // the name is instead considered to name the constructor of // class C. // // Thus, if the template-name is actually the constructor // name, then the code is ill-formed; this interpretation is // reinforced by the NAD status of core issue 635. TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); if ((DSContext == DSC_top_level || (DSContext == DSC_class && DS.isFriendSpecified())) && TemplateId->Name && Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { if (isConstructorDeclarator()) { // The user meant this to be an out-of-line constructor // definition, but template arguments are not allowed // there. Just allow this as a constructor; we'll // complain about it later. goto DoneWithDeclSpec; } // The user meant this to name a type, but it actually names // a constructor with some extraneous template // arguments. Complain, then parse it as a type as the user // intended. Diag(TemplateId->TemplateNameLoc, diag::err_out_of_line_template_id_names_constructor) << TemplateId->Name; } DS.getTypeSpecScope() = SS; ConsumeToken(); // The C++ scope. assert(Tok.is(tok::annot_template_id) && "ParseOptionalCXXScopeSpecifier not working"); AnnotateTemplateIdTokenAsType(); continue; } if (Next.is(tok::annot_typename)) { DS.getTypeSpecScope() = SS; ConsumeToken(); // The C++ scope. if (Tok.getAnnotationValue()) { ParsedType T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Tok.getAnnotationEndLoc(), PrevSpec, DiagID, T); } else DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeToken(); // The typename } if (Next.isNot(tok::identifier)) goto DoneWithDeclSpec; // If we're in a context where the identifier could be a class name, // check whether this is a constructor declaration. if ((DSContext == DSC_top_level || (DSContext == DSC_class && DS.isFriendSpecified())) && Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), &SS)) { if (isConstructorDeclarator()) goto DoneWithDeclSpec; // As noted in C++ [class.qual]p2 (cited above), when the name // of the class is qualified in a context where it could name // a constructor, its a constructor name. However, we've // looked at the declarator, and the user probably meant this // to be a type. Complain that it isn't supposed to be treated // as a type, then proceed to parse it as a type. Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor) << Next.getIdentifierInfo(); } ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS, false, false, ParsedType(), /*IsCtorOrDtorName=*/false, /*NonTrivialSourceInfo=*/true); // If the referenced identifier is not a type, then this declspec is // erroneous: We already checked about that it has no type specifier, and // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the // typename. if (TypeRep == 0) { ConsumeToken(); // Eat the scope spec so the identifier is current. if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext)) continue; goto DoneWithDeclSpec; } DS.getTypeSpecScope() = SS; ConsumeToken(); // The C++ scope. isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The typename. continue; } case tok::annot_typename: { if (Tok.getAnnotationValue()) { ParsedType T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T); } else DS.SetTypeSpecError(); if (isInvalid) break; DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeToken(); // The typename // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id' // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an // Objective-C interface. if (Tok.is(tok::less) && getLangOpts().ObjC1) ParseObjCProtocolQualifiers(DS); continue; } case tok::kw___is_signed: // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang // typically treats it as a trait. If we see __is_signed as it appears // in libstdc++, e.g., // // static const bool __is_signed; // // then treat __is_signed as an identifier rather than as a keyword. if (DS.getTypeSpecType() == TST_bool && DS.getTypeQualifiers() == DeclSpec::TQ_const && DS.getStorageClassSpec() == DeclSpec::SCS_static) { Tok.getIdentifierInfo()->RevertTokenIDToIdentifier(); Tok.setKind(tok::identifier); } // We're done with the declaration-specifiers. goto DoneWithDeclSpec; // typedef-name case tok::kw_decltype: case tok::identifier: { // In C++, check to see if this is a scope specifier like foo::bar::, if // so handle it as such. This is important for ctor parsing. if (getLangOpts().CPlusPlus) { if (TryAnnotateCXXScopeToken(true)) { if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::identifier)) continue; } // This identifier can only be a typedef name if we haven't already seen // a type-specifier. Without this check we misparse: // typedef int X; struct Y { short X; }; as 'short int'. if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; // Check for need to substitute AltiVec keyword tokens. if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid)) break; ParsedType TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope()); // If this is not a typedef name, don't parse it as part of the declspec, // it must be an implicit int or an error. if (!TypeRep) { if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext)) continue; goto DoneWithDeclSpec; } // If we're in a context where the identifier could be a class name, // check whether this is a constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DSC_class && Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) && isConstructorDeclarator()) goto DoneWithDeclSpec; isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The identifier // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id' // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an // Objective-C interface. if (Tok.is(tok::less) && getLangOpts().ObjC1) ParseObjCProtocolQualifiers(DS); // Need to support trailing type qualifiers (e.g. "id<p> const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // type-name case tok::annot_template_id: { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind != TNK_Type_template) { // This template-id does not refer to a type name, so we're // done with the type-specifiers. goto DoneWithDeclSpec; } // If we're in a context where the template-id could be a // constructor name or specialization, check whether this is a // constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DSC_class && Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) && isConstructorDeclarator()) goto DoneWithDeclSpec; // Turn the template-id annotation token into a type annotation // token, then try again to parse it as a type-specifier. AnnotateTemplateIdTokenAsType(); continue; } // GNU attributes support. case tok::kw___attribute: ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs); continue; // Microsoft declspec support. case tok::kw___declspec: ParseMicrosoftDeclSpec(DS.getAttributes()); continue; // Microsoft single token adornments. case tok::kw___forceinline: // FIXME: Add handling here! break; case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___w64: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___unaligned: ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; // Borland single token adornments. case tok::kw___pascal: ParseBorlandTypeAttributes(DS.getAttributes()); continue; // OpenCL single token adornments. case tok::kw___kernel: ParseOpenCLAttributes(DS.getAttributes()); continue; // storage-class-specifier case tok::kw_typedef: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc, PrevSpec, DiagID); break; case tok::kw_extern: if (DS.isThreadSpecified()) Diag(Tok, diag::ext_thread_before) << "extern"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc, PrevSpec, DiagID); break; case tok::kw___private_extern__: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern, Loc, PrevSpec, DiagID); break; case tok::kw_static: if (DS.isThreadSpecified()) Diag(Tok, diag::ext_thread_before) << "static"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc, PrevSpec, DiagID); break; case tok::kw_auto: if (getLangOpts().CPlusPlus0x) { if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID); if (!isInvalid) Diag(Tok, diag::ext_auto_storage_class) << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); } else isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID); } else isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID); break; case tok::kw_register: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc, PrevSpec, DiagID); break; case tok::kw_mutable: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc, PrevSpec, DiagID); break; case tok::kw___thread: isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID); break; // function-specifier case tok::kw_inline: isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID); break; case tok::kw_virtual: isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID); break; case tok::kw_explicit: isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID); break; // alignment-specifier case tok::kw__Alignas: if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_alignas); ParseAlignmentSpecifier(DS.getAttributes()); continue; // friend case tok::kw_friend: if (DSContext == DSC_class) isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID); else { PrevSpec = ""; // not actually used by the diagnostic DiagID = diag::err_friend_invalid_in_context; isInvalid = true; } break; // Modules case tok::kw___module_private__: isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID); break; // constexpr case tok::kw_constexpr: isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID); break; // type-specifier case tok::kw_short: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID); break; case tok::kw_long: if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID); else isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID); break; case tok::kw___int64: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID); break; case tok::kw_signed: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); break; case tok::kw_unsigned: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); break; case tok::kw__Complex: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec, DiagID); break; case tok::kw__Imaginary: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec, DiagID); break; case tok::kw_void: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID); break; case tok::kw_char: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID); break; case tok::kw_int: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID); break; case tok::kw___int128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID); break; case tok::kw_half: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID); break; case tok::kw_float: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID); break; case tok::kw_double: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID); break; case tok::kw_wchar_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID); break; case tok::kw_char16_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID); break; case tok::kw_char32_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID); break; case tok::kw_bool: case tok::kw__Bool: if (Tok.is(tok::kw_bool) && DS.getTypeSpecType() != DeclSpec::TST_unspecified && DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { PrevSpec = ""; // Not used by the diagnostic. DiagID = diag::err_bool_redeclaration; // For better error recovery. Tok.setKind(tok::identifier); isInvalid = true; } else { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID); } break; case tok::kw__Decimal32: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec, DiagID); break; case tok::kw__Decimal64: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec, DiagID); break; case tok::kw__Decimal128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec, DiagID); break; case tok::kw___vector: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID); break; case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID); break; case tok::kw___unknown_anytype: isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc, PrevSpec, DiagID); break; // class-specifier: case tok::kw_class: case tok::kw_struct: case tok::kw_union: { tok::TokenKind Kind = Tok.getKind(); ConsumeToken(); ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, EnteringContext, DSContext); continue; } // enum-specifier: case tok::kw_enum: ConsumeToken(); ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext); continue; // cv-qualifier: case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; // C++ typename-specifier: case tok::kw_typename: if (TryAnnotateTypeOrScopeToken()) { DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::kw_typename)) continue; break; // GNU typeof support. case tok::kw_typeof: ParseTypeofSpecifier(DS); continue; case tok::annot_decltype: ParseDecltypeSpecifier(DS); continue; case tok::kw___underlying_type: ParseUnderlyingTypeSpecifier(DS); continue; case tok::kw__Atomic: ParseAtomicSpecifier(DS); continue; // OpenCL qualifiers: case tok::kw_private: if (!getLangOpts().OpenCL) goto DoneWithDeclSpec; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS); break; case tok::less: // GCC ObjC supports types like "<SomeProtocol>" as a synonym for // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous, // but we support it. if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1) goto DoneWithDeclSpec; if (!ParseObjCProtocolQualifiers(DS)) Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id) << FixItHint::CreateInsertion(Loc, "id") << SourceRange(Loc, DS.getSourceRange().getEnd()); // Need to support trailing type qualifiers (e.g. "id<p> const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // If the specifier wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); assert(DiagID); if (DiagID == diag::ext_duplicate_declspec) Diag(Tok, DiagID) << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation()); else Diag(Tok, DiagID) << PrevSpec; } DS.SetRangeEnd(Tok.getLocation()); if (DiagID != diag::err_bool_redeclaration) ConsumeToken(); } } /// ParseStructDeclaration - Parse a struct declaration without the terminating /// semicolon. /// /// struct-declaration: /// specifier-qualifier-list struct-declarator-list /// [GNU] __extension__ struct-declaration /// [GNU] specifier-qualifier-list /// struct-declarator-list: /// struct-declarator /// struct-declarator-list ',' struct-declarator /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator /// struct-declarator: /// declarator /// [GNU] declarator attributes[opt] /// declarator[opt] ':' constant-expression /// [GNU] declarator[opt] ':' constant-expression attributes[opt] /// void Parser:: ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) { if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseStructDeclaration(DS, Fields); } // Parse the common specifier-qualifiers-list piece. ParseSpecifierQualifierList(DS); // If there are no declarators, this is a free-standing declaration // specifier. Let the actions module cope with it. if (Tok.is(tok::semi)) { Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS); return; } // Read struct-declarators until we find the semicolon. bool FirstDeclarator = true; SourceLocation CommaLoc; while (1) { ParsingDeclRAIIObject PD(*this); FieldDeclarator DeclaratorInfo(DS); DeclaratorInfo.D.setCommaLoc(CommaLoc); // Attributes are only allowed here on successive declarators. if (!FirstDeclarator) MaybeParseGNUAttributes(DeclaratorInfo.D); /// struct-declarator: declarator /// struct-declarator: declarator[opt] ':' constant-expression if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); ParseDeclarator(DeclaratorInfo.D); } if (Tok.is(tok::colon)) { ConsumeToken(); ExprResult Res(ParseConstantExpression()); if (Res.isInvalid()) SkipUntil(tok::semi, true, true); else DeclaratorInfo.BitfieldSize = Res.release(); } // If attributes exist after the declarator, parse them. MaybeParseGNUAttributes(DeclaratorInfo.D); // We're done with this declarator; invoke the callback. Decl *D = Fields.invoke(DeclaratorInfo); PD.complete(D); // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (Tok.isNot(tok::comma)) return; // Consume the comma. CommaLoc = ConsumeToken(); FirstDeclarator = false; } } /// ParseStructUnionBody /// struct-contents: /// struct-declaration-list /// [EXT] empty /// [GNU] "struct-declaration-list" without terminatoring ';' /// struct-declaration-list: /// struct-declaration /// struct-declaration-list struct-declaration /// [OBC] '@' 'defs' '(' class-name ')' /// void Parser::ParseStructUnionBody(SourceLocation RecordLoc, unsigned TagType, Decl *TagDecl) { PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc, "parsing struct/union body"); BalancedDelimiterTracker T(*this, tok::l_brace); if (T.consumeOpen()) return; ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope); Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in // C++. if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) { Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union); Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union); } SmallVector<Decl *, 32> FieldDecls; // While we still have something to read, read the declarations in the struct. while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one struct-declaration. // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { Diag(Tok, diag::ext_extra_struct_semi) << DeclSpec::getSpecifierName((DeclSpec::TST)TagType) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeToken(); continue; } // Parse all the comma separated declarators. DeclSpec DS(AttrFactory); if (!Tok.is(tok::at)) { struct CFieldCallback : FieldCallback { Parser &P; Decl *TagDecl; SmallVectorImpl<Decl *> &FieldDecls; CFieldCallback(Parser &P, Decl *TagDecl, SmallVectorImpl<Decl *> &FieldDecls) : P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {} virtual Decl *invoke(FieldDeclarator &FD) { // Install the declarator into the current TagDecl. Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl, FD.D.getDeclSpec().getSourceRange().getBegin(), FD.D, FD.BitfieldSize); FieldDecls.push_back(Field); return Field; } } Callback(*this, TagDecl, FieldDecls); ParseStructDeclaration(DS, Callback); } else { // Handle @defs ConsumeToken(); if (!Tok.isObjCAtKeyword(tok::objc_defs)) { Diag(Tok, diag::err_unexpected_at); SkipUntil(tok::semi, true); continue; } ConsumeToken(); ExpectAndConsume(tok::l_paren, diag::err_expected_lparen); if (!Tok.is(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::semi, true); continue; } SmallVector<Decl *, 16> Fields; Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(), Tok.getIdentifierInfo(), Fields); FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end()); ConsumeToken(); ExpectAndConsume(tok::r_paren, diag::err_expected_rparen); } if (Tok.is(tok::semi)) { ConsumeToken(); } else if (Tok.is(tok::r_brace)) { ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list); break; } else { ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list); // Skip to end of block or statement to avoid ext-warning on extra ';'. SkipUntil(tok::r_brace, true, true); // If we stopped at a ';', eat it. if (Tok.is(tok::semi)) ConsumeToken(); } } T.consumeClose(); ParsedAttributes attrs(AttrFactory); // If attributes exist after struct contents, parse them. MaybeParseGNUAttributes(attrs); Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls, T.getOpenLocation(), T.getCloseLocation(), attrs.getList()); StructScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getCloseLocation()); } /// ParseEnumSpecifier /// enum-specifier: [C99 6.7.2.2] /// 'enum' identifier[opt] '{' enumerator-list '}' ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' attributes[opt] /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' /// 'enum' identifier /// [GNU] 'enum' attributes[opt] identifier /// /// [C++11] enum-head '{' enumerator-list[opt] '}' /// [C++11] enum-head '{' enumerator-list ',' '}' /// /// enum-head: [C++11] /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt] /// enum-key attribute-specifier-seq[opt] nested-name-specifier /// identifier enum-base[opt] /// /// enum-key: [C++11] /// 'enum' /// 'enum' 'class' /// 'enum' 'struct' /// /// enum-base: [C++11] /// ':' type-specifier-seq /// /// [C++] elaborated-type-specifier: /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier /// void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC) { // Parse the tag portion of this. if (Tok.is(tok::code_completion)) { // Code completion for an enum name. Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum); return cutOffParsing(); } SourceLocation ScopedEnumKWLoc; bool IsScopedUsingClassTag = false; if (getLangOpts().CPlusPlus0x && (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) { Diag(Tok, diag::warn_cxx98_compat_scoped_enum); IsScopedUsingClassTag = Tok.is(tok::kw_class); ScopedEnumKWLoc = ConsumeToken(); } // C++11 [temp.explicit]p12: The usual access controls do not apply to names // used to specify explicit instantiations. We extend this to also cover // explicit specializations. Sema::SuppressAccessChecksRAII SuppressAccess(Actions, TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); // If attributes exist after tag, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); // If declspecs exist after tag, parse them. while (Tok.is(tok::kw___declspec)) ParseMicrosoftDeclSpec(attrs); // Enum definitions should not be parsed in a trailing-return-type. bool AllowDeclaration = DSC != DSC_trailing; bool AllowFixedUnderlyingType = AllowDeclaration && (getLangOpts().CPlusPlus0x || getLangOpts().MicrosoftExt || getLangOpts().ObjC2); CXXScopeSpec &SS = DS.getTypeSpecScope(); if (getLangOpts().CPlusPlus) { // "enum foo : bar;" is not a potential typo for "enum foo::bar;" // if a fixed underlying type is allowed. ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType); if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false)) return; if (SS.isSet() && Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); if (Tok.isNot(tok::l_brace)) { // Has no name and is not a definition. // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, true); return; } } } // Must have either 'enum name' or 'enum {...}'. if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) && !(AllowFixedUnderlyingType && Tok.is(tok::colon))) { Diag(Tok, diag::err_expected_ident_lbrace); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, true); return; } // If an identifier is present, consume and remember it. IdentifierInfo *Name = 0; SourceLocation NameLoc; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); } if (!Name && ScopedEnumKWLoc.isValid()) { // C++0x 7.2p2: The optional identifier shall not be omitted in the // declaration of a scoped enumeration. Diag(Tok, diag::err_scoped_enum_missing_identifier); ScopedEnumKWLoc = SourceLocation(); IsScopedUsingClassTag = false; } // Stop suppressing access control now we've parsed the enum name. SuppressAccess.done(); TypeResult BaseType; // Parse the fixed underlying type. if (AllowFixedUnderlyingType && Tok.is(tok::colon)) { bool PossibleBitfield = false; if (getCurScope()->getFlags() & Scope::ClassScope) { // If we're in class scope, this can either be an enum declaration with // an underlying type, or a declaration of a bitfield member. We try to // use a simple disambiguation scheme first to catch the common cases // (integer literal, sizeof); if it's still ambiguous, we then consider // anything that's a simple-type-specifier followed by '(' as an // expression. This suffices because function types are not valid // underlying types anyway. TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind()); // If the next token starts an expression, we know we're parsing a // bit-field. This is the common case. if (TPR == TPResult::True()) PossibleBitfield = true; // If the next token starts a type-specifier-seq, it may be either a // a fixed underlying type or the start of a function-style cast in C++; // lookahead one more token to see if it's obvious that we have a // fixed underlying type. else if (TPR == TPResult::False() && GetLookAheadToken(2).getKind() == tok::semi) { // Consume the ':'. ConsumeToken(); } else { // We have the start of a type-specifier-seq, so we have to perform // tentative parsing to determine whether we have an expression or a // type. TentativeParsingAction TPA(*this); // Consume the ':'. ConsumeToken(); // If we see a type specifier followed by an open-brace, we have an // ambiguity between an underlying type and a C++11 braced // function-style cast. Resolve this by always treating it as an // underlying type. // FIXME: The standard is not entirely clear on how to disambiguate in // this case. if ((getLangOpts().CPlusPlus && isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) || (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) { // We'll parse this as a bitfield later. PossibleBitfield = true; TPA.Revert(); } else { // We have a type-specifier-seq. TPA.Commit(); } } } else { // Consume the ':'. ConsumeToken(); } if (!PossibleBitfield) { SourceRange Range; BaseType = ParseTypeName(&Range); if (!getLangOpts().CPlusPlus0x && !getLangOpts().ObjC2) Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type) << Range; if (getLangOpts().CPlusPlus0x) Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type); } } // There are four options here. If we have 'friend enum foo;' then this is a // friend declaration, and cannot have an accompanying definition. If we have // 'enum foo;', then this is a forward declaration. If we have // 'enum foo {...' then this is a definition. Otherwise we have something // like 'enum foo xyz', a reference. // // This is needed to handle stuff like this right (C99 6.7.2.3p11): // enum foo {..}; void bar() { enum foo; } <- new foo in bar. // enum foo {..}; void bar() { enum foo x; } <- use of old foo. // Sema::TagUseKind TUK; if (DS.isFriendSpecified()) TUK = Sema::TUK_Friend; else if (!AllowDeclaration) TUK = Sema::TUK_Reference; else if (Tok.is(tok::l_brace)) TUK = Sema::TUK_Definition; else if (Tok.is(tok::semi) && DSC != DSC_type_specifier) TUK = Sema::TUK_Declaration; else TUK = Sema::TUK_Reference; MultiTemplateParamsArg TParams; if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && TUK != Sema::TUK_Reference) { if (!getLangOpts().CPlusPlus0x || !SS.isSet()) { // Skip the rest of this declarator, up until the comma or semicolon. Diag(Tok, diag::err_enum_template); SkipUntil(tok::comma, true); return; } if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // Enumerations can't be explicitly instantiated. DS.SetTypeSpecError(); Diag(StartLoc, diag::err_explicit_instantiation_enum); return; } assert(TemplateInfo.TemplateParams && "no template parameters"); TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()); } if (!Name && TUK != Sema::TUK_Definition) { Diag(Tok, diag::err_enumerator_unnamed_no_def); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, true); return; } bool Owned = false; bool IsDependent = false; const char *PrevSpec = 0; unsigned DiagID; Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc, attrs.getList(), AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent, ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType); if (IsDependent) { // This enum has a dependent nested-name-specifier. Handle it as a // dependent tag. if (!Name) { DS.SetTypeSpecError(); Diag(Tok, diag::err_expected_type_name_after_typename); return; } TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc); if (Type.isInvalid()) { DS.SetTypeSpecError(); return; } if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, Type.get())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (!TagDecl) { // The action failed to produce an enumeration tag. If this is a // definition, consume the entire definition. if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { ConsumeBrace(); SkipUntil(tok::r_brace); } DS.SetTypeSpecError(); return; } if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { if (TUK == Sema::TUK_Friend) { Diag(Tok, diag::err_friend_decl_defines_type) << SourceRange(DS.getFriendSpecLoc()); ConsumeBrace(); SkipUntil(tok::r_brace); } else { ParseEnumBody(StartLoc, TagDecl); } } if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned)) Diag(StartLoc, DiagID) << PrevSpec; } /// ParseEnumBody - Parse a {} enclosed enumerator-list. /// enumerator-list: /// enumerator /// enumerator-list ',' enumerator /// enumerator: /// enumeration-constant /// enumeration-constant '=' constant-expression /// enumeration-constant: /// identifier /// void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) { // Enter the scope of the enum body and start the definition. ParseScope EnumScope(this, Scope::DeclScope); Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); // C does not allow an empty enumerator-list, C++ does [dcl.enum]. if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) Diag(Tok, diag::error_empty_enum); SmallVector<Decl *, 32> EnumConstantDecls; Decl *LastEnumConstDecl = 0; // Parse the enumerator-list. while (Tok.is(tok::identifier)) { IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); // If attributes exist after the enumerator, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); SourceLocation EqualLoc; ExprResult AssignedVal; ParsingDeclRAIIObject PD(*this); if (Tok.is(tok::equal)) { EqualLoc = ConsumeToken(); AssignedVal = ParseConstantExpression(); if (AssignedVal.isInvalid()) SkipUntil(tok::comma, tok::r_brace, true, true); } // Install the enumerator constant into EnumDecl. Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs.getList(), EqualLoc, AssignedVal.release()); PD.complete(EnumConstDecl); EnumConstantDecls.push_back(EnumConstDecl); LastEnumConstDecl = EnumConstDecl; if (Tok.is(tok::identifier)) { // We're missing a comma between enumerators. SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation); Diag(Loc, diag::err_enumerator_list_missing_comma) << FixItHint::CreateInsertion(Loc, ", "); continue; } if (Tok.isNot(tok::comma)) break; SourceLocation CommaLoc = ConsumeToken(); if (Tok.isNot(tok::identifier)) { if (!getLangOpts().C99 && !getLangOpts().CPlusPlus0x) Diag(CommaLoc, diag::ext_enumerator_list_comma) << getLangOpts().CPlusPlus << FixItHint::CreateRemoval(CommaLoc); else if (getLangOpts().CPlusPlus0x) Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma) << FixItHint::CreateRemoval(CommaLoc); } } // Eat the }. T.consumeClose(); // If attributes exist after the identifier list, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(), EnumDecl, EnumConstantDecls.data(), EnumConstantDecls.size(), getCurScope(), attrs.getList()); EnumScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getCloseLocation()); } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a type-qualifier-list. bool Parser::isTypeQualifier() const { switch (Tok.getKind()) { default: return false; // type-qualifier only in OpenCL case tok::kw_private: return getLangOpts().OpenCL; // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: return true; } } /// isKnownToBeTypeSpecifier - Return true if we know that the specified token /// is definitely a type-specifier. Return false if it isn't part of a type /// specifier or if we're not sure. bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const { switch (Tok.getKind()) { default: return false; // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // typedef-name case tok::annot_typename: return true; } } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a specifier-qualifier-list. bool Parser::isTypeSpecifierQualifier() { switch (Tok.getKind()) { default: return false; case tok::identifier: // foo::bar if (TryAltiVecVectorToken()) return true; // Fall through. case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (Tok.is(tok::identifier)) return false; return isTypeSpecifierQualifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; if (TryAnnotateTypeOrScopeToken()) return true; return isTypeSpecifierQualifier(); // GNU attributes support. case tok::kw___attribute: // GNU typeof support. case tok::kw_typeof: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // typedef-name case tok::annot_typename: return true; // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. case tok::less: return getLangOpts().ObjC1; case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: return true; case tok::kw_private: return getLangOpts().OpenCL; // C11 _Atomic() case tok::kw__Atomic: return true; } } /// isDeclarationSpecifier() - Return true if the current token is part of a /// declaration specifier. /// /// \param DisambiguatingWithExpression True to indicate that the purpose of /// this check is to disambiguate between an expression and a declaration. bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) { switch (Tok.getKind()) { default: return false; case tok::kw_private: return getLangOpts().OpenCL; case tok::identifier: // foo::bar // Unfortunate hack to support "Class.factoryMethod" notation. if (getLangOpts().ObjC1 && NextToken().is(tok::period)) return false; if (TryAltiVecVectorToken()) return true; // Fall through. case tok::kw_decltype: // decltype(T())::type case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (Tok.is(tok::identifier)) return false; // If we're in Objective-C and we have an Objective-C class type followed // by an identifier and then either ':' or ']', in a place where an // expression is permitted, then this is probably a class message send // missing the initial '['. In this case, we won't consider this to be // the start of a declaration. if (DisambiguatingWithExpression && isStartOfObjCClassMessageMissingOpenBracket()) return false; return isDeclarationSpecifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; return isDeclarationSpecifier(); // storage-class-specifier case tok::kw_typedef: case tok::kw_extern: case tok::kw___private_extern__: case tok::kw_static: case tok::kw_auto: case tok::kw_register: case tok::kw___thread: // Modules case tok::kw___module_private__: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // function-specifier case tok::kw_inline: case tok::kw_virtual: case tok::kw_explicit: // static_assert-declaration case tok::kw__Static_assert: // GNU typeof support. case tok::kw_typeof: // GNU attributes. case tok::kw___attribute: return true; // C++0x decltype. case tok::annot_decltype: return true; // C11 _Atomic() case tok::kw__Atomic: return true; // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. case tok::less: return getLangOpts().ObjC1; // typedef-name case tok::annot_typename: return !DisambiguatingWithExpression || !isStartOfObjCClassMessageMissingOpenBracket(); case tok::kw___declspec: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___forceinline: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: return true; } } bool Parser::isConstructorDeclarator() { TentativeParsingAction TPA(*this); // Parse the C++ scope specifier. CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/true)) { TPA.Revert(); return false; } // Parse the constructor name. if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) { // We already know that we have a constructor name; just consume // the token. ConsumeToken(); } else { TPA.Revert(); return false; } // Current class name must be followed by a left parenthesis. if (Tok.isNot(tok::l_paren)) { TPA.Revert(); return false; } ConsumeParen(); // A right parenthesis, or ellipsis followed by a right parenthesis signals // that we have a constructor. if (Tok.is(tok::r_paren) || (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) { TPA.Revert(); return true; } // If we need to, enter the specified scope. DeclaratorScopeObj DeclScopeObj(*this, SS); if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) DeclScopeObj.EnterDeclaratorScope(); // Optionally skip Microsoft attributes. ParsedAttributes Attrs(AttrFactory); MaybeParseMicrosoftAttributes(Attrs); // Check whether the next token(s) are part of a declaration // specifier, in which case we have the start of a parameter and, // therefore, we know that this is a constructor. bool IsConstructor = false; if (isDeclarationSpecifier()) IsConstructor = true; else if (Tok.is(tok::identifier) || (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) { // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type. // This might be a parenthesized member name, but is more likely to // be a constructor declaration with an invalid argument type. Keep // looking. if (Tok.is(tok::annot_cxxscope)) ConsumeToken(); ConsumeToken(); // If this is not a constructor, we must be parsing a declarator, // which must have one of the following syntactic forms (see the // grammar extract at the start of ParseDirectDeclarator): switch (Tok.getKind()) { case tok::l_paren: // C(X ( int)); case tok::l_square: // C(X [ 5]); // C(X [ [attribute]]); case tok::coloncolon: // C(X :: Y); // C(X :: *p); case tok::r_paren: // C(X ) // Assume this isn't a constructor, rather than assuming it's a // constructor with an unnamed parameter of an ill-formed type. break; default: IsConstructor = true; break; } } TPA.Revert(); return IsConstructor; } /// ParseTypeQualifierListOpt /// type-qualifier-list: [C99 6.7.5] /// type-qualifier /// [vendor] attributes /// [ only if VendorAttributesAllowed=true ] /// type-qualifier-list type-qualifier /// [vendor] type-qualifier-list attributes /// [ only if VendorAttributesAllowed=true ] /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq /// [ only if CXX0XAttributesAllowed=true ] /// Note: vendor can be GNU, MS, etc. /// void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool VendorAttributesAllowed, bool CXX11AttributesAllowed) { if (getLangOpts().CPlusPlus0x && CXX11AttributesAllowed && isCXX11AttributeSpecifier()) { ParsedAttributesWithRange attrs(AttrFactory); ParseCXX11Attributes(attrs); DS.takeAttributesFrom(attrs); } SourceLocation EndLoc; while (1) { bool isInvalid = false; const char *PrevSpec = 0; unsigned DiagID = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { case tok::code_completion: Actions.CodeCompleteTypeQualifiers(DS); return cutOffParsing(); case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL qualifiers: case tok::kw_private: if (!getLangOpts().OpenCL) goto DoneWithTypeQuals; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS); break; case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___unaligned: if (VendorAttributesAllowed) { ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; case tok::kw___pascal: if (VendorAttributesAllowed) { ParseBorlandTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; case tok::kw___attribute: if (VendorAttributesAllowed) { ParseGNUAttributes(DS.getAttributes()); continue; // do *not* consume the next token! } // otherwise, FALL THROUGH! default: DoneWithTypeQuals: // If this is not a type-qualifier token, we're done reading type // qualifiers. First verify that DeclSpec's are consistent. DS.Finish(Diags, PP); if (EndLoc.isValid()) DS.SetRangeEnd(EndLoc); return; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); Diag(Tok, DiagID) << PrevSpec; } EndLoc = ConsumeToken(); } } /// ParseDeclarator - Parse and verify a newly-initialized declarator. /// void Parser::ParseDeclarator(Declarator &D) { /// This implements the 'declarator' production in the C grammar, then checks /// for well-formedness and issues diagnostics. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); } static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) { if (Kind == tok::star || Kind == tok::caret) return true; // We parse rvalue refs in C++03, because otherwise the errors are scary. if (!Lang.CPlusPlus) return false; return Kind == tok::amp || Kind == tok::ampamp; } /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator /// is parsed by the function passed to it. Pass null, and the direct-declarator /// isn't parsed at all, making this function effectively parse the C++ /// ptr-operator production. /// /// If the grammar of this construct is extended, matching changes must also be /// made to TryParseDeclarator and MightBeDeclarator, and possibly to /// isConstructorDeclarator. /// /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl] /// [C] pointer[opt] direct-declarator /// [C++] direct-declarator /// [C++] ptr-operator declarator /// /// pointer: [C99 6.7.5] /// '*' type-qualifier-list[opt] /// '*' type-qualifier-list[opt] pointer /// /// ptr-operator: /// '*' cv-qualifier-seq[opt] /// '&' /// [C++0x] '&&' /// [GNU] '&' restrict[opt] attributes[opt] /// [GNU?] '&&' restrict[opt] attributes[opt] /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] void Parser::ParseDeclaratorInternal(Declarator &D, DirectDeclParseFunction DirectDeclParser) { if (Diags.hasAllExtensionsSilenced()) D.setExtension(); // C++ member pointers start with a '::' or a nested-name. // Member pointers get special handling, since there's no place for the // scope spec in the generic path below. if (getLangOpts().CPlusPlus && (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) || Tok.is(tok::annot_cxxscope))) { bool EnteringContext = D.getContext() == Declarator::FileContext || D.getContext() == Declarator::MemberContext; CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext); if (SS.isNotEmpty()) { if (Tok.isNot(tok::star)) { // The scope spec really belongs to the direct-declarator. D.getCXXScopeSpec() = SS; if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } SourceLocation Loc = ConsumeToken(); D.SetRangeEnd(Loc); DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // Recurse to parse whatever is left. ParseDeclaratorInternal(D, DirectDeclParser); // Sema will have to catch (syntactically invalid) pointers into global // scope. It has to catch pointers into namespace scope anyway. D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(), Loc), DS.getAttributes(), /* Don't replace range end. */SourceLocation()); return; } } tok::TokenKind Kind = Tok.getKind(); // Not a pointer, C++ reference, or block. if (!isPtrOperatorToken(Kind, getLangOpts())) { if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference, // '&&' -> rvalue reference SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&. D.SetRangeEnd(Loc); if (Kind == tok::star || Kind == tok::caret) { // Is a pointer. DeclSpec DS(AttrFactory); // FIXME: GNU attributes are not allowed here in a new-type-id. ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (Kind == tok::star) // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(), DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc()), DS.getAttributes(), SourceLocation()); else // Remember that we parsed a Block type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc), DS.getAttributes(), SourceLocation()); } else { // Is a reference DeclSpec DS(AttrFactory); // Complain about rvalue references in C++03, but then go on and build // the declarator. if (Kind == tok::ampamp) Diag(Loc, getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_rvalue_reference : diag::ext_rvalue_reference); // GNU-style and C++11 attributes are allowed here, as is restrict. ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // C++ 8.3.2p1: cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef or of a // template type argument, in which case the cv-qualifiers are ignored. if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(DS.getConstSpecLoc(), diag::err_invalid_reference_qualifier_application) << "const"; if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) Diag(DS.getVolatileSpecLoc(), diag::err_invalid_reference_qualifier_application) << "volatile"; } // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (D.getNumTypeObjects() > 0) { // C++ [dcl.ref]p4: There shall be no references to references. DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); if (InnerChunk.Kind == DeclaratorChunk::Reference) { if (const IdentifierInfo *II = D.getIdentifier()) Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << II; else Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << "type name"; // Once we've complained about the reference-to-reference, we // can go ahead and build the (technically ill-formed) // declarator: reference collapsing will take care of it. } } // Remember that we parsed a reference type. It doesn't have type-quals. D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, Kind == tok::amp), DS.getAttributes(), SourceLocation()); } } static void diagnoseMisplacedEllipsis(Parser &P, Declarator &D, SourceLocation EllipsisLoc) { if (EllipsisLoc.isValid()) { FixItHint Insertion; if (!D.getEllipsisLoc().isValid()) { Insertion = FixItHint::CreateInsertion(D.getIdentifierLoc(), "..."); D.setEllipsisLoc(EllipsisLoc); } P.Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration) << FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !D.hasName(); } } /// ParseDirectDeclarator /// direct-declarator: [C99 6.7.5] /// [C99] identifier /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// [C++] direct-declarator '(' parameter-declaration-clause ')' /// cv-qualifier-seq[opt] exception-specification[opt] /// [C++11] direct-declarator '(' parameter-declaration-clause ')' /// attribute-specifier-seq[opt] cv-qualifier-seq[opt] /// ref-qualifier[opt] exception-specification[opt] /// [C++] declarator-id /// [C++11] declarator-id attribute-specifier-seq[opt] /// /// declarator-id: [C++ 8] /// '...'[opt] id-expression /// '::'[opt] nested-name-specifier[opt] type-name /// /// id-expression: [C++ 5.1] /// unqualified-id /// qualified-id /// /// unqualified-id: [C++ 5.1] /// identifier /// operator-function-id /// conversion-function-id /// '~' class-name /// template-id /// /// Note, any additional constructs added here may need corresponding changes /// in isConstructorDeclarator. void Parser::ParseDirectDeclarator(Declarator &D) { DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) { // ParseDeclaratorInternal might already have parsed the scope. if (D.getCXXScopeSpec().isEmpty()) { bool EnteringContext = D.getContext() == Declarator::FileContext || D.getContext() == Declarator::MemberContext; ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), EnteringContext); } if (D.getCXXScopeSpec().isValid()) { if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } // C++0x [dcl.fct]p14: // There is a syntactic ambiguity when an ellipsis occurs at the end // of a parameter-declaration-clause without a preceding comma. In // this case, the ellipsis is parsed as part of the // abstract-declarator if the type of the parameter names a template // parameter pack that has not been expanded; otherwise, it is parsed // as part of the parameter-declaration-clause. if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() && !((D.getContext() == Declarator::PrototypeContext || D.getContext() == Declarator::BlockLiteralContext) && NextToken().is(tok::r_paren) && !Actions.containsUnexpandedParameterPacks(D))) { SourceLocation EllipsisLoc = ConsumeToken(); if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) { // The ellipsis was put in the wrong place. Recover, and explain to // the user what they should have done. ParseDeclarator(D); diagnoseMisplacedEllipsis(*this, D, EllipsisLoc); return; } else D.setEllipsisLoc(EllipsisLoc); // The ellipsis can't be followed by a parenthesized declarator. We // check for that in ParseParenDeclarator, after we have disambiguated // the l_paren token. } if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) || Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) { // We found something that indicates the start of an unqualified-id. // Parse that unqualified-id. bool AllowConstructorName; if (D.getDeclSpec().hasTypeSpecifier()) AllowConstructorName = false; else if (D.getCXXScopeSpec().isSet()) AllowConstructorName = (D.getContext() == Declarator::FileContext || (D.getContext() == Declarator::MemberContext && D.getDeclSpec().isFriendSpecified())); else AllowConstructorName = (D.getContext() == Declarator::MemberContext); SourceLocation TemplateKWLoc; if (ParseUnqualifiedId(D.getCXXScopeSpec(), /*EnteringContext=*/true, /*AllowDestructorName=*/true, AllowConstructorName, ParsedType(), TemplateKWLoc, D.getName()) || // Once we're past the identifier, if the scope was bad, mark the // whole declarator bad. D.getCXXScopeSpec().isInvalid()) { D.SetIdentifier(0, Tok.getLocation()); D.setInvalidType(true); } else { // Parsed the unqualified-id; update range information and move along. if (D.getSourceRange().getBegin().isInvalid()) D.SetRangeBegin(D.getName().getSourceRange().getBegin()); D.SetRangeEnd(D.getName().getSourceRange().getEnd()); } goto PastIdentifier; } } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { assert(!getLangOpts().CPlusPlus && "There's a C++-specific check for tok::identifier above"); assert(Tok.getIdentifierInfo() && "Not an identifier?"); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } if (Tok.is(tok::l_paren)) { // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' // Example: 'char (*X)' or 'int (*XX)(void)' ParseParenDeclarator(D); // If the declarator was parenthesized, we entered the declarator // scope when parsing the parenthesized declarator, then exited // the scope already. Re-enter the scope, if we need to. if (D.getCXXScopeSpec().isSet()) { // If there was an error parsing parenthesized declarator, declarator // scope may have been entered before. Don't do it again. if (!D.isInvalidType() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } } else if (D.mayOmitIdentifier()) { // This could be something simple like "int" (in which case the declarator // portion is empty), if an abstract-declarator is allowed. D.SetIdentifier(0, Tok.getLocation()); } else { if (D.getContext() == Declarator::MemberContext) Diag(Tok, diag::err_expected_member_name_or_semi) << D.getDeclSpec().getSourceRange(); else if (getLangOpts().CPlusPlus) Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; else Diag(Tok, diag::err_expected_ident_lparen); D.SetIdentifier(0, Tok.getLocation()); D.setInvalidType(true); } PastIdentifier: assert(D.isPastIdentifier() && "Haven't past the location of the identifier yet?"); // Don't parse attributes unless we have parsed an unparenthesized name. if (D.hasName() && !D.getNumTypeObjects()) MaybeParseCXX0XAttributes(D); while (1) { if (Tok.is(tok::l_paren)) { // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope); // The paren may be part of a C++ direct initializer, eg. "int x(1);". // In such a case, check if we actually have a function declarator; if it // is not, the declarator has been fully parsed. if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { // When not in file scope, warn for ambiguous function declarators, just // in case the author intended it as a variable definition. bool warnIfAmbiguous = D.getContext() != Declarator::FileContext; if (!isCXXFunctionDeclarator(warnIfAmbiguous)) break; } ParsedAttributes attrs(AttrFactory); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ParseFunctionDeclarator(D, attrs, T); PrototypeScope.Exit(); } else if (Tok.is(tok::l_square)) { ParseBracketDeclarator(D); } else { break; } } } /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is /// only called before the identifier, so these are most likely just grouping /// parens for precedence. If we find that these are actually function /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. /// /// direct-declarator: /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// void Parser::ParseParenDeclarator(Declarator &D) { BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); assert(!D.isPastIdentifier() && "Should be called before passing identifier"); // Eat any attributes before we look at whether this is a grouping or function // declarator paren. If this is a grouping paren, the attribute applies to // the type being built up, for example: // int (__attribute__(()) *x)(long y) // If this ends up not being a grouping paren, the attribute applies to the // first argument, for example: // int (__attribute__(()) int x) // In either case, we need to eat any attributes to be able to determine what // sort of paren this is. // ParsedAttributes attrs(AttrFactory); bool RequiresArg = false; if (Tok.is(tok::kw___attribute)) { ParseGNUAttributes(attrs); // We require that the argument list (if this is a non-grouping paren) be // present even if the attribute list was empty. RequiresArg = true; } // Eat any Microsoft extensions. if (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) || Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) { ParseMicrosoftTypeAttributes(attrs); } // Eat any Borland extensions. if (Tok.is(tok::kw___pascal)) ParseBorlandTypeAttributes(attrs); // If we haven't past the identifier yet (or where the identifier would be // stored, if this is an abstract declarator), then this is probably just // grouping parens. However, if this could be an abstract-declarator, then // this could also be the start of function arguments (consider 'void()'). bool isGrouping; if (!D.mayOmitIdentifier()) { // If this can't be an abstract-declarator, this *must* be a grouping // paren, because we haven't seen the identifier yet. isGrouping = true; } else if (Tok.is(tok::r_paren) || // 'int()' is a function. (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren)) || // C++ int(...) isDeclarationSpecifier() || // 'int(int)' is a function. isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function. // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is // considered to be a type, not a K&R identifier-list. isGrouping = false; } else { // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. isGrouping = true; } // If this is a grouping paren, handle: // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' if (isGrouping) { SourceLocation EllipsisLoc = D.getEllipsisLoc(); D.setEllipsisLoc(SourceLocation()); bool hadGroupingParens = D.hasGroupingParens(); D.setGroupingParens(true); ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Match the ')'. T.consumeClose(); D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); D.setGroupingParens(hadGroupingParens); // An ellipsis cannot be placed outside parentheses. if (EllipsisLoc.isValid()) diagnoseMisplacedEllipsis(*this, D, EllipsisLoc); return; } // Okay, if this wasn't a grouping paren, it must be the start of a function // argument list. Recognize that this declarator will never have an // identifier (and remember where it would have been), then call into // ParseFunctionDeclarator to handle of argument list. D.SetIdentifier(0, Tok.getLocation()); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope); ParseFunctionDeclarator(D, attrs, T, RequiresArg); PrototypeScope.Exit(); } /// ParseFunctionDeclarator - We are after the identifier and have parsed the /// declarator D up to a paren, which indicates that we are parsing function /// arguments. /// /// If FirstArgAttrs is non-null, then the caller parsed those arguments /// immediately after the open paren - they should be considered to be the /// first argument of a parameter. /// /// If RequiresArg is true, then the first argument of the function is required /// to be present and required to not be an identifier list. /// /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt], /// (C++11) ref-qualifier[opt], exception-specification[opt], /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt]. /// /// [C++11] exception-specification: /// dynamic-exception-specification /// noexcept-specification /// void Parser::ParseFunctionDeclarator(Declarator &D, ParsedAttributes &FirstArgAttrs, BalancedDelimiterTracker &Tracker, bool RequiresArg) { assert(getCurScope()->isFunctionPrototypeScope() && "Should call from a Function scope"); // lparen is already consumed! assert(D.isPastIdentifier() && "Should not call before identifier!"); // This should be true when the function has typed arguments. // Otherwise, it is treated as a K&R-style function. bool HasProto = false; // Build up an array of information about the parsed arguments. SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; // Remember where we see an ellipsis, if any. SourceLocation EllipsisLoc; DeclSpec DS(AttrFactory); bool RefQualifierIsLValueRef = true; SourceLocation RefQualifierLoc; SourceLocation ConstQualifierLoc; SourceLocation VolatileQualifierLoc; ExceptionSpecificationType ESpecType = EST_None; SourceRange ESpecRange; SmallVector<ParsedType, 2> DynamicExceptions; SmallVector<SourceRange, 2> DynamicExceptionRanges; ExprResult NoexceptExpr; ParsedAttributes FnAttrs(AttrFactory); ParsedType TrailingReturnType; Actions.ActOnStartFunctionDeclarator(); SourceLocation EndLoc; if (isFunctionDeclaratorIdentifierList()) { if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); ParseFunctionDeclaratorIdentifierList(D, ParamInfo); Tracker.consumeClose(); EndLoc = Tracker.getCloseLocation(); } else { if (Tok.isNot(tok::r_paren)) ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc); else if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); HasProto = ParamInfo.size() || getLangOpts().CPlusPlus; // If we have the closing ')', eat it. Tracker.consumeClose(); EndLoc = Tracker.getCloseLocation(); if (getLangOpts().CPlusPlus) { // FIXME: Accept these components in any order, and produce fixits to // correct the order if the user gets it wrong. Ideally we should deal // with the virt-specifier-seq and pure-specifier in the same way. // Parse cv-qualifier-seq[opt]. ParseTypeQualifierListOpt(DS, false /*no attributes*/, false); if (!DS.getSourceRange().getEnd().isInvalid()) { EndLoc = DS.getSourceRange().getEnd(); ConstQualifierLoc = DS.getConstSpecLoc(); VolatileQualifierLoc = DS.getVolatileSpecLoc(); } // Parse ref-qualifier[opt]. if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) { Diag(Tok, getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_ref_qualifier : diag::ext_ref_qualifier); RefQualifierIsLValueRef = Tok.is(tok::amp); RefQualifierLoc = ConsumeToken(); EndLoc = RefQualifierLoc; } // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. bool IsCXX11MemberFunction = getLangOpts().CPlusPlus0x && (D.getContext() == Declarator::MemberContext || (D.getContext() == Declarator::FileContext && D.getCXXScopeSpec().isValid() && Actions.CurContext->isRecord())); Sema::CXXThisScopeRAII ThisScope(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), DS.getTypeQualifiers(), IsCXX11MemberFunction); // Parse exception-specification[opt]. ESpecType = tryParseExceptionSpecification(ESpecRange, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr); if (ESpecType != EST_None) EndLoc = ESpecRange.getEnd(); // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes // after the exception-specification. MaybeParseCXX0XAttributes(FnAttrs); // Parse trailing-return-type[opt]. if (getLangOpts().CPlusPlus0x && Tok.is(tok::arrow)) { Diag(Tok, diag::warn_cxx98_compat_trailing_return_type); SourceRange Range; TrailingReturnType = ParseTrailingReturnType(Range).get(); if (Range.getEnd().isValid()) EndLoc = Range.getEnd(); } } } // Remember that we parsed a function type, and remember the attributes. D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto, /*isVariadic=*/EllipsisLoc.isValid(), EllipsisLoc, ParamInfo.data(), ParamInfo.size(), DS.getTypeQualifiers(), RefQualifierIsLValueRef, RefQualifierLoc, ConstQualifierLoc, VolatileQualifierLoc, /*MutableLoc=*/SourceLocation(), ESpecType, ESpecRange.getBegin(), DynamicExceptions.data(), DynamicExceptionRanges.data(), DynamicExceptions.size(), NoexceptExpr.isUsable() ? NoexceptExpr.get() : 0, Tracker.getOpenLocation(), EndLoc, D, TrailingReturnType), FnAttrs, EndLoc); Actions.ActOnEndFunctionDeclarator(); } /// isFunctionDeclaratorIdentifierList - This parameter list may have an /// identifier list form for a K&R-style function: void foo(a,b,c) /// /// Note that identifier-lists are only allowed for normal declarators, not for /// abstract-declarators. bool Parser::isFunctionDeclaratorIdentifierList() { return !getLangOpts().CPlusPlus && Tok.is(tok::identifier) && !TryAltiVecVectorToken() // K&R identifier lists can't have typedefs as identifiers, per C99 // 6.7.5.3p11. && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) // Identifier lists follow a really simple grammar: the identifiers can // be followed *only* by a ", identifier" or ")". However, K&R // identifier lists are really rare in the brave new modern world, and // it is very common for someone to typo a type in a non-K&R style // list. If we are presented with something like: "void foo(intptr x, // float y)", we don't want to start parsing the function declarator as // though it is a K&R style declarator just because intptr is an // invalid type. // // To handle this, we check to see if the token after the first // identifier is a "," or ")". Only then do we parse it as an // identifier list. && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)); } /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator /// we found a K&R-style identifier list instead of a typed parameter list. /// /// After returning, ParamInfo will hold the parsed parameters. /// /// identifier-list: [C99 6.7.5] /// identifier /// identifier-list ',' identifier /// void Parser::ParseFunctionDeclaratorIdentifierList( Declarator &D, SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) { // If there was no identifier specified for the declarator, either we are in // an abstract-declarator, or we are in a parameter declarator which was found // to be abstract. In abstract-declarators, identifier lists are not valid: // diagnose this. if (!D.getIdentifier()) Diag(Tok, diag::ext_ident_list_in_param); // Maintain an efficient lookup of params we have seen so far. llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar; while (1) { // If this isn't an identifier, report the error and skip until ')'. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true); // Forget we parsed anything. ParamInfo.clear(); return; } IdentifierInfo *ParmII = Tok.getIdentifierInfo(); // Reject 'typedef int y; int test(x, y)', but continue parsing. if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope())) Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; // Verify that the argument identifier has not already been mentioned. if (!ParamsSoFar.insert(ParmII)) { Diag(Tok, diag::err_param_redefinition) << ParmII; } else { // Remember this identifier in ParamInfo. ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, Tok.getLocation(), 0)); } // Eat the identifier. ConsumeToken(); // The list continues if we see a comma. if (Tok.isNot(tok::comma)) break; ConsumeToken(); } } /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list /// after the opening parenthesis. This function will not parse a K&R-style /// identifier list. /// /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the /// caller parsed those arguments immediately after the open paren - they should /// be considered to be part of the first parameter. /// /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will /// be the location of the ellipsis, if any was parsed. /// /// parameter-type-list: [C99 6.7.5] /// parameter-list /// parameter-list ',' '...' /// [C++] parameter-list '...' /// /// parameter-list: [C99 6.7.5] /// parameter-declaration /// parameter-list ',' parameter-declaration /// /// parameter-declaration: [C99 6.7.5] /// declaration-specifiers declarator /// [C++] declaration-specifiers declarator '=' assignment-expression /// [C++11] initializer-clause /// [GNU] declaration-specifiers declarator attributes /// declaration-specifiers abstract-declarator[opt] /// [C++] declaration-specifiers abstract-declarator[opt] /// '=' assignment-expression /// [GNU] declaration-specifiers abstract-declarator[opt] attributes /// [C++11] attribute-specifier-seq parameter-declaration /// void Parser::ParseParameterDeclarationClause( Declarator &D, ParsedAttributes &FirstArgAttrs, SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo, SourceLocation &EllipsisLoc) { while (1) { if (Tok.is(tok::ellipsis)) { // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq // before deciding this was a parameter-declaration-clause. EllipsisLoc = ConsumeToken(); // Consume the ellipsis. break; } // Parse the declaration-specifiers. // Just use the ParsingDeclaration "scope" of the declarator. DeclSpec DS(AttrFactory); // Parse any C++11 attributes. MaybeParseCXX0XAttributes(DS.getAttributes()); // Skip any Microsoft attributes before a param. if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square)) ParseMicrosoftAttributes(DS.getAttributes()); SourceLocation DSStart = Tok.getLocation(); // If the caller parsed attributes for the first argument, add them now. // Take them so that we only apply the attributes to the first parameter. // FIXME: If we can leave the attributes in the token stream somehow, we can // get rid of a parameter (FirstArgAttrs) and this statement. It might be // too much hassle. DS.takeAttributesFrom(FirstArgAttrs); ParseDeclarationSpecifiers(DS); // Parse the declarator. This is "PrototypeContext", because we must // accept either 'declarator' or 'abstract-declarator' here. Declarator ParmDecl(DS, Declarator::PrototypeContext); ParseDeclarator(ParmDecl); // Parse GNU attributes, if present. MaybeParseGNUAttributes(ParmDecl); // Remember this parsed parameter in ParamInfo. IdentifierInfo *ParmII = ParmDecl.getIdentifier(); // DefArgToks is used when the parsing of default arguments needs // to be delayed. CachedTokens *DefArgToks = 0; // If no parameter was specified, verify that *something* was specified, // otherwise we have a missing type and identifier. if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) { // Completely missing, emit error. Diag(DSStart, diag::err_missing_param); } else { // Otherwise, we have something. Add it and let semantic analysis try // to grok it and add the result to the ParamInfo we are building. // Inform the actions module about the parameter declarator, so it gets // added to the current scope. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl); // Parse the default argument, if any. We parse the default // arguments in all dialects; the semantic analysis in // ActOnParamDefaultArgument will reject the default argument in // C. if (Tok.is(tok::equal)) { SourceLocation EqualLoc = Tok.getLocation(); // Parse the default argument if (D.getContext() == Declarator::MemberContext) { // If we're inside a class definition, cache the tokens // corresponding to the default argument. We'll actually parse // them when we see the end of the class definition. // FIXME: Can we use a smart pointer for Toks? DefArgToks = new CachedTokens; if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false)) { delete DefArgToks; DefArgToks = 0; Actions.ActOnParamDefaultArgumentError(Param); } else { // Mark the end of the default argument so that we know when to // stop when we parse it later on. Token DefArgEnd; DefArgEnd.startToken(); DefArgEnd.setKind(tok::cxx_defaultarg_end); DefArgEnd.setLocation(Tok.getLocation()); DefArgToks->push_back(DefArgEnd); Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc, (*DefArgToks)[1].getLocation()); } } else { // Consume the '='. ConsumeToken(); // The argument isn't actually potentially evaluated unless it is // used. EnterExpressionEvaluationContext Eval(Actions, Sema::PotentiallyEvaluatedIfUsed, Param); ExprResult DefArgResult; if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); DefArgResult = ParseBraceInitializer(); } else DefArgResult = ParseAssignmentExpression(); if (DefArgResult.isInvalid()) { Actions.ActOnParamDefaultArgumentError(Param); SkipUntil(tok::comma, tok::r_paren, true, true); } else { // Inform the actions module about the default argument Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.take()); } } } ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, ParmDecl.getIdentifierLoc(), Param, DefArgToks)); } // If the next token is a comma, consume it and keep reading arguments. if (Tok.isNot(tok::comma)) { if (Tok.is(tok::ellipsis)) { EllipsisLoc = ConsumeToken(); // Consume the ellipsis. if (!getLangOpts().CPlusPlus) { // We have ellipsis without a preceding ',', which is ill-formed // in C. Complain and provide the fix. Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } } break; } // Consume the comma. ConsumeToken(); } } /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] void Parser::ParseBracketDeclarator(Declarator &D) { if (CheckProhibitedCXX11Attribute()) return; BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); // C array syntax has many features, but by-far the most common is [] and [4]. // This code does a fast path to handle some of the most obvious cases. if (Tok.getKind() == tok::r_square) { T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); // Remember that we parsed the empty array type. ExprResult NumElements; D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); return; } else if (Tok.getKind() == tok::numeric_constant && GetLookAheadToken(1).is(tok::r_square)) { // [4] is very common. Parse the numeric constant expression. ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope())); ConsumeToken(); T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(), T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); return; } // If valid, this location is the position where we read the 'static' keyword. SourceLocation StaticLoc; if (Tok.is(tok::kw_static)) StaticLoc = ConsumeToken(); // If there is a type-qualifier-list, read it now. // Type qualifiers in an array subscript are a C99 feature. DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS, false /*no attributes*/); // If we haven't already read 'static', check to see if there is one after the // type-qualifier-list. if (!StaticLoc.isValid() && Tok.is(tok::kw_static)) StaticLoc = ConsumeToken(); // Handle "direct-declarator [ type-qual-list[opt] * ]". bool isStar = false; ExprResult NumElements; // Handle the case where we have '[*]' as the array size. However, a leading // star could be the start of an expression, for example 'X[*p + 4]'. Verify // the the token after the star is a ']'. Since stars in arrays are // infrequent, use of lookahead is not costly here. if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { ConsumeToken(); // Eat the '*'. if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } isStar = true; } else if (Tok.isNot(tok::r_square)) { // Note, in C89, this production uses the constant-expr production instead // of assignment-expr. The only difference is that assignment-expr allows // things like '=' and '*='. Sema rejects these in C89 mode because they // are not i-c-e's, so we don't need to distinguish between the two here. // Parse the constant-expression or assignment-expression now (depending // on dialect). if (getLangOpts().CPlusPlus) { NumElements = ParseConstantExpression(); } else { EnterExpressionEvaluationContext Unevaluated(Actions, Sema::ConstantEvaluated); NumElements = ParseAssignmentExpression(); } } // If there was an error parsing the assignment-expression, recover. if (NumElements.isInvalid()) { D.setInvalidType(true); // If the expression was invalid, skip it. SkipUntil(tok::r_square); return; } T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), isStar, NumElements.release(), T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); } /// [GNU] typeof-specifier: /// typeof ( expressions ) /// typeof ( type-name ) /// [GNU/C++] typeof unary-expression /// void Parser::ParseTypeofSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier"); Token OpTok = Tok; SourceLocation StartLoc = ConsumeToken(); const bool hasParens = Tok.is(tok::l_paren); EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); bool isCastExpr; ParsedType CastTy; SourceRange CastRange; ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange); if (hasParens) DS.setTypeofParensRange(CastRange); if (CastRange.getEnd().isInvalid()) // FIXME: Not accurate, the range gets one token more than it should. DS.SetRangeEnd(Tok.getLocation()); else DS.SetRangeEnd(CastRange.getEnd()); if (isCastExpr) { if (!CastTy) { DS.SetTypeSpecError(); return; } const char *PrevSpec = 0; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, DiagID, CastTy)) Diag(StartLoc, DiagID) << PrevSpec; return; } // If we get here, the operand to the typeof was an expresion. if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } // We might need to transform the operand if it is potentially evaluated. Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get()); if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } const char *PrevSpec = 0; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, DiagID, Operand.get())) Diag(StartLoc, DiagID) << PrevSpec; } /// [C11] atomic-specifier: /// _Atomic ( type-name ) /// void Parser::ParseAtomicSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier"); SourceLocation StartLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) { SkipUntil(tok::r_paren); return; } TypeResult Result = ParseTypeName(); if (Result.isInvalid()) { SkipUntil(tok::r_paren); return; } // Match the ')' T.consumeClose(); if (T.getCloseLocation().isInvalid()) return; DS.setTypeofParensRange(T.getRange()); DS.SetRangeEnd(T.getCloseLocation()); const char *PrevSpec = 0; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec, DiagID, Result.release())) Diag(StartLoc, DiagID) << PrevSpec; } /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called /// from TryAltiVecVectorToken. bool Parser::TryAltiVecVectorTokenOutOfLine() { Token Next = NextToken(); switch (Next.getKind()) { default: return false; case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw___pixel: Tok.setKind(tok::kw___vector); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { Tok.setKind(tok::kw___vector); return true; } return false; } } bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid) { if (Tok.getIdentifierInfo() == Ident_vector) { Token Next = NextToken(); switch (Next.getKind()) { case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID); return true; } break; default: break; } } else if ((Tok.getIdentifierInfo() == Ident_pixel) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID); return true; } return false; }