Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp |
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements extra semantic analysis beyond what is enforced // by the C type system. // //===----------------------------------------------------------------------===// #include "clang/Sema/Initialization.h" #include "clang/Sema/Sema.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Analysis/Analyses/FormatString.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/raw_ostream.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/ConvertUTF.h" #include <limits> using namespace clang; using namespace sema; SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const { return SL->getLocationOfByte(ByteNo, PP.getSourceManager(), PP.getLangOpts(), PP.getTargetInfo()); } /// Checks that a call expression's argument count is the desired number. /// This is useful when doing custom type-checking. Returns true on error. static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { unsigned argCount = call->getNumArgs(); if (argCount == desiredArgCount) return false; if (argCount < desiredArgCount) return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 /*function call*/ << desiredArgCount << argCount << call->getSourceRange(); // Highlight all the excess arguments. SourceRange range(call->getArg(desiredArgCount)->getLocStart(), call->getArg(argCount - 1)->getLocEnd()); return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << desiredArgCount << argCount << call->getArg(1)->getSourceRange(); } /// CheckBuiltinAnnotationString - Checks that string argument to the builtin /// annotation is a non wide string literal. static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) { Arg = Arg->IgnoreParenCasts(); StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); if (!Literal || !Literal->isAscii()) { S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant) << Arg->getSourceRange(); return true; } return false; } ExprResult Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { ExprResult TheCallResult(Owned(TheCall)); // Find out if any arguments are required to be integer constant expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); if (Error != ASTContext::GE_None) ICEArguments = 0; // Don't diagnose previously diagnosed errors. // If any arguments are required to be ICE's, check and diagnose. for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { // Skip arguments not required to be ICE's. if ((ICEArguments & (1 << ArgNo)) == 0) continue; llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) return true; ICEArguments &= ~(1 << ArgNo); } switch (BuiltinID) { case Builtin::BI__builtin___CFStringMakeConstantString: assert(TheCall->getNumArgs() == 1 && "Wrong # arguments to builtin CFStringMakeConstantString"); if (CheckObjCString(TheCall->getArg(0))) return ExprError(); break; case Builtin::BI__builtin_stdarg_start: case Builtin::BI__builtin_va_start: if (SemaBuiltinVAStart(TheCall)) return ExprError(); break; case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: if (SemaBuiltinUnorderedCompare(TheCall)) return ExprError(); break; case Builtin::BI__builtin_fpclassify: if (SemaBuiltinFPClassification(TheCall, 6)) return ExprError(); break; case Builtin::BI__builtin_isfinite: case Builtin::BI__builtin_isinf: case Builtin::BI__builtin_isinf_sign: case Builtin::BI__builtin_isnan: case Builtin::BI__builtin_isnormal: if (SemaBuiltinFPClassification(TheCall, 1)) return ExprError(); break; case Builtin::BI__builtin_shufflevector: return SemaBuiltinShuffleVector(TheCall); // TheCall will be freed by the smart pointer here, but that's fine, since // SemaBuiltinShuffleVector guts it, but then doesn't release it. case Builtin::BI__builtin_prefetch: if (SemaBuiltinPrefetch(TheCall)) return ExprError(); break; case Builtin::BI__builtin_object_size: if (SemaBuiltinObjectSize(TheCall)) return ExprError(); break; case Builtin::BI__builtin_longjmp: if (SemaBuiltinLongjmp(TheCall)) return ExprError(); break; case Builtin::BI__builtin_classify_type: if (checkArgCount(*this, TheCall, 1)) return true; TheCall->setType(Context.IntTy); break; case Builtin::BI__builtin_constant_p: if (checkArgCount(*this, TheCall, 1)) return true; TheCall->setType(Context.IntTy); break; case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: case Builtin::BI__sync_lock_release: case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: case Builtin::BI__sync_swap: case Builtin::BI__sync_swap_1: case Builtin::BI__sync_swap_2: case Builtin::BI__sync_swap_4: case Builtin::BI__sync_swap_8: case Builtin::BI__sync_swap_16: return SemaBuiltinAtomicOverloaded(move(TheCallResult)); #define BUILTIN(ID, TYPE, ATTRS) #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ case Builtin::BI##ID: \ return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::AO##ID); #include "clang/Basic/Builtins.def" case Builtin::BI__builtin_annotation: if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1))) return ExprError(); break; } // Since the target specific builtins for each arch overlap, only check those // of the arch we are compiling for. if (BuiltinID >= Builtin::FirstTSBuiltin) { switch (Context.getTargetInfo().getTriple().getArch()) { case llvm::Triple::arm: case llvm::Triple::thumb: if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall)) return ExprError(); break; default: break; } } return move(TheCallResult); } // Get the valid immediate range for the specified NEON type code. static unsigned RFT(unsigned t, bool shift = false) { NeonTypeFlags Type(t); int IsQuad = Type.isQuad(); switch (Type.getEltType()) { case NeonTypeFlags::Int8: case NeonTypeFlags::Poly8: return shift ? 7 : (8 << IsQuad) - 1; case NeonTypeFlags::Int16: case NeonTypeFlags::Poly16: return shift ? 15 : (4 << IsQuad) - 1; case NeonTypeFlags::Int32: return shift ? 31 : (2 << IsQuad) - 1; case NeonTypeFlags::Int64: return shift ? 63 : (1 << IsQuad) - 1; case NeonTypeFlags::Float16: assert(!shift && "cannot shift float types!"); return (4 << IsQuad) - 1; case NeonTypeFlags::Float32: assert(!shift && "cannot shift float types!"); return (2 << IsQuad) - 1; } llvm_unreachable("Invalid NeonTypeFlag!"); } /// getNeonEltType - Return the QualType corresponding to the elements of /// the vector type specified by the NeonTypeFlags. This is used to check /// the pointer arguments for Neon load/store intrinsics. static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) { switch (Flags.getEltType()) { case NeonTypeFlags::Int8: return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; case NeonTypeFlags::Int16: return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; case NeonTypeFlags::Int32: return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; case NeonTypeFlags::Int64: return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy; case NeonTypeFlags::Poly8: return Context.SignedCharTy; case NeonTypeFlags::Poly16: return Context.ShortTy; case NeonTypeFlags::Float16: return Context.UnsignedShortTy; case NeonTypeFlags::Float32: return Context.FloatTy; } llvm_unreachable("Invalid NeonTypeFlag!"); } bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { llvm::APSInt Result; unsigned mask = 0; unsigned TV = 0; int PtrArgNum = -1; bool HasConstPtr = false; switch (BuiltinID) { #define GET_NEON_OVERLOAD_CHECK #include "clang/Basic/arm_neon.inc" #undef GET_NEON_OVERLOAD_CHECK } // For NEON intrinsics which are overloaded on vector element type, validate // the immediate which specifies which variant to emit. unsigned ImmArg = TheCall->getNumArgs()-1; if (mask) { if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) return true; TV = Result.getLimitedValue(64); if ((TV > 63) || (mask & (1 << TV)) == 0) return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code) << TheCall->getArg(ImmArg)->getSourceRange(); } if (PtrArgNum >= 0) { // Check that pointer arguments have the specified type. Expr *Arg = TheCall->getArg(PtrArgNum); if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) Arg = ICE->getSubExpr(); ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); QualType RHSTy = RHS.get()->getType(); QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context); if (HasConstPtr) EltTy = EltTy.withConst(); QualType LHSTy = Context.getPointerType(EltTy); AssignConvertType ConvTy; ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); if (RHS.isInvalid()) return true; if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy, RHS.get(), AA_Assigning)) return true; } // For NEON intrinsics which take an immediate value as part of the // instruction, range check them here. unsigned i = 0, l = 0, u = 0; switch (BuiltinID) { default: return false; case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break; case ARM::BI__builtin_arm_usat: i = 1; u = 31; break; case ARM::BI__builtin_arm_vcvtr_f: case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break; #define GET_NEON_IMMEDIATE_CHECK #include "clang/Basic/arm_neon.inc" #undef GET_NEON_IMMEDIATE_CHECK }; // Check that the immediate argument is actually a constant. if (SemaBuiltinConstantArg(TheCall, i, Result)) return true; // Range check against the upper/lower values for this isntruction. unsigned Val = Result.getZExtValue(); if (Val < l || Val > (u + l)) return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << l << u+l << TheCall->getArg(i)->getSourceRange(); // FIXME: VFP Intrinsics should error if VFP not present. return false; } /// CheckFunctionCall - Check a direct function call for various correctness /// and safety properties not strictly enforced by the C type system. bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) { // Get the IdentifierInfo* for the called function. IdentifierInfo *FnInfo = FDecl->getIdentifier(); // None of the checks below are needed for functions that don't have // simple names (e.g., C++ conversion functions). if (!FnInfo) return false; // FIXME: This mechanism should be abstracted to be less fragile and // more efficient. For example, just map function ids to custom // handlers. // Printf and scanf checking. for (specific_attr_iterator<FormatAttr> i = FDecl->specific_attr_begin<FormatAttr>(), e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) { CheckFormatArguments(*i, TheCall); } for (specific_attr_iterator<NonNullAttr> i = FDecl->specific_attr_begin<NonNullAttr>(), e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) { CheckNonNullArguments(*i, TheCall->getArgs(), TheCall->getCallee()->getLocStart()); } unsigned CMId = FDecl->getMemoryFunctionKind(); if (CMId == 0) return false; // Handle memory setting and copying functions. if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) CheckStrlcpycatArguments(TheCall, FnInfo); else if (CMId == Builtin::BIstrncat) CheckStrncatArguments(TheCall, FnInfo); else CheckMemaccessArguments(TheCall, CMId, FnInfo); return false; } bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, Expr **Args, unsigned NumArgs) { for (specific_attr_iterator<FormatAttr> i = Method->specific_attr_begin<FormatAttr>(), e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) { CheckFormatArguments(*i, Args, NumArgs, false, lbrac, Method->getSourceRange()); } // diagnose nonnull arguments. for (specific_attr_iterator<NonNullAttr> i = Method->specific_attr_begin<NonNullAttr>(), e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) { CheckNonNullArguments(*i, Args, lbrac); } return false; } bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) { const VarDecl *V = dyn_cast<VarDecl>(NDecl); if (!V) return false; QualType Ty = V->getType(); if (!Ty->isBlockPointerType()) return false; // format string checking. for (specific_attr_iterator<FormatAttr> i = NDecl->specific_attr_begin<FormatAttr>(), e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) { CheckFormatArguments(*i, TheCall); } return false; } ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) { CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); // All these operations take one of the following forms: enum { // C __c11_atomic_init(A *, C) Init, // C __c11_atomic_load(A *, int) Load, // void __atomic_load(A *, CP, int) Copy, // C __c11_atomic_add(A *, M, int) Arithmetic, // C __atomic_exchange_n(A *, CP, int) Xchg, // void __atomic_exchange(A *, C *, CP, int) GNUXchg, // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) C11CmpXchg, // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) GNUCmpXchg } Form = Init; const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 }; const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 }; // where: // C is an appropriate type, // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, // M is C if C is an integer, and ptrdiff_t if C is a pointer, and // the int parameters are for orderings. assert(AtomicExpr::AO__c11_atomic_init == 0 && AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load && "need to update code for modified C11 atomics"); bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init && Op <= AtomicExpr::AO__c11_atomic_fetch_xor; bool IsN = Op == AtomicExpr::AO__atomic_load_n || Op == AtomicExpr::AO__atomic_store_n || Op == AtomicExpr::AO__atomic_exchange_n || Op == AtomicExpr::AO__atomic_compare_exchange_n; bool IsAddSub = false; switch (Op) { case AtomicExpr::AO__c11_atomic_init: Form = Init; break; case AtomicExpr::AO__c11_atomic_load: case AtomicExpr::AO__atomic_load_n: Form = Load; break; case AtomicExpr::AO__c11_atomic_store: case AtomicExpr::AO__atomic_load: case AtomicExpr::AO__atomic_store: case AtomicExpr::AO__atomic_store_n: Form = Copy; break; case AtomicExpr::AO__c11_atomic_fetch_add: case AtomicExpr::AO__c11_atomic_fetch_sub: case AtomicExpr::AO__atomic_fetch_add: case AtomicExpr::AO__atomic_fetch_sub: case AtomicExpr::AO__atomic_add_fetch: case AtomicExpr::AO__atomic_sub_fetch: IsAddSub = true; // Fall through. case AtomicExpr::AO__c11_atomic_fetch_and: case AtomicExpr::AO__c11_atomic_fetch_or: case AtomicExpr::AO__c11_atomic_fetch_xor: case AtomicExpr::AO__atomic_fetch_and: case AtomicExpr::AO__atomic_fetch_or: case AtomicExpr::AO__atomic_fetch_xor: case AtomicExpr::AO__atomic_fetch_nand: case AtomicExpr::AO__atomic_and_fetch: case AtomicExpr::AO__atomic_or_fetch: case AtomicExpr::AO__atomic_xor_fetch: case AtomicExpr::AO__atomic_nand_fetch: Form = Arithmetic; break; case AtomicExpr::AO__c11_atomic_exchange: case AtomicExpr::AO__atomic_exchange_n: Form = Xchg; break; case AtomicExpr::AO__atomic_exchange: Form = GNUXchg; break; case AtomicExpr::AO__c11_atomic_compare_exchange_strong: case AtomicExpr::AO__c11_atomic_compare_exchange_weak: Form = C11CmpXchg; break; case AtomicExpr::AO__atomic_compare_exchange: case AtomicExpr::AO__atomic_compare_exchange_n: Form = GNUCmpXchg; break; } // Check we have the right number of arguments. if (TheCall->getNumArgs() < NumArgs[Form]) { Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 << NumArgs[Form] << TheCall->getNumArgs() << TheCall->getCallee()->getSourceRange(); return ExprError(); } else if (TheCall->getNumArgs() > NumArgs[Form]) { Diag(TheCall->getArg(NumArgs[Form])->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 << NumArgs[Form] << TheCall->getNumArgs() << TheCall->getCallee()->getSourceRange(); return ExprError(); } // Inspect the first argument of the atomic operation. Expr *Ptr = TheCall->getArg(0); Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get(); const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); if (!pointerType) { Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } // For a __c11 builtin, this should be a pointer to an _Atomic type. QualType AtomTy = pointerType->getPointeeType(); // 'A' QualType ValType = AtomTy; // 'C' if (IsC11) { if (!AtomTy->isAtomicType()) { Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } ValType = AtomTy->getAs<AtomicType>()->getValueType(); } // For an arithmetic operation, the implied arithmetic must be well-formed. if (Form == Arithmetic) { // gcc does not enforce these rules for GNU atomics, but we do so for sanity. if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) { Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr) << IsC11 << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } if (!IsAddSub && !ValType->isIntegerType()) { Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int) << IsC11 << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { // For __atomic_*_n operations, the value type must be a scalar integral or // pointer type which is 1, 2, 4, 8 or 16 bytes in length. Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr) << IsC11 << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) { // For GNU atomics, require a trivially-copyable type. This is not part of // the GNU atomics specification, but we enforce it for sanity. Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy) << Ptr->getType() << Ptr->getSourceRange(); return ExprError(); } // FIXME: For any builtin other than a load, the ValType must not be // const-qualified. switch (ValType.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: // okay break; case Qualifiers::OCL_Weak: case Qualifiers::OCL_Strong: case Qualifiers::OCL_Autoreleasing: // FIXME: Can this happen? By this point, ValType should be known // to be trivially copyable. Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership) << ValType << Ptr->getSourceRange(); return ExprError(); } QualType ResultType = ValType; if (Form == Copy || Form == GNUXchg || Form == Init) ResultType = Context.VoidTy; else if (Form == C11CmpXchg || Form == GNUCmpXchg) ResultType = Context.BoolTy; // The type of a parameter passed 'by value'. In the GNU atomics, such // arguments are actually passed as pointers. QualType ByValType = ValType; // 'CP' if (!IsC11 && !IsN) ByValType = Ptr->getType(); // The first argument --- the pointer --- has a fixed type; we // deduce the types of the rest of the arguments accordingly. Walk // the remaining arguments, converting them to the deduced value type. for (unsigned i = 1; i != NumArgs[Form]; ++i) { QualType Ty; if (i < NumVals[Form] + 1) { switch (i) { case 1: // The second argument is the non-atomic operand. For arithmetic, this // is always passed by value, and for a compare_exchange it is always // passed by address. For the rest, GNU uses by-address and C11 uses // by-value. assert(Form != Load); if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) Ty = ValType; else if (Form == Copy || Form == Xchg) Ty = ByValType; else if (Form == Arithmetic) Ty = Context.getPointerDiffType(); else Ty = Context.getPointerType(ValType.getUnqualifiedType()); break; case 2: // The third argument to compare_exchange / GNU exchange is a // (pointer to a) desired value. Ty = ByValType; break; case 3: // The fourth argument to GNU compare_exchange is a 'weak' flag. Ty = Context.BoolTy; break; } } else { // The order(s) are always converted to int. Ty = Context.IntTy; } InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Ty, false); ExprResult Arg = TheCall->getArg(i); Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return true; TheCall->setArg(i, Arg.get()); } // Permute the arguments into a 'consistent' order. SmallVector<Expr*, 5> SubExprs; SubExprs.push_back(Ptr); switch (Form) { case Init: // Note, AtomicExpr::getVal1() has a special case for this atomic. SubExprs.push_back(TheCall->getArg(1)); // Val1 break; case Load: SubExprs.push_back(TheCall->getArg(1)); // Order break; case Copy: case Arithmetic: case Xchg: SubExprs.push_back(TheCall->getArg(2)); // Order SubExprs.push_back(TheCall->getArg(1)); // Val1 break; case GNUXchg: // Note, AtomicExpr::getVal2() has a special case for this atomic. SubExprs.push_back(TheCall->getArg(3)); // Order SubExprs.push_back(TheCall->getArg(1)); // Val1 SubExprs.push_back(TheCall->getArg(2)); // Val2 break; case C11CmpXchg: SubExprs.push_back(TheCall->getArg(3)); // Order SubExprs.push_back(TheCall->getArg(1)); // Val1 SubExprs.push_back(TheCall->getArg(4)); // OrderFail SubExprs.push_back(TheCall->getArg(2)); // Val2 break; case GNUCmpXchg: SubExprs.push_back(TheCall->getArg(4)); // Order SubExprs.push_back(TheCall->getArg(1)); // Val1 SubExprs.push_back(TheCall->getArg(5)); // OrderFail SubExprs.push_back(TheCall->getArg(2)); // Val2 SubExprs.push_back(TheCall->getArg(3)); // Weak break; } return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(), SubExprs.data(), SubExprs.size(), ResultType, Op, TheCall->getRParenLoc())); } /// checkBuiltinArgument - Given a call to a builtin function, perform /// normal type-checking on the given argument, updating the call in /// place. This is useful when a builtin function requires custom /// type-checking for some of its arguments but not necessarily all of /// them. /// /// Returns true on error. static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { FunctionDecl *Fn = E->getDirectCallee(); assert(Fn && "builtin call without direct callee!"); ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, Param); ExprResult Arg = E->getArg(0); Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return true; E->setArg(ArgIndex, Arg.take()); return false; } /// SemaBuiltinAtomicOverloaded - We have a call to a function like /// __sync_fetch_and_add, which is an overloaded function based on the pointer /// type of its first argument. The main ActOnCallExpr routines have already /// promoted the types of arguments because all of these calls are prototyped as /// void(...). /// /// This function goes through and does final semantic checking for these /// builtins, ExprResult Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { CallExpr *TheCall = (CallExpr *)TheCallResult.get(); DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); // Ensure that we have at least one argument to do type inference from. if (TheCall->getNumArgs() < 1) { Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1 << TheCall->getNumArgs() << TheCall->getCallee()->getSourceRange(); return ExprError(); } // Inspect the first argument of the atomic builtin. This should always be // a pointer type, whose element is an integral scalar or pointer type. // Because it is a pointer type, we don't have to worry about any implicit // casts here. // FIXME: We don't allow floating point scalars as input. Expr *FirstArg = TheCall->getArg(0); ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); if (FirstArgResult.isInvalid()) return ExprError(); FirstArg = FirstArgResult.take(); TheCall->setArg(0, FirstArg); const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); if (!pointerType) { Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer) << FirstArg->getType() << FirstArg->getSourceRange(); return ExprError(); } QualType ValType = pointerType->getPointeeType(); if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && !ValType->isBlockPointerType()) { Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr) << FirstArg->getType() << FirstArg->getSourceRange(); return ExprError(); } switch (ValType.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: // okay break; case Qualifiers::OCL_Weak: case Qualifiers::OCL_Strong: case Qualifiers::OCL_Autoreleasing: Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership) << ValType << FirstArg->getSourceRange(); return ExprError(); } // Strip any qualifiers off ValType. ValType = ValType.getUnqualifiedType(); // The majority of builtins return a value, but a few have special return // types, so allow them to override appropriately below. QualType ResultType = ValType; // We need to figure out which concrete builtin this maps onto. For example, // __sync_fetch_and_add with a 2 byte object turns into // __sync_fetch_and_add_2. #define BUILTIN_ROW(x) \ { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ Builtin::BI##x##_8, Builtin::BI##x##_16 } static const unsigned BuiltinIndices[][5] = { BUILTIN_ROW(__sync_fetch_and_add), BUILTIN_ROW(__sync_fetch_and_sub), BUILTIN_ROW(__sync_fetch_and_or), BUILTIN_ROW(__sync_fetch_and_and), BUILTIN_ROW(__sync_fetch_and_xor), BUILTIN_ROW(__sync_add_and_fetch), BUILTIN_ROW(__sync_sub_and_fetch), BUILTIN_ROW(__sync_and_and_fetch), BUILTIN_ROW(__sync_or_and_fetch), BUILTIN_ROW(__sync_xor_and_fetch), BUILTIN_ROW(__sync_val_compare_and_swap), BUILTIN_ROW(__sync_bool_compare_and_swap), BUILTIN_ROW(__sync_lock_test_and_set), BUILTIN_ROW(__sync_lock_release), BUILTIN_ROW(__sync_swap) }; #undef BUILTIN_ROW // Determine the index of the size. unsigned SizeIndex; switch (Context.getTypeSizeInChars(ValType).getQuantity()) { case 1: SizeIndex = 0; break; case 2: SizeIndex = 1; break; case 4: SizeIndex = 2; break; case 8: SizeIndex = 3; break; case 16: SizeIndex = 4; break; default: Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size) << FirstArg->getType() << FirstArg->getSourceRange(); return ExprError(); } // Each of these builtins has one pointer argument, followed by some number of // values (0, 1 or 2) followed by a potentially empty varags list of stuff // that we ignore. Find out which row of BuiltinIndices to read from as well // as the number of fixed args. unsigned BuiltinID = FDecl->getBuiltinID(); unsigned BuiltinIndex, NumFixed = 1; switch (BuiltinID) { default: llvm_unreachable("Unknown overloaded atomic builtin!"); case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: BuiltinIndex = 0; break; case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: BuiltinIndex = 1; break; case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: BuiltinIndex = 2; break; case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: BuiltinIndex = 3; break; case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: BuiltinIndex = 4; break; case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: BuiltinIndex = 5; break; case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: BuiltinIndex = 6; break; case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: BuiltinIndex = 7; break; case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: BuiltinIndex = 8; break; case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: BuiltinIndex = 9; break; case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: BuiltinIndex = 10; NumFixed = 2; break; case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: BuiltinIndex = 11; NumFixed = 2; ResultType = Context.BoolTy; break; case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: BuiltinIndex = 12; break; case Builtin::BI__sync_lock_release: case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: BuiltinIndex = 13; NumFixed = 0; ResultType = Context.VoidTy; break; case Builtin::BI__sync_swap: case Builtin::BI__sync_swap_1: case Builtin::BI__sync_swap_2: case Builtin::BI__sync_swap_4: case Builtin::BI__sync_swap_8: case Builtin::BI__sync_swap_16: BuiltinIndex = 14; break; } // Now that we know how many fixed arguments we expect, first check that we // have at least that many. if (TheCall->getNumArgs() < 1+NumFixed) { Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1+NumFixed << TheCall->getNumArgs() << TheCall->getCallee()->getSourceRange(); return ExprError(); } // Get the decl for the concrete builtin from this, we can tell what the // concrete integer type we should convert to is. unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID); IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName); FunctionDecl *NewBuiltinDecl = cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID, TUScope, false, DRE->getLocStart())); // The first argument --- the pointer --- has a fixed type; we // deduce the types of the rest of the arguments accordingly. Walk // the remaining arguments, converting them to the deduced value type. for (unsigned i = 0; i != NumFixed; ++i) { ExprResult Arg = TheCall->getArg(i+1); // GCC does an implicit conversion to the pointer or integer ValType. This // can fail in some cases (1i -> int**), check for this error case now. // Initialize the argument. InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, ValType, /*consume*/ false); Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); if (Arg.isInvalid()) return ExprError(); // Okay, we have something that *can* be converted to the right type. Check // to see if there is a potentially weird extension going on here. This can // happen when you do an atomic operation on something like an char* and // pass in 42. The 42 gets converted to char. This is even more strange // for things like 45.123 -> char, etc. // FIXME: Do this check. TheCall->setArg(i+1, Arg.take()); } ASTContext& Context = this->getASTContext(); // Create a new DeclRefExpr to refer to the new decl. DeclRefExpr* NewDRE = DeclRefExpr::Create( Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, /*enclosing*/ false, DRE->getLocation(), NewBuiltinDecl->getType(), DRE->getValueKind()); // Set the callee in the CallExpr. // FIXME: This leaks the original parens and implicit casts. ExprResult PromotedCall = UsualUnaryConversions(NewDRE); if (PromotedCall.isInvalid()) return ExprError(); TheCall->setCallee(PromotedCall.take()); // Change the result type of the call to match the original value type. This // is arbitrary, but the codegen for these builtins ins design to handle it // gracefully. TheCall->setType(ResultType); return move(TheCallResult); } /// CheckObjCString - Checks that the argument to the builtin /// CFString constructor is correct /// Note: It might also make sense to do the UTF-16 conversion here (would /// simplify the backend). bool Sema::CheckObjCString(Expr *Arg) { Arg = Arg->IgnoreParenCasts(); StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); if (!Literal || !Literal->isAscii()) { Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant) << Arg->getSourceRange(); return true; } if (Literal->containsNonAsciiOrNull()) { StringRef String = Literal->getString(); unsigned NumBytes = String.size(); SmallVector<UTF16, 128> ToBuf(NumBytes); const UTF8 *FromPtr = (UTF8 *)String.data(); UTF16 *ToPtr = &ToBuf[0]; ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, ToPtr + NumBytes, strictConversion); // Check for conversion failure. if (Result != conversionOK) Diag(Arg->getLocStart(), diag::warn_cfstring_truncated) << Arg->getSourceRange(); } return false; } /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity. /// Emit an error and return true on failure, return false on success. bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) { Expr *Fn = TheCall->getCallee(); if (TheCall->getNumArgs() > 2) { Diag(TheCall->getArg(2)->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << 2 << TheCall->getNumArgs() << Fn->getSourceRange() << SourceRange(TheCall->getArg(2)->getLocStart(), (*(TheCall->arg_end()-1))->getLocEnd()); return true; } if (TheCall->getNumArgs() < 2) { return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 /*function call*/ << 2 << TheCall->getNumArgs(); } // Type-check the first argument normally. if (checkBuiltinArgument(*this, TheCall, 0)) return true; // Determine whether the current function is variadic or not. BlockScopeInfo *CurBlock = getCurBlock(); bool isVariadic; if (CurBlock) isVariadic = CurBlock->TheDecl->isVariadic(); else if (FunctionDecl *FD = getCurFunctionDecl()) isVariadic = FD->isVariadic(); else isVariadic = getCurMethodDecl()->isVariadic(); if (!isVariadic) { Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function); return true; } // Verify that the second argument to the builtin is the last argument of the // current function or method. bool SecondArgIsLastNamedArgument = false; const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { // FIXME: This isn't correct for methods (results in bogus warning). // Get the last formal in the current function. const ParmVarDecl *LastArg; if (CurBlock) LastArg = *(CurBlock->TheDecl->param_end()-1); else if (FunctionDecl *FD = getCurFunctionDecl()) LastArg = *(FD->param_end()-1); else LastArg = *(getCurMethodDecl()->param_end()-1); SecondArgIsLastNamedArgument = PV == LastArg; } } if (!SecondArgIsLastNamedArgument) Diag(TheCall->getArg(1)->getLocStart(), diag::warn_second_parameter_of_va_start_not_last_named_argument); return false; } /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and /// friends. This is declared to take (...), so we have to check everything. bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { if (TheCall->getNumArgs() < 2) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 << 2 << TheCall->getNumArgs()/*function call*/; if (TheCall->getNumArgs() > 2) return Diag(TheCall->getArg(2)->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << 2 << TheCall->getNumArgs() << SourceRange(TheCall->getArg(2)->getLocStart(), (*(TheCall->arg_end()-1))->getLocEnd()); ExprResult OrigArg0 = TheCall->getArg(0); ExprResult OrigArg1 = TheCall->getArg(1); // Do standard promotions between the two arguments, returning their common // type. QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) return true; // Make sure any conversions are pushed back into the call; this is // type safe since unordered compare builtins are declared as "_Bool // foo(...)". TheCall->setArg(0, OrigArg0.get()); TheCall->setArg(1, OrigArg1.get()); if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) return false; // If the common type isn't a real floating type, then the arguments were // invalid for this operation. if (!Res->isRealFloatingType()) return Diag(OrigArg0.get()->getLocStart(), diag::err_typecheck_call_invalid_ordered_compare) << OrigArg0.get()->getType() << OrigArg1.get()->getType() << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd()); return false; } /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like /// __builtin_isnan and friends. This is declared to take (...), so we have /// to check everything. We expect the last argument to be a floating point /// value. bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { if (TheCall->getNumArgs() < NumArgs) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 << NumArgs << TheCall->getNumArgs()/*function call*/; if (TheCall->getNumArgs() > NumArgs) return Diag(TheCall->getArg(NumArgs)->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() << SourceRange(TheCall->getArg(NumArgs)->getLocStart(), (*(TheCall->arg_end()-1))->getLocEnd()); Expr *OrigArg = TheCall->getArg(NumArgs-1); if (OrigArg->isTypeDependent()) return false; // This operation requires a non-_Complex floating-point number. if (!OrigArg->getType()->isRealFloatingType()) return Diag(OrigArg->getLocStart(), diag::err_typecheck_call_invalid_unary_fp) << OrigArg->getType() << OrigArg->getSourceRange(); // If this is an implicit conversion from float -> double, remove it. if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) { Expr *CastArg = Cast->getSubExpr(); if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) { assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) && "promotion from float to double is the only expected cast here"); Cast->setSubExpr(0); TheCall->setArg(NumArgs-1, CastArg); } } return false; } /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. // This is declared to take (...), so we have to check everything. ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { if (TheCall->getNumArgs() < 2) return ExprError(Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 /*function call*/ << 2 << TheCall->getNumArgs() << TheCall->getSourceRange()); // Determine which of the following types of shufflevector we're checking: // 1) unary, vector mask: (lhs, mask) // 2) binary, vector mask: (lhs, rhs, mask) // 3) binary, scalar mask: (lhs, rhs, index, ..., index) QualType resType = TheCall->getArg(0)->getType(); unsigned numElements = 0; if (!TheCall->getArg(0)->isTypeDependent() && !TheCall->getArg(1)->isTypeDependent()) { QualType LHSType = TheCall->getArg(0)->getType(); QualType RHSType = TheCall->getArg(1)->getType(); if (!LHSType->isVectorType() || !RHSType->isVectorType()) { Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector) << SourceRange(TheCall->getArg(0)->getLocStart(), TheCall->getArg(1)->getLocEnd()); return ExprError(); } numElements = LHSType->getAs<VectorType>()->getNumElements(); unsigned numResElements = TheCall->getNumArgs() - 2; // Check to see if we have a call with 2 vector arguments, the unary shuffle // with mask. If so, verify that RHS is an integer vector type with the // same number of elts as lhs. if (TheCall->getNumArgs() == 2) { if (!RHSType->hasIntegerRepresentation() || RHSType->getAs<VectorType>()->getNumElements() != numElements) Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector) << SourceRange(TheCall->getArg(1)->getLocStart(), TheCall->getArg(1)->getLocEnd()); numResElements = numElements; } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector) << SourceRange(TheCall->getArg(0)->getLocStart(), TheCall->getArg(1)->getLocEnd()); return ExprError(); } else if (numElements != numResElements) { QualType eltType = LHSType->getAs<VectorType>()->getElementType(); resType = Context.getVectorType(eltType, numResElements, VectorType::GenericVector); } } for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { if (TheCall->getArg(i)->isTypeDependent() || TheCall->getArg(i)->isValueDependent()) continue; llvm::APSInt Result(32); if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) return ExprError(Diag(TheCall->getLocStart(), diag::err_shufflevector_nonconstant_argument) << TheCall->getArg(i)->getSourceRange()); if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) return ExprError(Diag(TheCall->getLocStart(), diag::err_shufflevector_argument_too_large) << TheCall->getArg(i)->getSourceRange()); } SmallVector<Expr*, 32> exprs; for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { exprs.push_back(TheCall->getArg(i)); TheCall->setArg(i, 0); } return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(), exprs.size(), resType, TheCall->getCallee()->getLocStart(), TheCall->getRParenLoc())); } /// SemaBuiltinPrefetch - Handle __builtin_prefetch. // This is declared to take (const void*, ...) and can take two // optional constant int args. bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { unsigned NumArgs = TheCall->getNumArgs(); if (NumArgs > 3) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args_at_most) << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); // Argument 0 is checked for us and the remaining arguments must be // constant integers. for (unsigned i = 1; i != NumArgs; ++i) { Expr *Arg = TheCall->getArg(i); llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, i, Result)) return true; // FIXME: gcc issues a warning and rewrites these to 0. These // seems especially odd for the third argument since the default // is 3. if (i == 1) { if (Result.getLimitedValue() > 1) return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << "0" << "1" << Arg->getSourceRange(); } else { if (Result.getLimitedValue() > 3) return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << "0" << "3" << Arg->getSourceRange(); } } return false; } /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr /// TheCall is a constant expression. bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result) { Expr *Arg = TheCall->getArg(ArgNum); DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; if (!Arg->isIntegerConstantExpr(Result, Context)) return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type) << FDecl->getDeclName() << Arg->getSourceRange(); return false; } /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr, /// int type). This simply type checks that type is one of the defined /// constants (0-3). // For compatibility check 0-3, llvm only handles 0 and 2. bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) { llvm::APSInt Result; // Check constant-ness first. if (SemaBuiltinConstantArg(TheCall, 1, Result)) return true; Expr *Arg = TheCall->getArg(1); if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) { return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd()); } return false; } /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). /// This checks that val is a constant 1. bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { Expr *Arg = TheCall->getArg(1); llvm::APSInt Result; // TODO: This is less than ideal. Overload this to take a value. if (SemaBuiltinConstantArg(TheCall, 1, Result)) return true; if (Result != 1) return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val) << SourceRange(Arg->getLocStart(), Arg->getLocEnd()); return false; } // Handle i > 1 ? "x" : "y", recursively. bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args, unsigned NumArgs, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, bool inFunctionCall) { tryAgain: if (E->isTypeDependent() || E->isValueDependent()) return false; E = E->IgnoreParenCasts(); if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) // Technically -Wformat-nonliteral does not warn about this case. // The behavior of printf and friends in this case is implementation // dependent. Ideally if the format string cannot be null then // it should have a 'nonnull' attribute in the function prototype. return true; switch (E->getStmtClass()) { case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E); return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg, format_idx, firstDataArg, Type, inFunctionCall) && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg, format_idx, firstDataArg, Type, inFunctionCall); } case Stmt::ImplicitCastExprClass: { E = cast<ImplicitCastExpr>(E)->getSubExpr(); goto tryAgain; } case Stmt::OpaqueValueExprClass: if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { E = src; goto tryAgain; } return false; case Stmt::PredefinedExprClass: // While __func__, etc., are technically not string literals, they // cannot contain format specifiers and thus are not a security // liability. return true; case Stmt::DeclRefExprClass: { const DeclRefExpr *DR = cast<DeclRefExpr>(E); // As an exception, do not flag errors for variables binding to // const string literals. if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { bool isConstant = false; QualType T = DR->getType(); if (const ArrayType *AT = Context.getAsArrayType(T)) { isConstant = AT->getElementType().isConstant(Context); } else if (const PointerType *PT = T->getAs<PointerType>()) { isConstant = T.isConstant(Context) && PT->getPointeeType().isConstant(Context); } else if (T->isObjCObjectPointerType()) { // In ObjC, there is usually no "const ObjectPointer" type, // so don't check if the pointee type is constant. isConstant = T.isConstant(Context); } if (isConstant) { if (const Expr *Init = VD->getAnyInitializer()) return SemaCheckStringLiteral(Init, Args, NumArgs, HasVAListArg, format_idx, firstDataArg, Type, /*inFunctionCall*/false); } // For vprintf* functions (i.e., HasVAListArg==true), we add a // special check to see if the format string is a function parameter // of the function calling the printf function. If the function // has an attribute indicating it is a printf-like function, then we // should suppress warnings concerning non-literals being used in a call // to a vprintf function. For example: // // void // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ // va_list ap; // va_start(ap, fmt); // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". // ... // if (HasVAListArg) { if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { int PVIndex = PV->getFunctionScopeIndex() + 1; for (specific_attr_iterator<FormatAttr> i = ND->specific_attr_begin<FormatAttr>(), e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) { FormatAttr *PVFormat = *i; // adjust for implicit parameter if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) if (MD->isInstance()) ++PVIndex; // We also check if the formats are compatible. // We can't pass a 'scanf' string to a 'printf' function. if (PVIndex == PVFormat->getFormatIdx() && Type == GetFormatStringType(PVFormat)) return true; } } } } } return false; } case Stmt::CallExprClass: case Stmt::CXXMemberCallExprClass: { const CallExpr *CE = cast<CallExpr>(E); if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) { unsigned ArgIndex = FA->getFormatIdx(); if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) if (MD->isInstance()) --ArgIndex; const Expr *Arg = CE->getArg(ArgIndex - 1); return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg, format_idx, firstDataArg, Type, inFunctionCall); } } return false; } case Stmt::ObjCStringLiteralClass: case Stmt::StringLiteralClass: { const StringLiteral *StrE = NULL; if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) StrE = ObjCFExpr->getString(); else StrE = cast<StringLiteral>(E); if (StrE) { CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx, firstDataArg, Type, inFunctionCall); return true; } return false; } default: return false; } } void Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const Expr * const *ExprArgs, SourceLocation CallSiteLoc) { for (NonNullAttr::args_iterator i = NonNull->args_begin(), e = NonNull->args_end(); i != e; ++i) { const Expr *ArgExpr = ExprArgs[*i]; if (ArgExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); } } Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { return llvm::StringSwitch<FormatStringType>(Format->getType()) .Case("scanf", FST_Scanf) .Cases("printf", "printf0", FST_Printf) .Cases("NSString", "CFString", FST_NSString) .Case("strftime", FST_Strftime) .Case("strfmon", FST_Strfmon) .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) .Default(FST_Unknown); } /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar /// functions) for correct use of format strings. void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) { bool IsCXXMember = false; // The way the format attribute works in GCC, the implicit this argument // of member functions is counted. However, it doesn't appear in our own // lists, so decrement format_idx in that case. IsCXXMember = isa<CXXMemberCallExpr>(TheCall); CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(), IsCXXMember, TheCall->getRParenLoc(), TheCall->getCallee()->getSourceRange()); } void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args, unsigned NumArgs, bool IsCXXMember, SourceLocation Loc, SourceRange Range) { bool HasVAListArg = Format->getFirstArg() == 0; unsigned format_idx = Format->getFormatIdx() - 1; unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1; if (IsCXXMember) { if (format_idx == 0) return; --format_idx; if(firstDataArg != 0) --firstDataArg; } CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx, firstDataArg, GetFormatStringType(Format), Loc, Range); } void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, SourceLocation Loc, SourceRange Range) { // CHECK: printf/scanf-like function is called with no format string. if (format_idx >= NumArgs) { Diag(Loc, diag::warn_missing_format_string) << Range; return; } const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); // CHECK: format string is not a string literal. // // Dynamically generated format strings are difficult to // automatically vet at compile time. Requiring that format strings // are string literals: (1) permits the checking of format strings by // the compiler and thereby (2) can practically remove the source of // many format string exploits. // Format string can be either ObjC string (e.g. @"%d") or // C string (e.g. "%d") // ObjC string uses the same format specifiers as C string, so we can use // the same format string checking logic for both ObjC and C strings. if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg, format_idx, firstDataArg, Type)) return; // Literal format string found, check done! // Strftime is particular as it always uses a single 'time' argument, // so it is safe to pass a non-literal string. if (Type == FST_Strftime) return; // Do not emit diag when the string param is a macro expansion and the // format is either NSString or CFString. This is a hack to prevent // diag when using the NSLocalizedString and CFCopyLocalizedString macros // which are usually used in place of NS and CF string literals. if (Type == FST_NSString && Args[format_idx]->getLocStart().isMacroID()) return; // If there are no arguments specified, warn with -Wformat-security, otherwise // warn only with -Wformat-nonliteral. if (NumArgs == format_idx+1) Diag(Args[format_idx]->getLocStart(), diag::warn_format_nonliteral_noargs) << OrigFormatExpr->getSourceRange(); else Diag(Args[format_idx]->getLocStart(), diag::warn_format_nonliteral) << OrigFormatExpr->getSourceRange(); } namespace { class CheckFormatHandler : public analyze_format_string::FormatStringHandler { protected: Sema &S; const StringLiteral *FExpr; const Expr *OrigFormatExpr; const unsigned FirstDataArg; const unsigned NumDataArgs; const bool IsObjCLiteral; const char *Beg; // Start of format string. const bool HasVAListArg; const Expr * const *Args; const unsigned NumArgs; unsigned FormatIdx; llvm::BitVector CoveredArgs; bool usesPositionalArgs; bool atFirstArg; bool inFunctionCall; public: CheckFormatHandler(Sema &s, const StringLiteral *fexpr, const Expr *origFormatExpr, unsigned firstDataArg, unsigned numDataArgs, bool isObjCLiteral, const char *beg, bool hasVAListArg, Expr **args, unsigned numArgs, unsigned formatIdx, bool inFunctionCall) : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), IsObjCLiteral(isObjCLiteral), Beg(beg), HasVAListArg(hasVAListArg), Args(args), NumArgs(numArgs), FormatIdx(formatIdx), usesPositionalArgs(false), atFirstArg(true), inFunctionCall(inFunctionCall) { CoveredArgs.resize(numDataArgs); CoveredArgs.reset(); } void DoneProcessing(); void HandleIncompleteSpecifier(const char *startSpecifier, unsigned specifierLen); void HandleNonStandardLengthModifier( const analyze_format_string::LengthModifier &LM, const char *startSpecifier, unsigned specifierLen); void HandleNonStandardConversionSpecifier( const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen); void HandleNonStandardConversionSpecification( const analyze_format_string::LengthModifier &LM, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen); virtual void HandlePosition(const char *startPos, unsigned posLen); virtual void HandleInvalidPosition(const char *startSpecifier, unsigned specifierLen, analyze_format_string::PositionContext p); virtual void HandleZeroPosition(const char *startPos, unsigned posLen); void HandleNullChar(const char *nullCharacter); template <typename Range> static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, PartialDiagnostic PDiag, SourceLocation StringLoc, bool IsStringLocation, Range StringRange, FixItHint Fixit = FixItHint()); protected: bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, const char *startSpec, unsigned specifierLen, const char *csStart, unsigned csLen); void HandlePositionalNonpositionalArgs(SourceLocation Loc, const char *startSpec, unsigned specifierLen); SourceRange getFormatStringRange(); CharSourceRange getSpecifierRange(const char *startSpecifier, unsigned specifierLen); SourceLocation getLocationOfByte(const char *x); const Expr *getDataArg(unsigned i) const; bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen, unsigned argIndex); template <typename Range> void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, bool IsStringLocation, Range StringRange, FixItHint Fixit = FixItHint()); void CheckPositionalAndNonpositionalArgs( const analyze_format_string::FormatSpecifier *FS); }; } SourceRange CheckFormatHandler::getFormatStringRange() { return OrigFormatExpr->getSourceRange(); } CharSourceRange CheckFormatHandler:: getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { SourceLocation Start = getLocationOfByte(startSpecifier); SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); // Advance the end SourceLocation by one due to half-open ranges. End = End.getLocWithOffset(1); return CharSourceRange::getCharRange(Start, End); } SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { return S.getLocationOfStringLiteralByte(FExpr, x - Beg); } void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, unsigned specifierLen){ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), getLocationOfByte(startSpecifier), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } void CheckFormatHandler::HandleNonStandardLengthModifier( const analyze_format_string::LengthModifier &LM, const char *startSpecifier, unsigned specifierLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString() << 0, getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } void CheckFormatHandler::HandleNonStandardConversionSpecifier( const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString() << 1, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } void CheckFormatHandler::HandleNonStandardConversionSpecification( const analyze_format_string::LengthModifier &LM, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec) << LM.toString() << CS.toString(), getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } void CheckFormatHandler::HandlePosition(const char *startPos, unsigned posLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), getLocationOfByte(startPos), /*IsStringLocation*/true, getSpecifierRange(startPos, posLen)); } void CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, analyze_format_string::PositionContext p) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned) p, getLocationOfByte(startPos), /*IsStringLocation*/true, getSpecifierRange(startPos, posLen)); } void CheckFormatHandler::HandleZeroPosition(const char *startPos, unsigned posLen) { EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), getLocationOfByte(startPos), /*IsStringLocation*/true, getSpecifierRange(startPos, posLen)); } void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { if (!IsObjCLiteral) { // The presence of a null character is likely an error. EmitFormatDiagnostic( S.PDiag(diag::warn_printf_format_string_contains_null_char), getLocationOfByte(nullCharacter), /*IsStringLocation*/true, getFormatStringRange()); } } const Expr *CheckFormatHandler::getDataArg(unsigned i) const { return Args[FirstDataArg + i]; } void CheckFormatHandler::DoneProcessing() { // Does the number of data arguments exceed the number of // format conversions in the format string? if (!HasVAListArg) { // Find any arguments that weren't covered. CoveredArgs.flip(); signed notCoveredArg = CoveredArgs.find_first(); if (notCoveredArg >= 0) { assert((unsigned)notCoveredArg < NumDataArgs); EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used), getDataArg((unsigned) notCoveredArg)->getLocStart(), /*IsStringLocation*/false, getFormatStringRange()); } } } bool CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, const char *startSpec, unsigned specifierLen, const char *csStart, unsigned csLen) { bool keepGoing = true; if (argIndex < NumDataArgs) { // Consider the argument coverered, even though the specifier doesn't // make sense. CoveredArgs.set(argIndex); } else { // If argIndex exceeds the number of data arguments we // don't issue a warning because that is just a cascade of warnings (and // they may have intended '%%' anyway). We don't want to continue processing // the format string after this point, however, as we will like just get // gibberish when trying to match arguments. keepGoing = false; } EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion) << StringRef(csStart, csLen), Loc, /*IsStringLocation*/true, getSpecifierRange(startSpec, specifierLen)); return keepGoing; } void CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, const char *startSpec, unsigned specifierLen) { EmitFormatDiagnostic( S.PDiag(diag::warn_format_mix_positional_nonpositional_args), Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); } bool CheckFormatHandler::CheckNumArgs( const analyze_format_string::FormatSpecifier &FS, const analyze_format_string::ConversionSpecifier &CS, const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { if (argIndex >= NumDataArgs) { PartialDiagnostic PDiag = FS.usesPositionalArg() ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) << (argIndex+1) << NumDataArgs) : S.PDiag(diag::warn_printf_insufficient_data_args); EmitFormatDiagnostic( PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); return false; } return true; } template<typename Range> void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation Loc, bool IsStringLocation, Range StringRange, FixItHint FixIt) { EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, Loc, IsStringLocation, StringRange, FixIt); } /// \brief If the format string is not within the funcion call, emit a note /// so that the function call and string are in diagnostic messages. /// /// \param inFunctionCall if true, the format string is within the function /// call and only one diagnostic message will be produced. Otherwise, an /// extra note will be emitted pointing to location of the format string. /// /// \param ArgumentExpr the expression that is passed as the format string /// argument in the function call. Used for getting locations when two /// diagnostics are emitted. /// /// \param PDiag the callee should already have provided any strings for the /// diagnostic message. This function only adds locations and fixits /// to diagnostics. /// /// \param Loc primary location for diagnostic. If two diagnostics are /// required, one will be at Loc and a new SourceLocation will be created for /// the other one. /// /// \param IsStringLocation if true, Loc points to the format string should be /// used for the note. Otherwise, Loc points to the argument list and will /// be used with PDiag. /// /// \param StringRange some or all of the string to highlight. This is /// templated so it can accept either a CharSourceRange or a SourceRange. /// /// \param Fixit optional fix it hint for the format string. template<typename Range> void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, PartialDiagnostic PDiag, SourceLocation Loc, bool IsStringLocation, Range StringRange, FixItHint FixIt) { if (InFunctionCall) S.Diag(Loc, PDiag) << StringRange << FixIt; else { S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) << ArgumentExpr->getSourceRange(); S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), diag::note_format_string_defined) << StringRange << FixIt; } } //===--- CHECK: Printf format string checking ------------------------------===// namespace { class CheckPrintfHandler : public CheckFormatHandler { public: CheckPrintfHandler(Sema &s, const StringLiteral *fexpr, const Expr *origFormatExpr, unsigned firstDataArg, unsigned numDataArgs, bool isObjCLiteral, const char *beg, bool hasVAListArg, Expr **Args, unsigned NumArgs, unsigned formatIdx, bool inFunctionCall) : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg, numDataArgs, isObjCLiteral, beg, hasVAListArg, Args, NumArgs, formatIdx, inFunctionCall) {} bool HandleInvalidPrintfConversionSpecifier( const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen); bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen); bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, const char *startSpecifier, unsigned specifierLen); void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalAmount &Amt, unsigned type, const char *startSpecifier, unsigned specifierLen); void HandleFlag(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen); void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &ignoredFlag, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen); }; } bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { const analyze_printf::PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); return HandleInvalidConversionSpecifier(FS.getArgIndex(), getLocationOfByte(CS.getStart()), startSpecifier, specifierLen, CS.getStart(), CS.getLength()); } bool CheckPrintfHandler::HandleAmount( const analyze_format_string::OptionalAmount &Amt, unsigned k, const char *startSpecifier, unsigned specifierLen) { if (Amt.hasDataArgument()) { if (!HasVAListArg) { unsigned argIndex = Amt.getArgIndex(); if (argIndex >= NumDataArgs) { EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) << k, getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); // Don't do any more checking. We will just emit // spurious errors. return false; } // Type check the data argument. It should be an 'int'. // Although not in conformance with C99, we also allow the argument to be // an 'unsigned int' as that is a reasonably safe case. GCC also // doesn't emit a warning for that case. CoveredArgs.set(argIndex); const Expr *Arg = getDataArg(argIndex); QualType T = Arg->getType(); const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context); assert(ATR.isValid()); if (!ATR.matchesType(S.Context, T)) { EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) << k << ATR.getRepresentativeTypeName(S.Context) << T << Arg->getSourceRange(), getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); // Don't do any more checking. We will just emit // spurious errors. return false; } } } return true; } void CheckPrintfHandler::HandleInvalidAmount( const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalAmount &Amt, unsigned type, const char *startSpecifier, unsigned specifierLen) { const analyze_printf::PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); FixItHint fixit = Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), Amt.getConstantLength())) : FixItHint(); EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) << type << CS.toString(), getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), fixit); } void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen) { // Warn about pointless flag with a fixit removal. const analyze_printf::PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) << flag.toString() << CS.toString(), getLocationOfByte(flag.getPosition()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateRemoval( getSpecifierRange(flag.getPosition(), 1))); } void CheckPrintfHandler::HandleIgnoredFlag( const analyze_printf::PrintfSpecifier &FS, const analyze_printf::OptionalFlag &ignoredFlag, const analyze_printf::OptionalFlag &flag, const char *startSpecifier, unsigned specifierLen) { // Warn about ignored flag with a fixit removal. EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) << ignoredFlag.toString() << flag.toString(), getLocationOfByte(ignoredFlag.getPosition()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateRemoval( getSpecifierRange(ignoredFlag.getPosition(), 1))); } bool CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { using namespace analyze_format_string; using namespace analyze_printf; const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); if (FS.consumesDataArgument()) { if (atFirstArg) { atFirstArg = false; usesPositionalArgs = FS.usesPositionalArg(); } else if (usesPositionalArgs != FS.usesPositionalArg()) { HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), startSpecifier, specifierLen); return false; } } // First check if the field width, precision, and conversion specifier // have matching data arguments. if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, startSpecifier, specifierLen)) { return false; } if (!HandleAmount(FS.getPrecision(), /* precision */ 1, startSpecifier, specifierLen)) { return false; } if (!CS.consumesDataArgument()) { // FIXME: Technically specifying a precision or field width here // makes no sense. Worth issuing a warning at some point. return true; } // Consume the argument. unsigned argIndex = FS.getArgIndex(); if (argIndex < NumDataArgs) { // The check to see if the argIndex is valid will come later. // We set the bit here because we may exit early from this // function if we encounter some other error. CoveredArgs.set(argIndex); } // FreeBSD extensions if (CS.getKind() == ConversionSpecifier::bArg || CS.getKind() == ConversionSpecifier::DArg) { // claim the second argument CoveredArgs.set(argIndex + 1); // Now type check the data expression that matches the // format specifier. const Expr *Ex = getDataArg(argIndex); const analyze_printf::ArgTypeResult &ATR = (CS.getKind() == ConversionSpecifier::bArg) ? ArgTypeResult(S.Context.IntTy) : ArgTypeResult::CStrTy; if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_conversion_argument_type_mismatch) << ATR.getRepresentativeType(S.Context) << Ex->getType() << getSpecifierRange(startSpecifier, specifierLen) << Ex->getSourceRange(); // Now type check the data expression that matches the // format specifier. Ex = getDataArg(argIndex + 1); const analyze_printf::ArgTypeResult &ATR2 = ArgTypeResult::CStrTy; if (ATR2.isValid() && !ATR2.matchesType(S.Context, Ex->getType())) S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_conversion_argument_type_mismatch) << ATR2.getRepresentativeType(S.Context) << Ex->getType() << getSpecifierRange(startSpecifier, specifierLen) << Ex->getSourceRange(); return true; } // END OF FREEBSD EXTENSIONS // Check for using an Objective-C specific conversion specifier // in a non-ObjC literal. if (!IsObjCLiteral && CS.isObjCArg()) { return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, specifierLen); } // Check for invalid use of field width if (!FS.hasValidFieldWidth()) { HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, startSpecifier, specifierLen); } // Check for invalid use of precision if (!FS.hasValidPrecision()) { HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, startSpecifier, specifierLen); } // Check each flag does not conflict with any other component. if (!FS.hasValidThousandsGroupingPrefix()) HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); if (!FS.hasValidLeadingZeros()) HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); if (!FS.hasValidPlusPrefix()) HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); if (!FS.hasValidSpacePrefix()) HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); if (!FS.hasValidAlternativeForm()) HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); if (!FS.hasValidLeftJustified()) HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); // Check that flags are not ignored by another flag if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), startSpecifier, specifierLen); if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), startSpecifier, specifierLen); // Check the length modifier is valid with the given conversion specifier. const LengthModifier &LM = FS.getLengthModifier(); if (!FS.hasValidLengthModifier()) EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length) << LM.toString() << CS.toString(), getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateRemoval( getSpecifierRange(LM.getStart(), LM.getLength()))); if (!FS.hasStandardLengthModifier()) HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen); if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); if (!FS.hasStandardLengthConversionCombination()) HandleNonStandardConversionSpecification(LM, CS, startSpecifier, specifierLen); // Are we using '%n'? if (CS.getKind() == ConversionSpecifier::nArg) { // Issue a warning about this being a possible security issue. EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back), getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); // Continue checking the other format specifiers. return true; } // The remaining checks depend on the data arguments. if (HasVAListArg) return true; if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) return false; // Now type check the data expression that matches the // format specifier. const Expr *Ex = getDataArg(argIndex); const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context, IsObjCLiteral); if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) { // Check if we didn't match because of an implicit cast from a 'char' // or 'short' to an 'int'. This is done because printf is a varargs // function. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex)) if (ICE->getType() == S.Context.IntTy) { // All further checking is done on the subexpression. Ex = ICE->getSubExpr(); if (ATR.matchesType(S.Context, Ex->getType())) return true; } // We may be able to offer a FixItHint if it is a supported type. PrintfSpecifier fixedFS = FS; bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(), S.Context, IsObjCLiteral); if (success) { // Get the fix string from the fixed format specifier SmallString<128> buf; llvm::raw_svector_ostream os(buf); fixedFS.toString(os); EmitFormatDiagnostic( S.PDiag(diag::warn_printf_conversion_argument_type_mismatch) << ATR.getRepresentativeTypeName(S.Context) << Ex->getType() << Ex->getSourceRange(), getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateReplacement( getSpecifierRange(startSpecifier, specifierLen), os.str())); } else { EmitFormatDiagnostic( S.PDiag(diag::warn_printf_conversion_argument_type_mismatch) << ATR.getRepresentativeTypeName(S.Context) << Ex->getType() << getSpecifierRange(startSpecifier, specifierLen) << Ex->getSourceRange(), getLocationOfByte(CS.getStart()), true, getSpecifierRange(startSpecifier, specifierLen)); } } return true; } //===--- CHECK: Scanf format string checking ------------------------------===// namespace { class CheckScanfHandler : public CheckFormatHandler { public: CheckScanfHandler(Sema &s, const StringLiteral *fexpr, const Expr *origFormatExpr, unsigned firstDataArg, unsigned numDataArgs, bool isObjCLiteral, const char *beg, bool hasVAListArg, Expr **Args, unsigned NumArgs, unsigned formatIdx, bool inFunctionCall) : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg, numDataArgs, isObjCLiteral, beg, hasVAListArg, Args, NumArgs, formatIdx, inFunctionCall) {} bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen); bool HandleInvalidScanfConversionSpecifier( const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen); void HandleIncompleteScanList(const char *start, const char *end); }; } void CheckScanfHandler::HandleIncompleteScanList(const char *start, const char *end) { EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), getLocationOfByte(end), /*IsStringLocation*/true, getSpecifierRange(start, end - start)); } bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { const analyze_scanf::ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); return HandleInvalidConversionSpecifier(FS.getArgIndex(), getLocationOfByte(CS.getStart()), startSpecifier, specifierLen, CS.getStart(), CS.getLength()); } bool CheckScanfHandler::HandleScanfSpecifier( const analyze_scanf::ScanfSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { using namespace analyze_scanf; using namespace analyze_format_string; const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); // Handle case where '%' and '*' don't consume an argument. These shouldn't // be used to decide if we are using positional arguments consistently. if (FS.consumesDataArgument()) { if (atFirstArg) { atFirstArg = false; usesPositionalArgs = FS.usesPositionalArg(); } else if (usesPositionalArgs != FS.usesPositionalArg()) { HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), startSpecifier, specifierLen); return false; } } // Check if the field with is non-zero. const OptionalAmount &Amt = FS.getFieldWidth(); if (Amt.getHowSpecified() == OptionalAmount::Constant) { if (Amt.getConstantAmount() == 0) { const CharSourceRange &R = getSpecifierRange(Amt.getStart(), Amt.getConstantLength()); EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), getLocationOfByte(Amt.getStart()), /*IsStringLocation*/true, R, FixItHint::CreateRemoval(R)); } } if (!FS.consumesDataArgument()) { // FIXME: Technically specifying a precision or field width here // makes no sense. Worth issuing a warning at some point. return true; } // Consume the argument. unsigned argIndex = FS.getArgIndex(); if (argIndex < NumDataArgs) { // The check to see if the argIndex is valid will come later. // We set the bit here because we may exit early from this // function if we encounter some other error. CoveredArgs.set(argIndex); } // Check the length modifier is valid with the given conversion specifier. const LengthModifier &LM = FS.getLengthModifier(); if (!FS.hasValidLengthModifier()) { const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength()); EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length) << LM.toString() << CS.toString() << getSpecifierRange(startSpecifier, specifierLen), getLocationOfByte(LM.getStart()), /*IsStringLocation*/true, R, FixItHint::CreateRemoval(R)); } if (!FS.hasStandardLengthModifier()) HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen); if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); if (!FS.hasStandardLengthConversionCombination()) HandleNonStandardConversionSpecification(LM, CS, startSpecifier, specifierLen); // The remaining checks depend on the data arguments. if (HasVAListArg) return true; if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) return false; // Check that the argument type matches the format specifier. const Expr *Ex = getDataArg(argIndex); const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context); if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) { ScanfSpecifier fixedFS = FS; bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(), S.Context); if (success) { // Get the fix string from the fixed format specifier. SmallString<128> buf; llvm::raw_svector_ostream os(buf); fixedFS.toString(os); EmitFormatDiagnostic( S.PDiag(diag::warn_printf_conversion_argument_type_mismatch) << ATR.getRepresentativeTypeName(S.Context) << Ex->getType() << Ex->getSourceRange(), getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen), FixItHint::CreateReplacement( getSpecifierRange(startSpecifier, specifierLen), os.str())); } else { EmitFormatDiagnostic( S.PDiag(diag::warn_printf_conversion_argument_type_mismatch) << ATR.getRepresentativeTypeName(S.Context) << Ex->getType() << Ex->getSourceRange(), getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, getSpecifierRange(startSpecifier, specifierLen)); } } return true; } void Sema::CheckFormatString(const StringLiteral *FExpr, const Expr *OrigFormatExpr, Expr **Args, unsigned NumArgs, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, bool inFunctionCall) { // CHECK: is the format string a wide literal? if (!FExpr->isAscii()) { CheckFormatHandler::EmitFormatDiagnostic( *this, inFunctionCall, Args[format_idx], PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(), /*IsStringLocation*/true, OrigFormatExpr->getSourceRange()); return; } // Str - The format string. NOTE: this is NOT null-terminated! StringRef StrRef = FExpr->getString(); const char *Str = StrRef.data(); unsigned StrLen = StrRef.size(); const unsigned numDataArgs = NumArgs - firstDataArg; // CHECK: empty format string? if (StrLen == 0 && numDataArgs > 0) { CheckFormatHandler::EmitFormatDiagnostic( *this, inFunctionCall, Args[format_idx], PDiag(diag::warn_empty_format_string), FExpr->getLocStart(), /*IsStringLocation*/true, OrigFormatExpr->getSourceRange()); return; } if (Type == FST_Printf || Type == FST_NSString) { CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr), Str, HasVAListArg, Args, NumArgs, format_idx, inFunctionCall); if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, getLangOpts())) H.DoneProcessing(); } else if (Type == FST_Scanf) { CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr), Str, HasVAListArg, Args, NumArgs, format_idx, inFunctionCall); if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, getLangOpts())) H.DoneProcessing(); } // TODO: handle other formats } //===--- CHECK: Standard memory functions ---------------------------------===// /// \brief Determine whether the given type is a dynamic class type (e.g., /// whether it has a vtable). static bool isDynamicClassType(QualType T) { if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) if (CXXRecordDecl *Definition = Record->getDefinition()) if (Definition->isDynamicClass()) return true; return false; } /// \brief If E is a sizeof expression, returns its argument expression, /// otherwise returns NULL. static const Expr *getSizeOfExprArg(const Expr* E) { if (const UnaryExprOrTypeTraitExpr *SizeOf = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType()) return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); return 0; } /// \brief If E is a sizeof expression, returns its argument type. static QualType getSizeOfArgType(const Expr* E) { if (const UnaryExprOrTypeTraitExpr *SizeOf = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) if (SizeOf->getKind() == clang::UETT_SizeOf) return SizeOf->getTypeOfArgument(); return QualType(); } /// \brief Check for dangerous or invalid arguments to memset(). /// /// This issues warnings on known problematic, dangerous or unspecified /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' /// function calls. /// /// \param Call The call expression to diagnose. void Sema::CheckMemaccessArguments(const CallExpr *Call, unsigned BId, IdentifierInfo *FnName) { assert(BId != 0); // It is possible to have a non-standard definition of memset. Validate // we have enough arguments, and if not, abort further checking. unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3); if (Call->getNumArgs() < ExpectedNumArgs) return; unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIstrndup ? 1 : 2); unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2); const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); // We have special checking when the length is a sizeof expression. QualType SizeOfArgTy = getSizeOfArgType(LenExpr); const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); llvm::FoldingSetNodeID SizeOfArgID; for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); QualType DestTy = Dest->getType(); if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { QualType PointeeTy = DestPtrTy->getPointeeType(); // Never warn about void type pointers. This can be used to suppress // false positives. if (PointeeTy->isVoidType()) continue; // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by // actually comparing the expressions for equality. Because computing the // expression IDs can be expensive, we only do this if the diagnostic is // enabled. if (SizeOfArg && Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess, SizeOfArg->getExprLoc())) { // We only compute IDs for expressions if the warning is enabled, and // cache the sizeof arg's ID. if (SizeOfArgID == llvm::FoldingSetNodeID()) SizeOfArg->Profile(SizeOfArgID, Context, true); llvm::FoldingSetNodeID DestID; Dest->Profile(DestID, Context, true); if (DestID == SizeOfArgID) { // TODO: For strncpy() and friends, this could suggest sizeof(dst) // over sizeof(src) as well. unsigned ActionIdx = 0; // Default is to suggest dereferencing. if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) if (UnaryOp->getOpcode() == UO_AddrOf) ActionIdx = 1; // If its an address-of operator, just remove it. if (Context.getTypeSize(PointeeTy) == Context.getCharWidth()) ActionIdx = 2; // If the pointee's size is sizeof(char), // suggest an explicit length. unsigned DestSrcSelect = (BId == Builtin::BIstrndup ? 1 : ArgIdx); DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest, PDiag(diag::warn_sizeof_pointer_expr_memaccess) << FnName << DestSrcSelect << ActionIdx << Dest->getSourceRange() << SizeOfArg->getSourceRange()); break; } } // Also check for cases where the sizeof argument is the exact same // type as the memory argument, and where it points to a user-defined // record type. if (SizeOfArgTy != QualType()) { if (PointeeTy->isRecordType() && Context.typesAreCompatible(SizeOfArgTy, DestTy)) { DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, PDiag(diag::warn_sizeof_pointer_type_memaccess) << FnName << SizeOfArgTy << ArgIdx << PointeeTy << Dest->getSourceRange() << LenExpr->getSourceRange()); break; } } // Always complain about dynamic classes. if (isDynamicClassType(PointeeTy)) { unsigned OperationType = 0; // "overwritten" if we're warning about the destination for any call // but memcmp; otherwise a verb appropriate to the call. if (ArgIdx != 0 || BId == Builtin::BImemcmp) { if (BId == Builtin::BImemcpy) OperationType = 1; else if(BId == Builtin::BImemmove) OperationType = 2; else if (BId == Builtin::BImemcmp) OperationType = 3; } DiagRuntimeBehavior( Dest->getExprLoc(), Dest, PDiag(diag::warn_dyn_class_memaccess) << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy << OperationType << Call->getCallee()->getSourceRange()); } else if (PointeeTy.hasNonTrivialObjCLifetime() && BId != Builtin::BImemset) DiagRuntimeBehavior( Dest->getExprLoc(), Dest, PDiag(diag::warn_arc_object_memaccess) << ArgIdx << FnName << PointeeTy << Call->getCallee()->getSourceRange()); else continue; DiagRuntimeBehavior( Dest->getExprLoc(), Dest, PDiag(diag::note_bad_memaccess_silence) << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); break; } } } // A little helper routine: ignore addition and subtraction of integer literals. // This intentionally does not ignore all integer constant expressions because // we don't want to remove sizeof(). static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { Ex = Ex->IgnoreParenCasts(); for (;;) { const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); if (!BO || !BO->isAdditiveOp()) break; const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); if (isa<IntegerLiteral>(RHS)) Ex = LHS; else if (isa<IntegerLiteral>(LHS)) Ex = RHS; else break; } return Ex; } // Warn if the user has made the 'size' argument to strlcpy or strlcat // be the size of the source, instead of the destination. void Sema::CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName) { // Don't crash if the user has the wrong number of arguments if (Call->getNumArgs() != 3) return; const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); const Expr *CompareWithSrc = NULL; // Look for 'strlcpy(dst, x, sizeof(x))' if (const Expr *Ex = getSizeOfExprArg(SizeArg)) CompareWithSrc = Ex; else { // Look for 'strlcpy(dst, x, strlen(x))' if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { if (SizeCall->isBuiltinCall() == Builtin::BIstrlen && SizeCall->getNumArgs() == 1) CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); } } if (!CompareWithSrc) return; // Determine if the argument to sizeof/strlen is equal to the source // argument. In principle there's all kinds of things you could do // here, for instance creating an == expression and evaluating it with // EvaluateAsBooleanCondition, but this uses a more direct technique: const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); if (!SrcArgDRE) return; const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); if (!CompareWithSrcDRE || SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) return; const Expr *OriginalSizeArg = Call->getArg(2); Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size) << OriginalSizeArg->getSourceRange() << FnName; // Output a FIXIT hint if the destination is an array (rather than a // pointer to an array). This could be enhanced to handle some // pointers if we know the actual size, like if DstArg is 'array+2' // we could say 'sizeof(array)-2'. const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); QualType DstArgTy = DstArg->getType(); // Only handle constant-sized or VLAs, but not flexible members. if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) { // Only issue the FIXIT for arrays of size > 1. if (CAT->getSize().getSExtValue() <= 1) return; } else if (!DstArgTy->isVariableArrayType()) { return; } SmallString<128> sizeString; llvm::raw_svector_ostream OS(sizeString); OS << "sizeof("; DstArg->printPretty(OS, Context, 0, getPrintingPolicy()); OS << ")"; Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size) << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), OS.str()); } /// Check if two expressions refer to the same declaration. static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) return D1->getDecl() == D2->getDecl(); return false; } static const Expr *getStrlenExprArg(const Expr *E) { if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { const FunctionDecl *FD = CE->getDirectCallee(); if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) return 0; return CE->getArg(0)->IgnoreParenCasts(); } return 0; } // Warn on anti-patterns as the 'size' argument to strncat. // The correct size argument should look like following: // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); void Sema::CheckStrncatArguments(const CallExpr *CE, IdentifierInfo *FnName) { // Don't crash if the user has the wrong number of arguments. if (CE->getNumArgs() < 3) return; const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); // Identify common expressions, which are wrongly used as the size argument // to strncat and may lead to buffer overflows. unsigned PatternType = 0; if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { // - sizeof(dst) if (referToTheSameDecl(SizeOfArg, DstArg)) PatternType = 1; // - sizeof(src) else if (referToTheSameDecl(SizeOfArg, SrcArg)) PatternType = 2; } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { if (BE->getOpcode() == BO_Sub) { const Expr *L = BE->getLHS()->IgnoreParenCasts(); const Expr *R = BE->getRHS()->IgnoreParenCasts(); // - sizeof(dst) - strlen(dst) if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && referToTheSameDecl(DstArg, getStrlenExprArg(R))) PatternType = 1; // - sizeof(src) - (anything) else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) PatternType = 2; } } if (PatternType == 0) return; // Generate the diagnostic. SourceLocation SL = LenArg->getLocStart(); SourceRange SR = LenArg->getSourceRange(); SourceManager &SM = PP.getSourceManager(); // If the function is defined as a builtin macro, do not show macro expansion. if (SM.isMacroArgExpansion(SL)) { SL = SM.getSpellingLoc(SL); SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), SM.getSpellingLoc(SR.getEnd())); } if (PatternType == 1) Diag(SL, diag::warn_strncat_large_size) << SR; else Diag(SL, diag::warn_strncat_src_size) << SR; // Output a FIXIT hint if the destination is an array (rather than a // pointer to an array). This could be enhanced to handle some // pointers if we know the actual size, like if DstArg is 'array+2' // we could say 'sizeof(array)-2'. QualType DstArgTy = DstArg->getType(); // Only handle constant-sized or VLAs, but not flexible members. if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) { // Only issue the FIXIT for arrays of size > 1. if (CAT->getSize().getSExtValue() <= 1) return; } else if (!DstArgTy->isVariableArrayType()) { return; } SmallString<128> sizeString; llvm::raw_svector_ostream OS(sizeString); OS << "sizeof("; DstArg->printPretty(OS, Context, 0, getPrintingPolicy()); OS << ") - "; OS << "strlen("; DstArg->printPretty(OS, Context, 0, getPrintingPolicy()); OS << ") - 1"; Diag(SL, diag::note_strncat_wrong_size) << FixItHint::CreateReplacement(SR, OS.str()); } //===--- CHECK: Return Address of Stack Variable --------------------------===// static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars); static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars); /// CheckReturnStackAddr - Check if a return statement returns the address /// of a stack variable. void Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc) { Expr *stackE = 0; SmallVector<DeclRefExpr *, 8> refVars; // Perform checking for returned stack addresses, local blocks, // label addresses or references to temporaries. if (lhsType->isPointerType() || (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) { stackE = EvalAddr(RetValExp, refVars); } else if (lhsType->isReferenceType()) { stackE = EvalVal(RetValExp, refVars); } if (stackE == 0) return; // Nothing suspicious was found. SourceLocation diagLoc; SourceRange diagRange; if (refVars.empty()) { diagLoc = stackE->getLocStart(); diagRange = stackE->getSourceRange(); } else { // We followed through a reference variable. 'stackE' contains the // problematic expression but we will warn at the return statement pointing // at the reference variable. We will later display the "trail" of // reference variables using notes. diagLoc = refVars[0]->getLocStart(); diagRange = refVars[0]->getSourceRange(); } if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var. Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref : diag::warn_ret_stack_addr) << DR->getDecl()->getDeclName() << diagRange; } else if (isa<BlockExpr>(stackE)) { // local block. Diag(diagLoc, diag::err_ret_local_block) << diagRange; } else if (isa<AddrLabelExpr>(stackE)) { // address of label. Diag(diagLoc, diag::warn_ret_addr_label) << diagRange; } else { // local temporary. Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref : diag::warn_ret_local_temp_addr) << diagRange; } // Display the "trail" of reference variables that we followed until we // found the problematic expression using notes. for (unsigned i = 0, e = refVars.size(); i != e; ++i) { VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl()); // If this var binds to another reference var, show the range of the next // var, otherwise the var binds to the problematic expression, in which case // show the range of the expression. SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange() : stackE->getSourceRange(); Diag(VD->getLocation(), diag::note_ref_var_local_bind) << VD->getDeclName() << range; } } /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that /// check if the expression in a return statement evaluates to an address /// to a location on the stack, a local block, an address of a label, or a /// reference to local temporary. The recursion is used to traverse the /// AST of the return expression, with recursion backtracking when we /// encounter a subexpression that (1) clearly does not lead to one of the /// above problematic expressions (2) is something we cannot determine leads to /// a problematic expression based on such local checking. /// /// Both EvalAddr and EvalVal follow through reference variables to evaluate /// the expression that they point to. Such variables are added to the /// 'refVars' vector so that we know what the reference variable "trail" was. /// /// EvalAddr processes expressions that are pointers that are used as /// references (and not L-values). EvalVal handles all other values. /// At the base case of the recursion is a check for the above problematic /// expressions. /// /// This implementation handles: /// /// * pointer-to-pointer casts /// * implicit conversions from array references to pointers /// * taking the address of fields /// * arbitrary interplay between "&" and "*" operators /// * pointer arithmetic from an address of a stack variable /// * taking the address of an array element where the array is on the stack static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) { if (E->isTypeDependent()) return NULL; // We should only be called for evaluating pointer expressions. assert((E->getType()->isAnyPointerType() || E->getType()->isBlockPointerType() || E->getType()->isObjCQualifiedIdType()) && "EvalAddr only works on pointers"); E = E->IgnoreParens(); // Our "symbolic interpreter" is just a dispatch off the currently // viewed AST node. We then recursively traverse the AST by calling // EvalAddr and EvalVal appropriately. switch (E->getStmtClass()) { case Stmt::DeclRefExprClass: { DeclRefExpr *DR = cast<DeclRefExpr>(E); if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) // If this is a reference variable, follow through to the expression that // it points to. if (V->hasLocalStorage() && V->getType()->isReferenceType() && V->hasInit()) { // Add the reference variable to the "trail". refVars.push_back(DR); return EvalAddr(V->getInit(), refVars); } return NULL; } case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is AddrOf. All others don't make sense as pointers. UnaryOperator *U = cast<UnaryOperator>(E); if (U->getOpcode() == UO_AddrOf) return EvalVal(U->getSubExpr(), refVars); else return NULL; } case Stmt::BinaryOperatorClass: { // Handle pointer arithmetic. All other binary operators are not valid // in this context. BinaryOperator *B = cast<BinaryOperator>(E); BinaryOperatorKind op = B->getOpcode(); if (op != BO_Add && op != BO_Sub) return NULL; Expr *Base = B->getLHS(); // Determine which argument is the real pointer base. It could be // the RHS argument instead of the LHS. if (!Base->getType()->isPointerType()) Base = B->getRHS(); assert (Base->getType()->isPointerType()); return EvalAddr(Base, refVars); } // For conditional operators we need to see if either the LHS or RHS are // valid DeclRefExpr*s. If one of them is valid, we return it. case Stmt::ConditionalOperatorClass: { ConditionalOperator *C = cast<ConditionalOperator>(E); // Handle the GNU extension for missing LHS. if (Expr *lhsExpr = C->getLHS()) { // In C++, we can have a throw-expression, which has 'void' type. if (!lhsExpr->getType()->isVoidType()) if (Expr* LHS = EvalAddr(lhsExpr, refVars)) return LHS; } // In C++, we can have a throw-expression, which has 'void' type. if (C->getRHS()->getType()->isVoidType()) return NULL; return EvalAddr(C->getRHS(), refVars); } case Stmt::BlockExprClass: if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures()) return E; // local block. return NULL; case Stmt::AddrLabelExprClass: return E; // address of label. case Stmt::ExprWithCleanupsClass: return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars); // For casts, we need to handle conversions from arrays to // pointer values, and pointer-to-pointer conversions. case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: case Stmt::CXXFunctionalCastExprClass: case Stmt::ObjCBridgedCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::CXXDynamicCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXReinterpretCastExprClass: { Expr* SubExpr = cast<CastExpr>(E)->getSubExpr(); switch (cast<CastExpr>(E)->getCastKind()) { case CK_BitCast: case CK_LValueToRValue: case CK_NoOp: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_Dynamic: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: return EvalAddr(SubExpr, refVars); case CK_ArrayToPointerDecay: return EvalVal(SubExpr, refVars); default: return 0; } } case Stmt::MaterializeTemporaryExprClass: if (Expr *Result = EvalAddr( cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(), refVars)) return Result; return E; // Everything else: we simply don't reason about them. default: return NULL; } } /// EvalVal - This function is complements EvalAddr in the mutual recursion. /// See the comments for EvalAddr for more details. static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) { do { // We should only be called for evaluating non-pointer expressions, or // expressions with a pointer type that are not used as references but instead // are l-values (e.g., DeclRefExpr with a pointer type). // Our "symbolic interpreter" is just a dispatch off the currently // viewed AST node. We then recursively traverse the AST by calling // EvalAddr and EvalVal appropriately. E = E->IgnoreParens(); switch (E->getStmtClass()) { case Stmt::ImplicitCastExprClass: { ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E); if (IE->getValueKind() == VK_LValue) { E = IE->getSubExpr(); continue; } return NULL; } case Stmt::ExprWithCleanupsClass: return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars); case Stmt::DeclRefExprClass: { // When we hit a DeclRefExpr we are looking at code that refers to a // variable's name. If it's not a reference variable we check if it has // local storage within the function, and if so, return the expression. DeclRefExpr *DR = cast<DeclRefExpr>(E); if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) if (V->hasLocalStorage()) { if (!V->getType()->isReferenceType()) return DR; // Reference variable, follow through to the expression that // it points to. if (V->hasInit()) { // Add the reference variable to the "trail". refVars.push_back(DR); return EvalVal(V->getInit(), refVars); } } return NULL; } case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is Deref. All others don't resolve to a "name." This includes // handling all sorts of rvalues passed to a unary operator. UnaryOperator *U = cast<UnaryOperator>(E); if (U->getOpcode() == UO_Deref) return EvalAddr(U->getSubExpr(), refVars); return NULL; } case Stmt::ArraySubscriptExprClass: { // Array subscripts are potential references to data on the stack. We // retrieve the DeclRefExpr* for the array variable if it indeed // has local storage. return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars); } case Stmt::ConditionalOperatorClass: { // For conditional operators we need to see if either the LHS or RHS are // non-NULL Expr's. If one is non-NULL, we return it. ConditionalOperator *C = cast<ConditionalOperator>(E); // Handle the GNU extension for missing LHS. if (Expr *lhsExpr = C->getLHS()) if (Expr *LHS = EvalVal(lhsExpr, refVars)) return LHS; return EvalVal(C->getRHS(), refVars); } // Accesses to members are potential references to data on the stack. case Stmt::MemberExprClass: { MemberExpr *M = cast<MemberExpr>(E); // Check for indirect access. We only want direct field accesses. if (M->isArrow()) return NULL; // Check whether the member type is itself a reference, in which case // we're not going to refer to the member, but to what the member refers to. if (M->getMemberDecl()->getType()->isReferenceType()) return NULL; return EvalVal(M->getBase(), refVars); } case Stmt::MaterializeTemporaryExprClass: if (Expr *Result = EvalVal( cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(), refVars)) return Result; return E; default: // Check that we don't return or take the address of a reference to a // temporary. This is only useful in C++. if (!E->isTypeDependent() && E->isRValue()) return E; // Everything else: we simply don't reason about them. return NULL; } } while (true); } //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// /// Check for comparisons of floating point operands using != and ==. /// Issue a warning if these are no self-comparisons, as they are not likely /// to do what the programmer intended. void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { bool EmitWarning = true; Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); // Special case: check for x == x (which is OK). // Do not emit warnings for such cases. if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) if (DRL->getDecl() == DRR->getDecl()) EmitWarning = false; // Special case: check for comparisons against literals that can be exactly // represented by APFloat. In such cases, do not emit a warning. This // is a heuristic: often comparison against such literals are used to // detect if a value in a variable has not changed. This clearly can // lead to false negatives. if (EmitWarning) { if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { if (FLL->isExact()) EmitWarning = false; } else if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){ if (FLR->isExact()) EmitWarning = false; } } // Check for comparisons with builtin types. if (EmitWarning) if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) if (CL->isBuiltinCall()) EmitWarning = false; if (EmitWarning) if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) if (CR->isBuiltinCall()) EmitWarning = false; // Emit the diagnostic. if (EmitWarning) Diag(Loc, diag::warn_floatingpoint_eq) << LHS->getSourceRange() << RHS->getSourceRange(); } //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// namespace { /// Structure recording the 'active' range of an integer-valued /// expression. struct IntRange { /// The number of bits active in the int. unsigned Width; /// True if the int is known not to have negative values. bool NonNegative; IntRange(unsigned Width, bool NonNegative) : Width(Width), NonNegative(NonNegative) {} /// Returns the range of the bool type. static IntRange forBoolType() { return IntRange(1, true); } /// Returns the range of an opaque value of the given integral type. static IntRange forValueOfType(ASTContext &C, QualType T) { return forValueOfCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr()); } /// Returns the range of an opaque value of a canonical integral type. static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { assert(T->isCanonicalUnqualified()); if (const VectorType *VT = dyn_cast<VectorType>(T)) T = VT->getElementType().getTypePtr(); if (const ComplexType *CT = dyn_cast<ComplexType>(T)) T = CT->getElementType().getTypePtr(); // For enum types, use the known bit width of the enumerators. if (const EnumType *ET = dyn_cast<EnumType>(T)) { EnumDecl *Enum = ET->getDecl(); if (!Enum->isCompleteDefinition()) return IntRange(C.getIntWidth(QualType(T, 0)), false); unsigned NumPositive = Enum->getNumPositiveBits(); unsigned NumNegative = Enum->getNumNegativeBits(); return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0); } const BuiltinType *BT = cast<BuiltinType>(T); assert(BT->isInteger()); return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); } /// Returns the "target" range of a canonical integral type, i.e. /// the range of values expressible in the type. /// /// This matches forValueOfCanonicalType except that enums have the /// full range of their type, not the range of their enumerators. static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { assert(T->isCanonicalUnqualified()); if (const VectorType *VT = dyn_cast<VectorType>(T)) T = VT->getElementType().getTypePtr(); if (const ComplexType *CT = dyn_cast<ComplexType>(T)) T = CT->getElementType().getTypePtr(); if (const EnumType *ET = dyn_cast<EnumType>(T)) T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); const BuiltinType *BT = cast<BuiltinType>(T); assert(BT->isInteger()); return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); } /// Returns the supremum of two ranges: i.e. their conservative merge. static IntRange join(IntRange L, IntRange R) { return IntRange(std::max(L.Width, R.Width), L.NonNegative && R.NonNegative); } /// Returns the infinum of two ranges: i.e. their aggressive merge. static IntRange meet(IntRange L, IntRange R) { return IntRange(std::min(L.Width, R.Width), L.NonNegative || R.NonNegative); } }; static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) { if (value.isSigned() && value.isNegative()) return IntRange(value.getMinSignedBits(), false); if (value.getBitWidth() > MaxWidth) value = value.trunc(MaxWidth); // isNonNegative() just checks the sign bit without considering // signedness. return IntRange(value.getActiveBits(), true); } static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, unsigned MaxWidth) { if (result.isInt()) return GetValueRange(C, result.getInt(), MaxWidth); if (result.isVector()) { IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); R = IntRange::join(R, El); } return R; } if (result.isComplexInt()) { IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); return IntRange::join(R, I); } // This can happen with lossless casts to intptr_t of "based" lvalues. // Assume it might use arbitrary bits. // FIXME: The only reason we need to pass the type in here is to get // the sign right on this one case. It would be nice if APValue // preserved this. assert(result.isLValue() || result.isAddrLabelDiff()); return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); } /// Pseudo-evaluate the given integer expression, estimating the /// range of values it might take. /// /// \param MaxWidth - the width to which the value will be truncated static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) { E = E->IgnoreParens(); // Try a full evaluation first. Expr::EvalResult result; if (E->EvaluateAsRValue(result, C)) return GetValueRange(C, result.Val, E->getType(), MaxWidth); // I think we only want to look through implicit casts here; if the // user has an explicit widening cast, we should treat the value as // being of the new, wider type. if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) return GetExprRange(C, CE->getSubExpr(), MaxWidth); IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType()); bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast); // Assume that non-integer casts can span the full range of the type. if (!isIntegerCast) return OutputTypeRange; IntRange SubRange = GetExprRange(C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width)); // Bail out if the subexpr's range is as wide as the cast type. if (SubRange.Width >= OutputTypeRange.Width) return OutputTypeRange; // Otherwise, we take the smaller width, and we're non-negative if // either the output type or the subexpr is. return IntRange(SubRange.Width, SubRange.NonNegative || OutputTypeRange.NonNegative); } if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { // If we can fold the condition, just take that operand. bool CondResult; if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) return GetExprRange(C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth); // Otherwise, conservatively merge. IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth); IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth); return IntRange::join(L, R); } if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { switch (BO->getOpcode()) { // Boolean-valued operations are single-bit and positive. case BO_LAnd: case BO_LOr: case BO_LT: case BO_GT: case BO_LE: case BO_GE: case BO_EQ: case BO_NE: return IntRange::forBoolType(); // The type of the assignments is the type of the LHS, so the RHS // is not necessarily the same type. case BO_MulAssign: case BO_DivAssign: case BO_RemAssign: case BO_AddAssign: case BO_SubAssign: case BO_XorAssign: case BO_OrAssign: // TODO: bitfields? return IntRange::forValueOfType(C, E->getType()); // Simple assignments just pass through the RHS, which will have // been coerced to the LHS type. case BO_Assign: // TODO: bitfields? return GetExprRange(C, BO->getRHS(), MaxWidth); // Operations with opaque sources are black-listed. case BO_PtrMemD: case BO_PtrMemI: return IntRange::forValueOfType(C, E->getType()); // Bitwise-and uses the *infinum* of the two source ranges. case BO_And: case BO_AndAssign: return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth), GetExprRange(C, BO->getRHS(), MaxWidth)); // Left shift gets black-listed based on a judgement call. case BO_Shl: // ...except that we want to treat '1 << (blah)' as logically // positive. It's an important idiom. if (IntegerLiteral *I = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { if (I->getValue() == 1) { IntRange R = IntRange::forValueOfType(C, E->getType()); return IntRange(R.Width, /*NonNegative*/ true); } } // fallthrough case BO_ShlAssign: return IntRange::forValueOfType(C, E->getType()); // Right shift by a constant can narrow its left argument. case BO_Shr: case BO_ShrAssign: { IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); // If the shift amount is a positive constant, drop the width by // that much. llvm::APSInt shift; if (BO->getRHS()->isIntegerConstantExpr(shift, C) && shift.isNonNegative()) { unsigned zext = shift.getZExtValue(); if (zext >= L.Width) L.Width = (L.NonNegative ? 0 : 1); else L.Width -= zext; } return L; } // Comma acts as its right operand. case BO_Comma: return GetExprRange(C, BO->getRHS(), MaxWidth); // Black-list pointer subtractions. case BO_Sub: if (BO->getLHS()->getType()->isPointerType()) return IntRange::forValueOfType(C, E->getType()); break; // The width of a division result is mostly determined by the size // of the LHS. case BO_Div: { // Don't 'pre-truncate' the operands. unsigned opWidth = C.getIntWidth(E->getType()); IntRange L = GetExprRange(C, BO->getLHS(), opWidth); // If the divisor is constant, use that. llvm::APSInt divisor; if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) if (log2 >= L.Width) L.Width = (L.NonNegative ? 0 : 1); else L.Width = std::min(L.Width - log2, MaxWidth); return L; } // Otherwise, just use the LHS's width. IntRange R = GetExprRange(C, BO->getRHS(), opWidth); return IntRange(L.Width, L.NonNegative && R.NonNegative); } // The result of a remainder can't be larger than the result of // either side. case BO_Rem: { // Don't 'pre-truncate' the operands. unsigned opWidth = C.getIntWidth(E->getType()); IntRange L = GetExprRange(C, BO->getLHS(), opWidth); IntRange R = GetExprRange(C, BO->getRHS(), opWidth); IntRange meet = IntRange::meet(L, R); meet.Width = std::min(meet.Width, MaxWidth); return meet; } // The default behavior is okay for these. case BO_Mul: case BO_Add: case BO_Xor: case BO_Or: break; } // The default case is to treat the operation as if it were closed // on the narrowest type that encompasses both operands. IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth); return IntRange::join(L, R); } if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { switch (UO->getOpcode()) { // Boolean-valued operations are white-listed. case UO_LNot: return IntRange::forBoolType(); // Operations with opaque sources are black-listed. case UO_Deref: case UO_AddrOf: // should be impossible return IntRange::forValueOfType(C, E->getType()); default: return GetExprRange(C, UO->getSubExpr(), MaxWidth); } } if (dyn_cast<OffsetOfExpr>(E)) { IntRange::forValueOfType(C, E->getType()); } if (FieldDecl *BitField = E->getBitField()) return IntRange(BitField->getBitWidthValue(C), BitField->getType()->isUnsignedIntegerOrEnumerationType()); return IntRange::forValueOfType(C, E->getType()); } static IntRange GetExprRange(ASTContext &C, Expr *E) { return GetExprRange(C, E, C.getIntWidth(E->getType())); } /// Checks whether the given value, which currently has the given /// source semantics, has the same value when coerced through the /// target semantics. static bool IsSameFloatAfterCast(const llvm::APFloat &value, const llvm::fltSemantics &Src, const llvm::fltSemantics &Tgt) { llvm::APFloat truncated = value; bool ignored; truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); return truncated.bitwiseIsEqual(value); } /// Checks whether the given value, which currently has the given /// source semantics, has the same value when coerced through the /// target semantics. /// /// The value might be a vector of floats (or a complex number). static bool IsSameFloatAfterCast(const APValue &value, const llvm::fltSemantics &Src, const llvm::fltSemantics &Tgt) { if (value.isFloat()) return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); if (value.isVector()) { for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) return false; return true; } assert(value.isComplexFloat()); return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); } static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC); static bool IsZero(Sema &S, Expr *E) { // Suppress cases where we are comparing against an enum constant. if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) if (isa<EnumConstantDecl>(DR->getDecl())) return false; // Suppress cases where the '0' value is expanded from a macro. if (E->getLocStart().isMacroID()) return false; llvm::APSInt Value; return E->isIntegerConstantExpr(Value, S.Context) && Value == 0; } static bool HasEnumType(Expr *E) { // Strip off implicit integral promotions. while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { if (ICE->getCastKind() != CK_IntegralCast && ICE->getCastKind() != CK_NoOp) break; E = ICE->getSubExpr(); } return E->getType()->isEnumeralType(); } static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) { BinaryOperatorKind op = E->getOpcode(); if (E->isValueDependent()) return; if (op == BO_LT && IsZero(S, E->getRHS())) { S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison) << "< 0" << "false" << HasEnumType(E->getLHS()) << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); } else if (op == BO_GE && IsZero(S, E->getRHS())) { S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison) << ">= 0" << "true" << HasEnumType(E->getLHS()) << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); } else if (op == BO_GT && IsZero(S, E->getLHS())) { S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison) << "0 >" << "false" << HasEnumType(E->getRHS()) << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); } else if (op == BO_LE && IsZero(S, E->getLHS())) { S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison) << "0 <=" << "true" << HasEnumType(E->getRHS()) << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); } } /// Analyze the operands of the given comparison. Implements the /// fallback case from AnalyzeComparison. static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); } /// \brief Implements -Wsign-compare. /// /// \param E the binary operator to check for warnings static void AnalyzeComparison(Sema &S, BinaryOperator *E) { // The type the comparison is being performed in. QualType T = E->getLHS()->getType(); assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()) && "comparison with mismatched types"); // We don't do anything special if this isn't an unsigned integral // comparison: we're only interested in integral comparisons, and // signed comparisons only happen in cases we don't care to warn about. // // We also don't care about value-dependent expressions or expressions // whose result is a constant. if (!T->hasUnsignedIntegerRepresentation() || E->isValueDependent() || E->isIntegerConstantExpr(S.Context)) return AnalyzeImpConvsInComparison(S, E); Expr *LHS = E->getLHS()->IgnoreParenImpCasts(); Expr *RHS = E->getRHS()->IgnoreParenImpCasts(); // Check to see if one of the (unmodified) operands is of different // signedness. Expr *signedOperand, *unsignedOperand; if (LHS->getType()->hasSignedIntegerRepresentation()) { assert(!RHS->getType()->hasSignedIntegerRepresentation() && "unsigned comparison between two signed integer expressions?"); signedOperand = LHS; unsignedOperand = RHS; } else if (RHS->getType()->hasSignedIntegerRepresentation()) { signedOperand = RHS; unsignedOperand = LHS; } else { CheckTrivialUnsignedComparison(S, E); return AnalyzeImpConvsInComparison(S, E); } // Otherwise, calculate the effective range of the signed operand. IntRange signedRange = GetExprRange(S.Context, signedOperand); // Go ahead and analyze implicit conversions in the operands. Note // that we skip the implicit conversions on both sides. AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); // If the signed range is non-negative, -Wsign-compare won't fire, // but we should still check for comparisons which are always true // or false. if (signedRange.NonNegative) return CheckTrivialUnsignedComparison(S, E); // For (in)equality comparisons, if the unsigned operand is a // constant which cannot collide with a overflowed signed operand, // then reinterpreting the signed operand as unsigned will not // change the result of the comparison. if (E->isEqualityOp()) { unsigned comparisonWidth = S.Context.getIntWidth(T); IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand); // We should never be unable to prove that the unsigned operand is // non-negative. assert(unsignedRange.NonNegative && "unsigned range includes negative?"); if (unsignedRange.Width < comparisonWidth) return; } S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); } /// Analyzes an attempt to assign the given value to a bitfield. /// /// Returns true if there was something fishy about the attempt. static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, SourceLocation InitLoc) { assert(Bitfield->isBitField()); if (Bitfield->isInvalidDecl()) return false; // White-list bool bitfields. if (Bitfield->getType()->isBooleanType()) return false; // Ignore value- or type-dependent expressions. if (Bitfield->getBitWidth()->isValueDependent() || Bitfield->getBitWidth()->isTypeDependent() || Init->isValueDependent() || Init->isTypeDependent()) return false; Expr *OriginalInit = Init->IgnoreParenImpCasts(); llvm::APSInt Value; if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects)) return false; unsigned OriginalWidth = Value.getBitWidth(); unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); if (OriginalWidth <= FieldWidth) return false; // Compute the value which the bitfield will contain. llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType()); // Check whether the stored value is equal to the original value. TruncatedValue = TruncatedValue.extend(OriginalWidth); if (Value == TruncatedValue) return false; // Special-case bitfields of width 1: booleans are naturally 0/1, and // therefore don't strictly fit into a signed bitfield of width 1. if (FieldWidth == 1 && Value == 1) return false; std::string PrettyValue = Value.toString(10); std::string PrettyTrunc = TruncatedValue.toString(10); S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) << PrettyValue << PrettyTrunc << OriginalInit->getType() << Init->getSourceRange(); return true; } /// Analyze the given simple or compound assignment for warning-worthy /// operations. static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { // Just recurse on the LHS. AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); // We want to recurse on the RHS as normal unless we're assigning to // a bitfield. if (FieldDecl *Bitfield = E->getLHS()->getBitField()) { if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), E->getOperatorLoc())) { // Recurse, ignoring any implicit conversions on the RHS. return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), E->getOperatorLoc()); } } AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); } /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, SourceLocation CContext, unsigned diag, bool pruneControlFlow = false) { if (pruneControlFlow) { S.DiagRuntimeBehavior(E->getExprLoc(), E, S.PDiag(diag) << SourceType << T << E->getSourceRange() << SourceRange(CContext)); return; } S.Diag(E->getExprLoc(), diag) << SourceType << T << E->getSourceRange() << SourceRange(CContext); } /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext, unsigned diag, bool pruneControlFlow = false) { DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); } /// Diagnose an implicit cast from a literal expression. Does not warn when the /// cast wouldn't lose information. void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T, SourceLocation CContext) { // Try to convert the literal exactly to an integer. If we can, don't warn. bool isExact = false; const llvm::APFloat &Value = FL->getValue(); llvm::APSInt IntegerValue(S.Context.getIntWidth(T), T->hasUnsignedIntegerRepresentation()); if (Value.convertToInteger(IntegerValue, llvm::APFloat::rmTowardZero, &isExact) == llvm::APFloat::opOK && isExact) return; S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer) << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext); } std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) { if (!Range.Width) return "0"; llvm::APSInt ValueInRange = Value; ValueInRange.setIsSigned(!Range.NonNegative); ValueInRange = ValueInRange.trunc(Range.Width); return ValueInRange.toString(10); } void CheckImplicitConversion(Sema &S, Expr *E, QualType T, SourceLocation CC, bool *ICContext = 0) { if (E->isTypeDependent() || E->isValueDependent()) return; const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); if (Source == Target) return; if (Target->isDependentType()) return; // If the conversion context location is invalid don't complain. We also // don't want to emit a warning if the issue occurs from the expansion of // a system macro. The problem is that 'getSpellingLoc()' is slow, so we // delay this check as long as possible. Once we detect we are in that // scenario, we just return. if (CC.isInvalid()) return; // Diagnose implicit casts to bool. if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { if (isa<StringLiteral>(E)) // Warn on string literal to bool. Checks for string literals in logical // expressions, for instances, assert(0 && "error here"), is prevented // by a check in AnalyzeImplicitConversions(). return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_string_literal_to_bool); if (Source->isFunctionType()) { // Warn on function to bool. Checks free functions and static member // functions. Weakly imported functions are excluded from the check, // since it's common to test their value to check whether the linker // found a definition for them. ValueDecl *D = 0; if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) { D = R->getDecl(); } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { D = M->getMemberDecl(); } if (D && !D->isWeak()) { if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) { S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool) << F << E->getSourceRange() << SourceRange(CC); S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence) << FixItHint::CreateInsertion(E->getExprLoc(), "&"); QualType ReturnType; UnresolvedSet<4> NonTemplateOverloads; S.isExprCallable(*E, ReturnType, NonTemplateOverloads); if (!ReturnType.isNull() && ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) S.Diag(E->getExprLoc(), diag::note_function_to_bool_call) << FixItHint::CreateInsertion( S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()"); return; } } } return; // Other casts to bool are not checked. } // Strip vector types. if (isa<VectorType>(Source)) { if (!isa<VectorType>(Target)) { if (S.SourceMgr.isInSystemMacro(CC)) return; return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); } // If the vector cast is cast between two vectors of the same size, it is // a bitcast, not a conversion. if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) return; Source = cast<VectorType>(Source)->getElementType().getTypePtr(); Target = cast<VectorType>(Target)->getElementType().getTypePtr(); } // Strip complex types. if (isa<ComplexType>(Source)) { if (!isa<ComplexType>(Target)) { if (S.SourceMgr.isInSystemMacro(CC)) return; return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar); } Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); } const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); // If the source is floating point... if (SourceBT && SourceBT->isFloatingPoint()) { // ...and the target is floating point... if (TargetBT && TargetBT->isFloatingPoint()) { // ...then warn if we're dropping FP rank. // Builtin FP kinds are ordered by increasing FP rank. if (SourceBT->getKind() > TargetBT->getKind()) { // Don't warn about float constants that are precisely // representable in the target type. Expr::EvalResult result; if (E->EvaluateAsRValue(result, S.Context)) { // Value might be a float, a float vector, or a float complex. if (IsSameFloatAfterCast(result.Val, S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) return; } if (S.SourceMgr.isInSystemMacro(CC)) return; DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); } return; } // If the target is integral, always warn. if ((TargetBT && TargetBT->isInteger())) { if (S.SourceMgr.isInSystemMacro(CC)) return; Expr *InnerE = E->IgnoreParenImpCasts(); // We also want to warn on, e.g., "int i = -1.234" if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) { DiagnoseFloatingLiteralImpCast(S, FL, T, CC); } else { DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer); } } return; } if (!Source->isIntegerType() || !Target->isIntegerType()) return; if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) == Expr::NPCK_GNUNull) && Target->isIntegerType()) { SourceLocation Loc = E->getSourceRange().getBegin(); if (Loc.isMacroID()) Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first; S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) << T << Loc << clang::SourceRange(CC); return; } IntRange SourceRange = GetExprRange(S.Context, E); IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); if (SourceRange.Width > TargetRange.Width) { // If the source is a constant, use a default-on diagnostic. // TODO: this should happen for bitfield stores, too. llvm::APSInt Value(32); if (E->isIntegerConstantExpr(Value, S.Context)) { if (S.SourceMgr.isInSystemMacro(CC)) return; std::string PrettySourceValue = Value.toString(10); std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); S.DiagRuntimeBehavior(E->getExprLoc(), E, S.PDiag(diag::warn_impcast_integer_precision_constant) << PrettySourceValue << PrettyTargetValue << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC)); return; } // People want to build with -Wshorten-64-to-32 and not -Wconversion. if (S.SourceMgr.isInSystemMacro(CC)) return; if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, /* pruneControlFlow */ true); return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); } if ((TargetRange.NonNegative && !SourceRange.NonNegative) || (!TargetRange.NonNegative && SourceRange.NonNegative && SourceRange.Width == TargetRange.Width)) { if (S.SourceMgr.isInSystemMacro(CC)) return; unsigned DiagID = diag::warn_impcast_integer_sign; // Traditionally, gcc has warned about this under -Wsign-compare. // We also want to warn about it in -Wconversion. // So if -Wconversion is off, use a completely identical diagnostic // in the sign-compare group. // The conditional-checking code will if (ICContext) { DiagID = diag::warn_impcast_integer_sign_conditional; *ICContext = true; } return DiagnoseImpCast(S, E, T, CC, DiagID); } // Diagnose conversions between different enumeration types. // In C, we pretend that the type of an EnumConstantDecl is its enumeration // type, to give us better diagnostics. QualType SourceType = E->getType(); if (!S.getLangOpts().CPlusPlus) { if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); SourceType = S.Context.getTypeDeclType(Enum); Source = S.Context.getCanonicalType(SourceType).getTypePtr(); } } if (const EnumType *SourceEnum = Source->getAs<EnumType>()) if (const EnumType *TargetEnum = Target->getAs<EnumType>()) if ((SourceEnum->getDecl()->getIdentifier() || SourceEnum->getDecl()->getTypedefNameForAnonDecl()) && (TargetEnum->getDecl()->getIdentifier() || TargetEnum->getDecl()->getTypedefNameForAnonDecl()) && SourceEnum != TargetEnum) { if (S.SourceMgr.isInSystemMacro(CC)) return; return DiagnoseImpCast(S, E, SourceType, T, CC, diag::warn_impcast_different_enum_types); } return; } void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T); void CheckConditionalOperand(Sema &S, Expr *E, QualType T, SourceLocation CC, bool &ICContext) { E = E->IgnoreParenImpCasts(); if (isa<ConditionalOperator>(E)) return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T); AnalyzeImplicitConversions(S, E, CC); if (E->getType() != T) return CheckImplicitConversion(S, E, T, CC, &ICContext); return; } void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) { SourceLocation CC = E->getQuestionLoc(); AnalyzeImplicitConversions(S, E->getCond(), CC); bool Suspicious = false; CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious); CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); // If -Wconversion would have warned about either of the candidates // for a signedness conversion to the context type... if (!Suspicious) return; // ...but it's currently ignored... if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional, CC)) return; // ...then check whether it would have warned about either of the // candidates for a signedness conversion to the condition type. if (E->getType() == T) return; Suspicious = false; CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(), E->getType(), CC, &Suspicious); if (!Suspicious) CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), E->getType(), CC, &Suspicious); } /// AnalyzeImplicitConversions - Find and report any interesting /// implicit conversions in the given expression. There are a couple /// of competing diagnostics here, -Wconversion and -Wsign-compare. void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) { QualType T = OrigE->getType(); Expr *E = OrigE->IgnoreParenImpCasts(); if (E->isTypeDependent() || E->isValueDependent()) return; // For conditional operators, we analyze the arguments as if they // were being fed directly into the output. if (isa<ConditionalOperator>(E)) { ConditionalOperator *CO = cast<ConditionalOperator>(E); CheckConditionalOperator(S, CO, T); return; } // Go ahead and check any implicit conversions we might have skipped. // The non-canonical typecheck is just an optimization; // CheckImplicitConversion will filter out dead implicit conversions. if (E->getType() != T) CheckImplicitConversion(S, E, T, CC); // Now continue drilling into this expression. // Skip past explicit casts. if (isa<ExplicitCastExpr>(E)) { E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts(); return AnalyzeImplicitConversions(S, E, CC); } if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { // Do a somewhat different check with comparison operators. if (BO->isComparisonOp()) return AnalyzeComparison(S, BO); // And with simple assignments. if (BO->getOpcode() == BO_Assign) return AnalyzeAssignment(S, BO); } // These break the otherwise-useful invariant below. Fortunately, // we don't really need to recurse into them, because any internal // expressions should have been analyzed already when they were // built into statements. if (isa<StmtExpr>(E)) return; // Don't descend into unevaluated contexts. if (isa<UnaryExprOrTypeTraitExpr>(E)) return; // Now just recurse over the expression's children. CC = E->getExprLoc(); BinaryOperator *BO = dyn_cast<BinaryOperator>(E); bool IsLogicalOperator = BO && BO->isLogicalOp(); for (Stmt::child_range I = E->children(); I; ++I) { Expr *ChildExpr = dyn_cast_or_null<Expr>(*I); if (!ChildExpr) continue; if (IsLogicalOperator && isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) // Ignore checking string literals that are in logical operators. continue; AnalyzeImplicitConversions(S, ChildExpr, CC); } } } // end anonymous namespace /// Diagnoses "dangerous" implicit conversions within the given /// expression (which is a full expression). Implements -Wconversion /// and -Wsign-compare. /// /// \param CC the "context" location of the implicit conversion, i.e. /// the most location of the syntactic entity requiring the implicit /// conversion void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { // Don't diagnose in unevaluated contexts. if (ExprEvalContexts.back().Context == Sema::Unevaluated) return; // Don't diagnose for value- or type-dependent expressions. if (E->isTypeDependent() || E->isValueDependent()) return; // Check for array bounds violations in cases where the check isn't triggered // elsewhere for other Expr types (like BinaryOperators), e.g. when an // ArraySubscriptExpr is on the RHS of a variable initialization. CheckArrayAccess(E); // This is not the right CC for (e.g.) a variable initialization. AnalyzeImplicitConversions(*this, E, CC); } void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *BitField, Expr *Init) { (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); } /// CheckParmsForFunctionDef - Check that the parameters of the given /// function are appropriate for the definition of a function. This /// takes care of any checks that cannot be performed on the /// declaration itself, e.g., that the types of each of the function /// parameters are complete. bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd, bool CheckParameterNames) { bool HasInvalidParm = false; for (; P != PEnd; ++P) { ParmVarDecl *Param = *P; // C99 6.7.5.3p4: the parameters in a parameter type list in a // function declarator that is part of a function definition of // that function shall not have incomplete type. // // This is also C++ [dcl.fct]p6. if (!Param->isInvalidDecl() && RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) { Param->setInvalidDecl(); HasInvalidParm = true; } // C99 6.9.1p5: If the declarator includes a parameter type list, the // declaration of each parameter shall include an identifier. if (CheckParameterNames && Param->getIdentifier() == 0 && !Param->isImplicit() && !getLangOpts().CPlusPlus) Diag(Param->getLocation(), diag::err_parameter_name_omitted); // C99 6.7.5.3p12: // If the function declarator is not part of a definition of that // function, parameters may have incomplete type and may use the [*] // notation in their sequences of declarator specifiers to specify // variable length array types. QualType PType = Param->getOriginalType(); if (const ArrayType *AT = Context.getAsArrayType(PType)) { if (AT->getSizeModifier() == ArrayType::Star) { // FIXME: This diagnosic should point the the '[*]' if source-location // information is added for it. Diag(Param->getLocation(), diag::err_array_star_in_function_definition); } } } return HasInvalidParm; } /// CheckCastAlign - Implements -Wcast-align, which warns when a /// pointer cast increases the alignment requirements. void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { // This is actually a lot of work to potentially be doing on every // cast; don't do it if we're ignoring -Wcast_align (as is the default). if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align, TRange.getBegin()) == DiagnosticsEngine::Ignored) return; // Ignore dependent types. if (T->isDependentType() || Op->getType()->isDependentType()) return; // Require that the destination be a pointer type. const PointerType *DestPtr = T->getAs<PointerType>(); if (!DestPtr) return; // If the destination has alignment 1, we're done. QualType DestPointee = DestPtr->getPointeeType(); if (DestPointee->isIncompleteType()) return; CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); if (DestAlign.isOne()) return; // Require that the source be a pointer type. const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); if (!SrcPtr) return; QualType SrcPointee = SrcPtr->getPointeeType(); // Whitelist casts from cv void*. We already implicitly // whitelisted casts to cv void*, since they have alignment 1. // Also whitelist casts involving incomplete types, which implicitly // includes 'void'. if (SrcPointee->isIncompleteType()) return; CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee); if (SrcAlign >= DestAlign) return; Diag(TRange.getBegin(), diag::warn_cast_align) << Op->getType() << T << static_cast<unsigned>(SrcAlign.getQuantity()) << static_cast<unsigned>(DestAlign.getQuantity()) << TRange << Op->getSourceRange(); } static const Type* getElementType(const Expr *BaseExpr) { const Type* EltType = BaseExpr->getType().getTypePtr(); if (EltType->isAnyPointerType()) return EltType->getPointeeType().getTypePtr(); else if (EltType->isArrayType()) return EltType->getBaseElementTypeUnsafe(); return EltType; } /// \brief Check whether this array fits the idiom of a size-one tail padded /// array member of a struct. /// /// We avoid emitting out-of-bounds access warnings for such arrays as they are /// commonly used to emulate flexible arrays in C89 code. static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size, const NamedDecl *ND) { if (Size != 1 || !ND) return false; const FieldDecl *FD = dyn_cast<FieldDecl>(ND); if (!FD) return false; // Don't consider sizes resulting from macro expansions or template argument // substitution to form C89 tail-padded arrays. ConstantArrayTypeLoc TL = cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc()); const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr()); if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) return false; const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); if (!RD) return false; if (RD->isUnion()) return false; if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { if (!CRD->isStandardLayout()) return false; } // See if this is the last field decl in the record. const Decl *D = FD; while ((D = D->getNextDeclInContext())) if (isa<FieldDecl>(D)) return false; return true; } void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, const ArraySubscriptExpr *ASE, bool AllowOnePastEnd, bool IndexNegated) { IndexExpr = IndexExpr->IgnoreParenImpCasts(); if (IndexExpr->isValueDependent()) return; const Type *EffectiveType = getElementType(BaseExpr); BaseExpr = BaseExpr->IgnoreParenCasts(); const ConstantArrayType *ArrayTy = Context.getAsConstantArrayType(BaseExpr->getType()); if (!ArrayTy) return; llvm::APSInt index; if (!IndexExpr->EvaluateAsInt(index, Context)) return; if (IndexNegated) index = -index; const NamedDecl *ND = NULL; if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) ND = dyn_cast<NamedDecl>(DRE->getDecl()); if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) ND = dyn_cast<NamedDecl>(ME->getMemberDecl()); if (index.isUnsigned() || !index.isNegative()) { llvm::APInt size = ArrayTy->getSize(); if (!size.isStrictlyPositive()) return; const Type* BaseType = getElementType(BaseExpr); if (BaseType != EffectiveType) { // Make sure we're comparing apples to apples when comparing index to size uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); uint64_t array_typesize = Context.getTypeSize(BaseType); // Handle ptrarith_typesize being zero, such as when casting to void* if (!ptrarith_typesize) ptrarith_typesize = 1; if (ptrarith_typesize != array_typesize) { // There's a cast to a different size type involved uint64_t ratio = array_typesize / ptrarith_typesize; // TODO: Be smarter about handling cases where array_typesize is not a // multiple of ptrarith_typesize if (ptrarith_typesize * ratio == array_typesize) size *= llvm::APInt(size.getBitWidth(), ratio); } } if (size.getBitWidth() > index.getBitWidth()) index = index.zext(size.getBitWidth()); else if (size.getBitWidth() < index.getBitWidth()) size = size.zext(index.getBitWidth()); // For array subscripting the index must be less than size, but for pointer // arithmetic also allow the index (offset) to be equal to size since // computing the next address after the end of the array is legal and // commonly done e.g. in C++ iterators and range-based for loops. if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) return; // Also don't warn for arrays of size 1 which are members of some // structure. These are often used to approximate flexible arrays in C89 // code. if (IsTailPaddedMemberArray(*this, size, ND)) return; // Suppress the warning if the subscript expression (as identified by the // ']' location) and the index expression are both from macro expansions // within a system header. if (ASE) { SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( ASE->getRBracketLoc()); if (SourceMgr.isInSystemHeader(RBracketLoc)) { SourceLocation IndexLoc = SourceMgr.getSpellingLoc( IndexExpr->getLocStart()); if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc)) return; } } unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; if (ASE) DiagID = diag::warn_array_index_exceeds_bounds; DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr, PDiag(DiagID) << index.toString(10, true) << size.toString(10, true) << (unsigned)size.getLimitedValue(~0U) << IndexExpr->getSourceRange()); } else { unsigned DiagID = diag::warn_array_index_precedes_bounds; if (!ASE) { DiagID = diag::warn_ptr_arith_precedes_bounds; if (index.isNegative()) index = -index; } DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr, PDiag(DiagID) << index.toString(10, true) << IndexExpr->getSourceRange()); } if (!ND) { // Try harder to find a NamedDecl to point at in the note. while (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) BaseExpr = ASE->getBase()->IgnoreParenCasts(); if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) ND = dyn_cast<NamedDecl>(DRE->getDecl()); if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) ND = dyn_cast<NamedDecl>(ME->getMemberDecl()); } if (ND) DiagRuntimeBehavior(ND->getLocStart(), BaseExpr, PDiag(diag::note_array_index_out_of_bounds) << ND->getDeclName()); } void Sema::CheckArrayAccess(const Expr *expr) { int AllowOnePastEnd = 0; while (expr) { expr = expr->IgnoreParenImpCasts(); switch (expr->getStmtClass()) { case Stmt::ArraySubscriptExprClass: { const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, AllowOnePastEnd > 0); return; } case Stmt::UnaryOperatorClass: { // Only unwrap the * and & unary operators const UnaryOperator *UO = cast<UnaryOperator>(expr); expr = UO->getSubExpr(); switch (UO->getOpcode()) { case UO_AddrOf: AllowOnePastEnd++; break; case UO_Deref: AllowOnePastEnd--; break; default: return; } break; } case Stmt::ConditionalOperatorClass: { const ConditionalOperator *cond = cast<ConditionalOperator>(expr); if (const Expr *lhs = cond->getLHS()) CheckArrayAccess(lhs); if (const Expr *rhs = cond->getRHS()) CheckArrayAccess(rhs); return; } default: return; } } } //===--- CHECK: Objective-C retain cycles ----------------------------------// namespace { struct RetainCycleOwner { RetainCycleOwner() : Variable(0), Indirect(false) {} VarDecl *Variable; SourceRange Range; SourceLocation Loc; bool Indirect; void setLocsFrom(Expr *e) { Loc = e->getExprLoc(); Range = e->getSourceRange(); } }; } /// Consider whether capturing the given variable can possibly lead to /// a retain cycle. static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { // In ARC, it's captured strongly iff the variable has __strong // lifetime. In MRR, it's captured strongly if the variable is // __block and has an appropriate type. if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) return false; owner.Variable = var; owner.setLocsFrom(ref); return true; } static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { while (true) { e = e->IgnoreParens(); if (CastExpr *cast = dyn_cast<CastExpr>(e)) { switch (cast->getCastKind()) { case CK_BitCast: case CK_LValueBitCast: case CK_LValueToRValue: case CK_ARCReclaimReturnedObject: e = cast->getSubExpr(); continue; default: return false; } } if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { ObjCIvarDecl *ivar = ref->getDecl(); if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) return false; // Try to find a retain cycle in the base. if (!findRetainCycleOwner(S, ref->getBase(), owner)) return false; if (ref->isFreeIvar()) owner.setLocsFrom(ref); owner.Indirect = true; return true; } if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); if (!var) return false; return considerVariable(var, ref, owner); } if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { if (member->isArrow()) return false; // Don't count this as an indirect ownership. e = member->getBase(); continue; } if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { // Only pay attention to pseudo-objects on property references. ObjCPropertyRefExpr *pre = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() ->IgnoreParens()); if (!pre) return false; if (pre->isImplicitProperty()) return false; ObjCPropertyDecl *property = pre->getExplicitProperty(); if (!property->isRetaining() && !(property->getPropertyIvarDecl() && property->getPropertyIvarDecl()->getType() .getObjCLifetime() == Qualifiers::OCL_Strong)) return false; owner.Indirect = true; if (pre->isSuperReceiver()) { owner.Variable = S.getCurMethodDecl()->getSelfDecl(); if (!owner.Variable) return false; owner.Loc = pre->getLocation(); owner.Range = pre->getSourceRange(); return true; } e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) ->getSourceExpr()); continue; } // Array ivars? return false; } } namespace { struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { FindCaptureVisitor(ASTContext &Context, VarDecl *variable) : EvaluatedExprVisitor<FindCaptureVisitor>(Context), Variable(variable), Capturer(0) {} VarDecl *Variable; Expr *Capturer; void VisitDeclRefExpr(DeclRefExpr *ref) { if (ref->getDecl() == Variable && !Capturer) Capturer = ref; } void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { if (Capturer) return; Visit(ref->getBase()); if (Capturer && ref->isFreeIvar()) Capturer = ref; } void VisitBlockExpr(BlockExpr *block) { // Look inside nested blocks if (block->getBlockDecl()->capturesVariable(Variable)) Visit(block->getBlockDecl()->getBody()); } }; } /// Check whether the given argument is a block which captures a /// variable. static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { assert(owner.Variable && owner.Loc.isValid()); e = e->IgnoreParenCasts(); BlockExpr *block = dyn_cast<BlockExpr>(e); if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) return 0; FindCaptureVisitor visitor(S.Context, owner.Variable); visitor.Visit(block->getBlockDecl()->getBody()); return visitor.Capturer; } static void diagnoseRetainCycle(Sema &S, Expr *capturer, RetainCycleOwner &owner) { assert(capturer); assert(owner.Variable && owner.Loc.isValid()); S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) << owner.Variable << capturer->getSourceRange(); S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) << owner.Indirect << owner.Range; } /// Check for a keyword selector that starts with the word 'add' or /// 'set'. static bool isSetterLikeSelector(Selector sel) { if (sel.isUnarySelector()) return false; StringRef str = sel.getNameForSlot(0); while (!str.empty() && str.front() == '_') str = str.substr(1); if (str.startswith("set")) str = str.substr(3); else if (str.startswith("add")) { // Specially whitelist 'addOperationWithBlock:'. if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) return false; str = str.substr(3); } else return false; if (str.empty()) return true; return !islower(str.front()); } /// Check a message send to see if it's likely to cause a retain cycle. void Sema::checkRetainCycles(ObjCMessageExpr *msg) { // Only check instance methods whose selector looks like a setter. if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) return; // Try to find a variable that the receiver is strongly owned by. RetainCycleOwner owner; if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) return; } else { assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); owner.Variable = getCurMethodDecl()->getSelfDecl(); owner.Loc = msg->getSuperLoc(); owner.Range = msg->getSuperLoc(); } // Check whether the receiver is captured by any of the arguments. for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) return diagnoseRetainCycle(*this, capturer, owner); } /// Check a property assign to see if it's likely to cause a retain cycle. void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { RetainCycleOwner owner; if (!findRetainCycleOwner(*this, receiver, owner)) return; if (Expr *capturer = findCapturingExpr(*this, argument, owner)) diagnoseRetainCycle(*this, capturer, owner); } bool Sema::checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS) { Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) return false; // strip off any implicit cast added to get to the one arc-specific while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { if (cast->getCastKind() == CK_ARCConsumeObject) { Diag(Loc, diag::warn_arc_retained_assign) << (LT == Qualifiers::OCL_ExplicitNone) << RHS->getSourceRange(); return true; } RHS = cast->getSubExpr(); } return false; } void Sema::checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS) { QualType LHSType; // PropertyRef on LHS type need be directly obtained from // its declaration as it has a PsuedoType. ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); if (PRE && !PRE->isImplicitProperty()) { const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); if (PD) LHSType = PD->getType(); } if (LHSType.isNull()) LHSType = LHS->getType(); if (checkUnsafeAssigns(Loc, LHSType, RHS)) return; Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); // FIXME. Check for other life times. if (LT != Qualifiers::OCL_None) return; if (PRE) { if (PRE->isImplicitProperty()) return; const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); if (!PD) return; unsigned Attributes = PD->getPropertyAttributes(); if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) { // when 'assign' attribute was not explicitly specified // by user, ignore it and rely on property type itself // for lifetime info. unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) && LHSType->isObjCRetainableType()) return; while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { if (cast->getCastKind() == CK_ARCConsumeObject) { Diag(Loc, diag::warn_arc_retained_property_assign) << RHS->getSourceRange(); return; } RHS = cast->getSubExpr(); } } } } //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// namespace { bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, SourceLocation StmtLoc, const NullStmt *Body) { // Do not warn if the body is a macro that expands to nothing, e.g: // // #define CALL(x) // if (condition) // CALL(0); // if (Body->hasLeadingEmptyMacro()) return false; // Get line numbers of statement and body. bool StmtLineInvalid; unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc, &StmtLineInvalid); if (StmtLineInvalid) return false; bool BodyLineInvalid; unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), &BodyLineInvalid); if (BodyLineInvalid) return false; // Warn if null statement and body are on the same line. if (StmtLine != BodyLine) return false; return true; } } // Unnamed namespace void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body, unsigned DiagID) { // Since this is a syntactic check, don't emit diagnostic for template // instantiations, this just adds noise. if (CurrentInstantiationScope) return; // The body should be a null statement. const NullStmt *NBody = dyn_cast<NullStmt>(Body); if (!NBody) return; // Do the usual checks. if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) return; Diag(NBody->getSemiLoc(), DiagID); Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); } void Sema::DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody) { assert(!CurrentInstantiationScope); // Ensured by caller SourceLocation StmtLoc; const Stmt *Body; unsigned DiagID; if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { StmtLoc = FS->getRParenLoc(); Body = FS->getBody(); DiagID = diag::warn_empty_for_body; } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { StmtLoc = WS->getCond()->getSourceRange().getEnd(); Body = WS->getBody(); DiagID = diag::warn_empty_while_body; } else return; // Neither `for' nor `while'. // The body should be a null statement. const NullStmt *NBody = dyn_cast<NullStmt>(Body); if (!NBody) return; // Skip expensive checks if diagnostic is disabled. if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) == DiagnosticsEngine::Ignored) return; // Do the usual checks. if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) return; // `for(...);' and `while(...);' are popular idioms, so in order to keep // noise level low, emit diagnostics only if for/while is followed by a // CompoundStmt, e.g.: // for (int i = 0; i < n; i++); // { // a(i); // } // or if for/while is followed by a statement with more indentation // than for/while itself: // for (int i = 0; i < n; i++); // a(i); bool ProbableTypo = isa<CompoundStmt>(PossibleBody); if (!ProbableTypo) { bool BodyColInvalid; unsigned BodyCol = SourceMgr.getPresumedColumnNumber( PossibleBody->getLocStart(), &BodyColInvalid); if (BodyColInvalid) return; bool StmtColInvalid; unsigned StmtCol = SourceMgr.getPresumedColumnNumber( S->getLocStart(), &StmtColInvalid); if (StmtColInvalid) return; if (BodyCol > StmtCol) ProbableTypo = true; } if (ProbableTypo) { Diag(NBody->getSemiLoc(), DiagID); Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); } }