Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaDeclAttr.cpp |
//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements decl-related attribute processing. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "TargetAttributesSema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/Lookup.h" #include "llvm/ADT/StringExtras.h" using namespace clang; using namespace sema; /// These constants match the enumerated choices of /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type. enum AttributeDeclKind { ExpectedFunction, ExpectedUnion, ExpectedVariableOrFunction, ExpectedFunctionOrMethod, ExpectedParameter, ExpectedFunctionMethodOrBlock, ExpectedFunctionMethodOrParameter, ExpectedClass, ExpectedVariable, ExpectedMethod, ExpectedVariableFunctionOrLabel, ExpectedFieldOrGlobalVar, ExpectedStruct }; //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// static const FunctionType *getFunctionType(const Decl *D, bool blocksToo = true) { QualType Ty; if (const ValueDecl *decl = dyn_cast<ValueDecl>(D)) Ty = decl->getType(); else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D)) Ty = decl->getType(); else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D)) Ty = decl->getUnderlyingType(); else return 0; if (Ty->isFunctionPointerType()) Ty = Ty->getAs<PointerType>()->getPointeeType(); else if (blocksToo && Ty->isBlockPointerType()) Ty = Ty->getAs<BlockPointerType>()->getPointeeType(); return Ty->getAs<FunctionType>(); } // FIXME: We should provide an abstraction around a method or function // to provide the following bits of information. /// isFunction - Return true if the given decl has function /// type (function or function-typed variable). static bool isFunction(const Decl *D) { return getFunctionType(D, false) != NULL; } /// isFunctionOrMethod - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method. static bool isFunctionOrMethod(const Decl *D) { return isFunction(D)|| isa<ObjCMethodDecl>(D); } /// isFunctionOrMethodOrBlock - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method or a block. static bool isFunctionOrMethodOrBlock(const Decl *D) { if (isFunctionOrMethod(D)) return true; // check for block is more involved. if (const VarDecl *V = dyn_cast<VarDecl>(D)) { QualType Ty = V->getType(); return Ty->isBlockPointerType(); } return isa<BlockDecl>(D); } /// Return true if the given decl has a declarator that should have /// been processed by Sema::GetTypeForDeclarator. static bool hasDeclarator(const Decl *D) { // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || isa<ObjCPropertyDecl>(D); } /// hasFunctionProto - Return true if the given decl has a argument /// information. This decl should have already passed /// isFunctionOrMethod or isFunctionOrMethodOrBlock. static bool hasFunctionProto(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) return isa<FunctionProtoType>(FnTy); else { assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D)); return true; } } /// getFunctionOrMethodNumArgs - Return number of function or method /// arguments. It is an error to call this on a K&R function (use /// hasFunctionProto first). static unsigned getFunctionOrMethodNumArgs(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) return cast<FunctionProtoType>(FnTy)->getNumArgs(); if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) return BD->getNumParams(); return cast<ObjCMethodDecl>(D)->param_size(); } static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) { if (const FunctionType *FnTy = getFunctionType(D)) return cast<FunctionProtoType>(FnTy)->getArgType(Idx); if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) return BD->getParamDecl(Idx)->getType(); return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType(); } static QualType getFunctionOrMethodResultType(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) return cast<FunctionProtoType>(FnTy)->getResultType(); return cast<ObjCMethodDecl>(D)->getResultType(); } static bool isFunctionOrMethodVariadic(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) { const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy); return proto->isVariadic(); } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) return BD->isVariadic(); else { return cast<ObjCMethodDecl>(D)->isVariadic(); } } static bool isInstanceMethod(const Decl *D) { if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) return MethodDecl->isInstance(); return false; } static inline bool isNSStringType(QualType T, ASTContext &Ctx) { const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); if (!PT) return false; ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); if (!Cls) return false; IdentifierInfo* ClsName = Cls->getIdentifier(); // FIXME: Should we walk the chain of classes? return ClsName == &Ctx.Idents.get("NSString") || ClsName == &Ctx.Idents.get("NSMutableString"); } static inline bool isCFStringType(QualType T, ASTContext &Ctx) { const PointerType *PT = T->getAs<PointerType>(); if (!PT) return false; const RecordType *RT = PT->getPointeeType()->getAs<RecordType>(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); if (RD->getTagKind() != TTK_Struct) return false; return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); } /// \brief Check if the attribute has exactly as many args as Num. May /// output an error. static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr, unsigned int Num) { if (Attr.getNumArgs() != Num) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num; return false; } return true; } /// \brief Check if the attribute has at least as many args as Num. May /// output an error. static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr, unsigned int Num) { if (Attr.getNumArgs() < Num) { S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num; return false; } return true; } /// /// \brief Check if passed in Decl is a field or potentially shared global var /// \return true if the Decl is a field or potentially shared global variable /// static bool mayBeSharedVariable(const Decl *D) { if (isa<FieldDecl>(D)) return true; if (const VarDecl *vd = dyn_cast<VarDecl>(D)) return (vd->hasGlobalStorage() && !(vd->isThreadSpecified())); return false; } /// \brief Check if the passed-in expression is of type int or bool. static bool isIntOrBool(Expr *Exp) { QualType QT = Exp->getType(); return QT->isBooleanType() || QT->isIntegerType(); } /// /// \brief Check if passed in Decl is a pointer type. /// Note that this function may produce an error message. /// \return true if the Decl is a pointer type; false otherwise /// static bool checkIsPointer(Sema &S, const Decl *D, const AttributeList &Attr) { if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) { QualType QT = vd->getType(); if (QT->isAnyPointerType()) return true; S.Diag(Attr.getLoc(), diag::warn_pointer_attribute_wrong_type) << Attr.getName()->getName() << QT; } else { S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl) << Attr.getName(); } return false; } /// \brief Checks that the passed in QualType either is of RecordType or points /// to RecordType. Returns the relevant RecordType, null if it does not exit. static const RecordType *getRecordType(QualType QT) { if (const RecordType *RT = QT->getAs<RecordType>()) return RT; // Now check if we point to record type. if (const PointerType *PT = QT->getAs<PointerType>()) return PT->getPointeeType()->getAs<RecordType>(); return 0; } /// \brief Thread Safety Analysis: Checks that the passed in RecordType /// resolves to a lockable object. May flag an error. static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr, QualType Ty) { const RecordType *RT = getRecordType(Ty); // Warn if could not get record type for this argument. if (!RT) { S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_class) << Attr.getName() << Ty.getAsString(); return; } // Don't check for lockable if the class hasn't been defined yet. if (RT->isIncompleteType()) return; // Warn if the type is not lockable. if (!RT->getDecl()->getAttr<LockableAttr>()) { S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_lockable) << Attr.getName() << Ty.getAsString(); return; } } /// \brief Thread Safety Analysis: Checks that all attribute arguments, starting /// from Sidx, resolve to a lockable object. May flag an error. /// \param Sidx The attribute argument index to start checking with. /// \param ParamIdxOk Whether an argument can be indexing into a function /// parameter list. static bool checkAttrArgsAreLockableObjs(Sema &S, Decl *D, const AttributeList &Attr, SmallVectorImpl<Expr*> &Args, int Sidx = 0, bool ParamIdxOk = false) { for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) { Expr *ArgExp = Attr.getArg(Idx); if (ArgExp->isTypeDependent()) { // FIXME -- need to processs this again on template instantiation Args.push_back(ArgExp); continue; } QualType ArgTy = ArgExp->getType(); // First see if we can just cast to record type, or point to record type. const RecordType *RT = getRecordType(ArgTy); // Now check if we index into a record type function param. if(!RT && ParamIdxOk) { FunctionDecl *FD = dyn_cast<FunctionDecl>(D); IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp); if(FD && IL) { unsigned int NumParams = FD->getNumParams(); llvm::APInt ArgValue = IL->getValue(); uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range) << Attr.getName() << Idx + 1 << NumParams; return false; } ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); } } checkForLockableRecord(S, D, Attr, ArgTy); Args.push_back(ArgExp); } return true; } //===----------------------------------------------------------------------===// // Attribute Implementations //===----------------------------------------------------------------------===// // FIXME: All this manual attribute parsing code is gross. At the // least add some helper functions to check most argument patterns (# // and types of args). static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr, bool pointer = false) { assert(!Attr.isInvalid()); if (!checkAttributeNumArgs(S, Attr, 0)) return; // D must be either a member field or global (potentially shared) variable. if (!mayBeSharedVariable(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFieldOrGlobalVar; return; } if (pointer && !checkIsPointer(S, D, Attr)) return; if (pointer) D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context)); else D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context)); } static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr, bool pointer = false) { assert(!Attr.isInvalid()); if (!checkAttributeNumArgs(S, Attr, 1)) return; Expr *Arg = Attr.getArg(0); // D must be either a member field or global (potentially shared) variable. if (!mayBeSharedVariable(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFieldOrGlobalVar; return; } if (pointer && !checkIsPointer(S, D, Attr)) return; if (!Arg->isTypeDependent()) { checkForLockableRecord(S, D, Attr, Arg->getType()); } if (pointer) D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(), S.Context, Arg)); else D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg)); } static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr, bool scoped = false) { assert(!Attr.isInvalid()); if (!checkAttributeNumArgs(S, Attr, 0)) return; // FIXME: Lockable structs for C code. if (!isa<CXXRecordDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedClass; return; } if (scoped) D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context)); else D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context)); } static void handleNoThreadSafetyAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(), S.Context)); } static void handleNoAddressSafetyAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoAddressSafetyAnalysisAttr(Attr.getRange(), S.Context)); } static void handleAcquireOrderAttr(Sema &S, Decl *D, const AttributeList &Attr, bool before) { assert(!Attr.isInvalid()); if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; // D must be either a member field or global (potentially shared) variable. ValueDecl *VD = dyn_cast<ValueDecl>(D); if (!VD || !mayBeSharedVariable(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFieldOrGlobalVar; return; } // Check that this attribute only applies to lockable types QualType QT = VD->getType(); if (!QT->isDependentType()) { const RecordType *RT = getRecordType(QT); if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) { S.Diag(Attr.getLoc(), diag::warn_attribute_decl_not_lockable) << Attr.getName(); return; } } SmallVector<Expr*, 1> Args; // check that all arguments are lockable objects if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args)) return; unsigned Size = Args.size(); assert(Size == Attr.getNumArgs()); Expr **StartArg = Size == 0 ? 0 : &Args[0]; if (before) D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context, StartArg, Size)); else D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context, StartArg, Size)); } static void handleLockFunAttr(Sema &S, Decl *D, const AttributeList &Attr, bool exclusive = false) { assert(!Attr.isInvalid()); // zero or more arguments ok // check that the attribute is applied to a function if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } // check that all arguments are lockable objects SmallVector<Expr*, 1> Args; if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true)) return; unsigned Size = Args.size(); assert(Size == Attr.getNumArgs()); Expr **StartArg = Size == 0 ? 0 : &Args[0]; if (exclusive) D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size)); else D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size)); } static void handleTrylockFunAttr(Sema &S, Decl *D, const AttributeList &Attr, bool exclusive = false) { assert(!Attr.isInvalid()); if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } if (!isIntOrBool(Attr.getArg(0))) { S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool) << Attr.getName(); return; } SmallVector<Expr*, 2> Args; // check that all arguments are lockable objects if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? 0 : &Args[0]; if (exclusive) D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context, Attr.getArg(0), StartArg, Size)); else D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(), S.Context, Attr.getArg(0), StartArg, Size)); } static void handleLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr, bool exclusive = false) { assert(!Attr.isInvalid()); if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } // check that all arguments are lockable objects SmallVector<Expr*, 1> Args; if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args)) return; unsigned Size = Args.size(); assert(Size == Attr.getNumArgs()); Expr **StartArg = Size == 0 ? 0 : &Args[0]; if (exclusive) D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(), S.Context, StartArg, Size)); else D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(), S.Context, StartArg, Size)); } static void handleUnlockFunAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); // zero or more arguments ok if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } // check that all arguments are lockable objects SmallVector<Expr*, 1> Args; if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true)) return; unsigned Size = Args.size(); assert(Size == Attr.getNumArgs()); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size)); } static void handleLockReturnedAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); if (!checkAttributeNumArgs(S, Attr, 1)) return; Expr *Arg = Attr.getArg(0); if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } if (Arg->isTypeDependent()) return; // check that the argument is lockable object checkForLockableRecord(S, D, Attr, Arg->getType()); D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context, Arg)); } static void handleLocksExcludedAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } // check that all arguments are lockable objects SmallVector<Expr*, 1> Args; if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args)) return; unsigned Size = Args.size(); assert(Size == Attr.getNumArgs()); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size)); } static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr) { TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D); if (tDecl == 0) { S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); return; } QualType curType = tDecl->getUnderlyingType(); Expr *sizeExpr; // Special case where the argument is a template id. if (Attr.getParameterName()) { CXXScopeSpec SS; SourceLocation TemplateKWLoc; UnqualifiedId id; id.setIdentifier(Attr.getParameterName(), Attr.getLoc()); ExprResult Size = S.ActOnIdExpression(scope, SS, TemplateKWLoc, id, false, false); if (Size.isInvalid()) return; sizeExpr = Size.get(); } else { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 1)) return; sizeExpr = Attr.getArg(0); } // Instantiate/Install the vector type, and let Sema build the type for us. // This will run the reguired checks. QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc()); if (!T.isNull()) { // FIXME: preserve the old source info. tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T)); // Remember this typedef decl, we will need it later for diagnostics. S.ExtVectorDecls.push_back(tDecl); } } static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (TagDecl *TD = dyn_cast<TagDecl>(D)) TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context)); else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { // If the alignment is less than or equal to 8 bits, the packed attribute // has no effect. if (!FD->getType()->isIncompleteType() && S.Context.getTypeAlign(FD->getType()) <= 8) S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) << Attr.getName() << FD->getType(); else FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context)); } else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (TagDecl *TD = dyn_cast<TagDecl>(D)) TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context)); else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; // The IBAction attributes only apply to instance methods. if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) if (MD->isInstanceMethod()) { D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context)); return; } S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName(); } static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) { // The IBOutlet/IBOutletCollection attributes only apply to instance // variables or properties of Objective-C classes. The outlet must also // have an object reference type. if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) { if (!VD->getType()->getAs<ObjCObjectPointerType>()) { S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) << Attr.getName() << VD->getType() << 0; return false; } } else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) { if (!PD->getType()->getAs<ObjCObjectPointerType>()) { S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) << Attr.getName() << PD->getType() << 1; return false; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName(); return false; } return true; } static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!checkIBOutletCommon(S, D, Attr)) return; D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context)); } static void handleIBOutletCollection(Sema &S, Decl *D, const AttributeList &Attr) { // The iboutletcollection attribute can have zero or one arguments. if (Attr.getParameterName() && Attr.getNumArgs() > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (!checkIBOutletCommon(S, D, Attr)) return; IdentifierInfo *II = Attr.getParameterName(); if (!II) II = &S.Context.Idents.get("NSObject"); ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(), S.getScopeForContext(D->getDeclContext()->getParent())); if (!TypeRep) { S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II; return; } QualType QT = TypeRep.get(); // Diagnose use of non-object type in iboutletcollection attribute. // FIXME. Gnu attribute extension ignores use of builtin types in // attributes. So, __attribute__((iboutletcollection(char))) will be // treated as __attribute__((iboutletcollection())). if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II; return; } D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(),S.Context, QT, Attr.getParameterLoc())); } static void possibleTransparentUnionPointerType(QualType &T) { if (const RecordType *UT = T->getAsUnionType()) if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { RecordDecl *UD = UT->getDecl(); for (RecordDecl::field_iterator it = UD->field_begin(), itend = UD->field_end(); it != itend; ++it) { QualType QT = it->getType(); if (QT->isAnyPointerType() || QT->isBlockPointerType()) { T = QT; return; } } } } static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) { // GCC ignores the nonnull attribute on K&R style function prototypes, so we // ignore it as well if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; // The nonnull attribute only applies to pointers. SmallVector<unsigned, 10> NonNullArgs; for (AttributeList::arg_iterator I=Attr.arg_begin(), E=Attr.arg_end(); I!=E; ++I) { // The argument must be an integer constant expression. Expr *Ex = *I; llvm::APSInt ArgNum(32); if (Ex->isTypeDependent() || Ex->isValueDependent() || !Ex->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "nonnull" << Ex->getSourceRange(); return; } unsigned x = (unsigned) ArgNum.getZExtValue(); if (x < 1 || x > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "nonnull" << I.getArgNum() << Ex->getSourceRange(); return; } --x; if (HasImplicitThisParam) { if (x == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument) << "nonnull" << Ex->getSourceRange(); return; } --x; } // Is the function argument a pointer type? QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType(); possibleTransparentUnionPointerType(T); if (!T->isAnyPointerType() && !T->isBlockPointerType()) { // FIXME: Should also highlight argument in decl. S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only) << "nonnull" << Ex->getSourceRange(); continue; } NonNullArgs.push_back(x); } // If no arguments were specified to __attribute__((nonnull)) then all pointer // arguments have a nonnull attribute. if (NonNullArgs.empty()) { for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) { QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType(); possibleTransparentUnionPointerType(T); if (T->isAnyPointerType() || T->isBlockPointerType()) NonNullArgs.push_back(I); } // No pointer arguments? if (NonNullArgs.empty()) { // Warn the trivial case only if attribute is not coming from a // macro instantiation. if (Attr.getLoc().isFileID()) S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); return; } } unsigned* start = &NonNullArgs[0]; unsigned size = NonNullArgs.size(); llvm::array_pod_sort(start, start + size); D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start, size)); } static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) { // This attribute must be applied to a function declaration. // The first argument to the attribute must be a string, // the name of the resource, for example "malloc". // The following arguments must be argument indexes, the arguments must be // of integer type for Returns, otherwise of pointer type. // The difference between Holds and Takes is that a pointer may still be used // after being held. free() should be __attribute((ownership_takes)), whereas // a list append function may well be __attribute((ownership_holds)). if (!AL.getParameterName()) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string) << AL.getName()->getName() << 1; return; } // Figure out our Kind, and check arguments while we're at it. OwnershipAttr::OwnershipKind K; switch (AL.getKind()) { case AttributeList::AT_ownership_takes: K = OwnershipAttr::Takes; if (AL.getNumArgs() < 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2; return; } break; case AttributeList::AT_ownership_holds: K = OwnershipAttr::Holds; if (AL.getNumArgs() < 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2; return; } break; case AttributeList::AT_ownership_returns: K = OwnershipAttr::Returns; if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL.getNumArgs() + 1; return; } break; default: // This should never happen given how we are called. llvm_unreachable("Unknown ownership attribute"); } if (!isFunction(D) || !hasFunctionProto(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL.getName() << ExpectedFunction; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; StringRef Module = AL.getParameterName()->getName(); // Normalize the argument, __foo__ becomes foo. if (Module.startswith("__") && Module.endswith("__")) Module = Module.substr(2, Module.size() - 4); SmallVector<unsigned, 10> OwnershipArgs; for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E; ++I) { Expr *IdxExpr = *I; llvm::APSInt ArgNum(32); if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int) << AL.getName()->getName() << IdxExpr->getSourceRange(); continue; } unsigned x = (unsigned) ArgNum.getZExtValue(); if (x > NumArgs || x < 1) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL.getName()->getName() << x << IdxExpr->getSourceRange(); continue; } --x; if (HasImplicitThisParam) { if (x == 0) { S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument) << "ownership" << IdxExpr->getSourceRange(); return; } --x; } switch (K) { case OwnershipAttr::Takes: case OwnershipAttr::Holds: { // Is the function argument a pointer type? QualType T = getFunctionOrMethodArgType(D, x); if (!T->isAnyPointerType() && !T->isBlockPointerType()) { // FIXME: Should also highlight argument in decl. S.Diag(AL.getLoc(), diag::err_ownership_type) << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds") << "pointer" << IdxExpr->getSourceRange(); continue; } break; } case OwnershipAttr::Returns: { if (AL.getNumArgs() > 1) { // Is the function argument an integer type? Expr *IdxExpr = AL.getArg(0); llvm::APSInt ArgNum(32); if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(AL.getLoc(), diag::err_ownership_type) << "ownership_returns" << "integer" << IdxExpr->getSourceRange(); return; } } break; } } // switch // Check we don't have a conflict with another ownership attribute. for (specific_attr_iterator<OwnershipAttr> i = D->specific_attr_begin<OwnershipAttr>(), e = D->specific_attr_end<OwnershipAttr>(); i != e; ++i) { if ((*i)->getOwnKind() != K) { for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end(); I!=E; ++I) { if (x == *I) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL.getName()->getName() << "ownership_*"; } } } } OwnershipArgs.push_back(x); } unsigned* start = OwnershipArgs.data(); unsigned size = OwnershipArgs.size(); llvm::array_pod_sort(start, start + size); if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2; return; } D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module, start, size)); } /// Whether this declaration has internal linkage for the purposes of /// things that want to complain about things not have internal linkage. static bool hasEffectivelyInternalLinkage(NamedDecl *D) { switch (D->getLinkage()) { case NoLinkage: case InternalLinkage: return true; // Template instantiations that go from external to unique-external // shouldn't get diagnosed. case UniqueExternalLinkage: return true; case ExternalLinkage: return false; } llvm_unreachable("unknown linkage kind!"); } static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } NamedDecl *nd = cast<NamedDecl>(D); // gcc rejects // class c { // static int a __attribute__((weakref ("v2"))); // static int b() __attribute__((weakref ("f3"))); // }; // and ignores the attributes of // void f(void) { // static int a __attribute__((weakref ("v2"))); // } // we reject them const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); if (!Ctx->isFileContext()) { S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) << nd->getNameAsString(); return; } // The GCC manual says // // At present, a declaration to which `weakref' is attached can only // be `static'. // // It also says // // Without a TARGET, // given as an argument to `weakref' or to `alias', `weakref' is // equivalent to `weak'. // // gcc 4.4.1 will accept // int a7 __attribute__((weakref)); // as // int a7 __attribute__((weak)); // This looks like a bug in gcc. We reject that for now. We should revisit // it if this behaviour is actually used. if (!hasEffectivelyInternalLinkage(nd)) { S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static); return; } // GCC rejects // static ((alias ("y"), weakref)). // Should we? How to check that weakref is before or after alias? if (Attr.getNumArgs() == 1) { Expr *Arg = Attr.getArg(0); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast<StringLiteral>(Arg); if (!Str || !Str->isAscii()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "weakref" << 1; return; } // GCC will accept anything as the argument of weakref. Should we // check for an existing decl? D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str->getString())); } D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context)); } static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *Arg = Attr.getArg(0); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast<StringLiteral>(Arg); if (!Str || !Str->isAscii()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "alias" << 1; return; } if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin); return; } // FIXME: check if target symbol exists in current file D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str->getString())); } static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context)); } static void handleAlwaysInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context)); } static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { QualType RetTy = FD->getResultType(); if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) { D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context)); return; } } S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only); } static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context)); } static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); if (isa<VarDecl>(D)) D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context)); else S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; } static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { assert(!Attr.isInvalid()); if (isa<VarDecl>(D)) D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context)); else S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; } static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) { if (hasDeclarator(D)) return; if (S.CheckNoReturnAttr(attr)) return; if (!isa<ObjCMethodDecl>(D)) { S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) << attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context)); } bool Sema::CheckNoReturnAttr(const AttributeList &attr) { if (attr.hasParameterOrArguments()) { Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; attr.setInvalid(); return true; } return false; } static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { // The checking path for 'noreturn' and 'analyzer_noreturn' are different // because 'analyzer_noreturn' does not impact the type. if(!checkAttributeNumArgs(S, Attr, 0)) return; if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) { ValueDecl *VD = dyn_cast<ValueDecl>(D); if (VD == 0 || (!VD->getType()->isBlockPointerType() && !VD->getType()->isFunctionPointerType())) { S.Diag(Attr.getLoc(), Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type : diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrBlock; return; } } D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context)); } // PS3 PPU-specific. static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { /* Returning a Vector Class in Registers According to the PPU ABI specifications, a class with a single member of vector type is returned in memory when used as the return value of a function. This results in inefficient code when implementing vector classes. To return the value in a single vector register, add the vecreturn attribute to the class definition. This attribute is also applicable to struct types. Example: struct Vector { __vector float xyzw; } __attribute__((vecreturn)); Vector Add(Vector lhs, Vector rhs) { Vector result; result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); return result; // This will be returned in a register } */ if (!isa<RecordDecl>(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedClass; return; } if (D->getAttr<VecReturnAttr>()) { S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn"; return; } RecordDecl *record = cast<RecordDecl>(D); int count = 0; if (!isa<CXXRecordDecl>(record)) { S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } if (!cast<CXXRecordDecl>(record)->isPOD()) { S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record); return; } for (RecordDecl::field_iterator iter = record->field_begin(); iter != record->field_end(); iter++) { if ((count == 1) || !iter->getType()->isVectorType()) { S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } count++; } D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context)); } static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrParameter; return; } // FIXME: Actually store the attribute on the declaration } static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) && !isa<TypeDecl>(D) && !isa<LabelDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableFunctionOrLabel; return; } D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context)); } static void handleReturnsTwiceAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context)); } static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { if (VD->hasLocalStorage() || VD->hasExternalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used"; return; } } else if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context)); } static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = Attr.getArg(0); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "constructor" << 1 << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context, priority)); } static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = Attr.getArg(0); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "destructor" << 1 << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context, priority)); } static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) { unsigned NumArgs = Attr.getNumArgs(); if (NumArgs > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } // Handle the case where deprecated attribute has a text message. StringRef Str; if (NumArgs == 1) { StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0)); if (!SE) { S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string) << "deprecated"; return; } Str = SE->getString(); } D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str)); } static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) { unsigned NumArgs = Attr.getNumArgs(); if (NumArgs > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } // Handle the case where unavailable attribute has a text message. StringRef Str; if (NumArgs == 1) { StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0)); if (!SE) { S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string) << "unavailable"; return; } Str = SE->getString(); } D->addAttr(::new (S.Context) UnavailableAttr(Attr.getRange(), S.Context, Str)); } static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) { unsigned NumArgs = Attr.getNumArgs(); if (NumArgs > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0; return; } D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr( Attr.getRange(), S.Context)); } static void handleObjCRootClassAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa<ObjCInterfaceDecl>(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface); return; } unsigned NumArgs = Attr.getNumArgs(); if (NumArgs > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0; return; } D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context)); } static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa<ObjCInterfaceDecl>(D)) { S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis); return; } unsigned NumArgs = Attr.getNumArgs(); if (NumArgs > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0; return; } D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr( Attr.getRange(), S.Context)); } static void handleAvailabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { IdentifierInfo *Platform = Attr.getParameterName(); SourceLocation PlatformLoc = Attr.getParameterLoc(); StringRef PlatformName = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); if (PlatformName.empty()) { S.Diag(PlatformLoc, diag::warn_availability_unknown_platform) << Platform; PlatformName = Platform->getName(); } AvailabilityChange Introduced = Attr.getAvailabilityIntroduced(); AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated(); AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted(); bool IsUnavailable = Attr.getUnavailableLoc().isValid(); // Ensure that Introduced <= Deprecated <= Obsoleted (although not all // of these steps are needed). if (Introduced.isValid() && Deprecated.isValid() && !(Introduced.Version <= Deprecated.Version)) { S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering) << 1 << PlatformName << Deprecated.Version.getAsString() << 0 << Introduced.Version.getAsString(); return; } if (Introduced.isValid() && Obsoleted.isValid() && !(Introduced.Version <= Obsoleted.Version)) { S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.Version.getAsString() << 0 << Introduced.Version.getAsString(); return; } if (Deprecated.isValid() && Obsoleted.isValid() && !(Deprecated.Version <= Obsoleted.Version)) { S.Diag(Deprecated.KeywordLoc, diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.Version.getAsString() << 1 << Deprecated.Version.getAsString(); return; } StringRef Str; const StringLiteral *SE = dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr()); if (SE) Str = SE->getString(); D->addAttr(::new (S.Context) AvailabilityAttr(Attr.getRange(), S.Context, Platform, Introduced.Version, Deprecated.Version, Obsoleted.Version, IsUnavailable, Str)); } static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if(!checkAttributeNumArgs(S, Attr, 1)) return; Expr *Arg = Attr.getArg(0); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast<StringLiteral>(Arg); if (!Str || !Str->isAscii()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "visibility" << 1; return; } StringRef TypeStr = Str->getString(); VisibilityAttr::VisibilityType type; if (TypeStr == "default") type = VisibilityAttr::Default; else if (TypeStr == "hidden") type = VisibilityAttr::Hidden; else if (TypeStr == "internal") type = VisibilityAttr::Hidden; // FIXME else if (TypeStr == "protected") { // Complain about attempts to use protected visibility on targets // (like Darwin) that don't support it. if (!S.Context.getTargetInfo().hasProtectedVisibility()) { S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility); type = VisibilityAttr::Default; } else { type = VisibilityAttr::Protected; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr; return; } D->addAttr(::new (S.Context) VisibilityAttr(Attr.getRange(), S.Context, type)); } static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl, const AttributeList &Attr) { ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl); if (!method) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << ExpectedMethod; return; } if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) { if (!Attr.getParameterName() && Attr.getNumArgs() == 1) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "objc_method_family" << 1; } else { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; } Attr.setInvalid(); return; } StringRef param = Attr.getParameterName()->getName(); ObjCMethodFamilyAttr::FamilyKind family; if (param == "none") family = ObjCMethodFamilyAttr::OMF_None; else if (param == "alloc") family = ObjCMethodFamilyAttr::OMF_alloc; else if (param == "copy") family = ObjCMethodFamilyAttr::OMF_copy; else if (param == "init") family = ObjCMethodFamilyAttr::OMF_init; else if (param == "mutableCopy") family = ObjCMethodFamilyAttr::OMF_mutableCopy; else if (param == "new") family = ObjCMethodFamilyAttr::OMF_new; else { // Just warn and ignore it. This is future-proof against new // families being used in system headers. S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family); return; } if (family == ObjCMethodFamilyAttr::OMF_init && !method->getResultType()->isObjCObjectPointerType()) { S.Diag(method->getLocation(), diag::err_init_method_bad_return_type) << method->getResultType(); // Ignore the attribute. return; } method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(), S.Context, family)); } static void handleObjCExceptionAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 0)) return; ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D); if (OCI == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface); return; } D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context)); } static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) { if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { QualType T = TD->getUnderlyingType(); if (!T->isPointerType() || !T->getAs<PointerType>()->getPointeeType()->isRecordType()) { S.Diag(TD->getLocation(), diag::err_nsobject_attribute); return; } } else if (!isa<ObjCPropertyDecl>(D)) { // It is okay to include this attribute on properties, e.g.: // // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); // // In this case it follows tradition and suppresses an error in the above // case. S.Diag(D->getLocation(), diag::warn_nsobject_attribute); } D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context)); } static void handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function); return; } D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context)); } static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "blocks" << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } BlocksAttr::BlockType type; if (Attr.getParameterName()->isStr("byref")) type = BlocksAttr::ByRef; else { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "blocks" << Attr.getParameterName(); return; } D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type)); } static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 2) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2; return; } unsigned sentinel = 0; if (Attr.getNumArgs() > 0) { Expr *E = Attr.getArg(0); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "sentinel" << 1 << E->getSourceRange(); return; } if (Idx.isSigned() && Idx.isNegative()) { S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) << E->getSourceRange(); return; } sentinel = Idx.getZExtValue(); } unsigned nullPos = 0; if (Attr.getNumArgs() > 1) { Expr *E = Attr.getArg(1); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "sentinel" << 2 << E->getSourceRange(); return; } nullPos = Idx.getZExtValue(); if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { // FIXME: This error message could be improved, it would be nice // to say what the bounds actually are. S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) << E->getSourceRange(); return; } } if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { const FunctionType *FT = FD->getType()->castAs<FunctionType>(); if (isa<FunctionNoProtoType>(FT)) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments); return; } if (!cast<FunctionProtoType>(FT)->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { if (!MD->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) { if (!BD->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; return; } } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D) : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); if (!cast<FunctionProtoType>(FT)->isVariadic()) { int m = Ty->isFunctionPointerType() ? 0 : 1; S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrBlock; return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrBlock; return; } D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos)); } static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) { S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) << Attr.getName() << 0; return; } if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) if (MD->getResultType()->isVoidType()) { S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) << Attr.getName() << 1; return; } D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context)); } static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) { if (isa<CXXRecordDecl>(D)) { D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context)); return; } S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } NamedDecl *nd = cast<NamedDecl>(D); // 'weak' only applies to declarations with external linkage. if (hasEffectivelyInternalLinkage(nd)) { S.Diag(Attr.getLoc(), diag::err_attribute_weak_static); return; } nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context)); } static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; // weak_import only applies to variable & function declarations. bool isDef = false; if (!D->canBeWeakImported(isDef)) { if (isDef) S.Diag(Attr.getLoc(), diag::warn_attribute_weak_import_invalid_on_definition) << "weak_import" << 2 /*variable and function*/; else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || (S.Context.getTargetInfo().getTriple().isOSDarwin() && (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { // Nothing to warn about here. } else S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context)); } static void handleReqdWorkGroupSize(Sema &S, Decl *D, const AttributeList &Attr) { // Attribute has 3 arguments. if (!checkAttributeNumArgs(S, Attr, 3)) return; unsigned WGSize[3]; for (unsigned i = 0; i < 3; ++i) { Expr *E = Attr.getArg(i); llvm::APSInt ArgNum(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "reqd_work_group_size" << E->getSourceRange(); return; } WGSize[i] = (unsigned) ArgNum.getZExtValue(); } D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context, WGSize[0], WGSize[1], WGSize[2])); } static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Attribute has no arguments. if (!checkAttributeNumArgs(S, Attr, 1)) return; // Make sure that there is a string literal as the sections's single // argument. Expr *ArgExpr = Attr.getArg(0); StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr); if (!SE) { S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section"; return; } // If the target wants to validate the section specifier, make it happen. std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString()); if (!Error.empty()) { S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target) << Error; return; } // This attribute cannot be applied to local variables. if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) { S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable); return; } D->addAttr(::new (S.Context) SectionAttr(Attr.getRange(), S.Context, SE->getString())); } static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) { if (Existing->getLocation().isInvalid()) Existing->setRange(Attr.getRange()); } else { D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context)); } } static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (ConstAttr *Existing = D->getAttr<ConstAttr>()) { if (Existing->getLocation().isInvalid()) Existing->setRange(Attr.getRange()); } else { D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context)); } } static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context)); } static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } VarDecl *VD = dyn_cast<VarDecl>(D); if (!VD || !VD->hasLocalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup"; return; } // Look up the function // FIXME: Lookup probably isn't looking in the right place NamedDecl *CleanupDecl = S.LookupSingleName(S.TUScope, Attr.getParameterName(), Attr.getParameterLoc(), Sema::LookupOrdinaryName); if (!CleanupDecl) { S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) << Attr.getParameterName(); return; } FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl); if (!FD) { S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_function) << Attr.getParameterName(); return; } if (FD->getNumParams() != 1) { S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_func_must_take_one_arg) << Attr.getParameterName(); return; } // We're currently more strict than GCC about what function types we accept. // If this ever proves to be a problem it should be easy to fix. QualType Ty = S.Context.getPointerType(VD->getType()); QualType ParamTy = FD->getParamDecl(0)->getType(); if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), ParamTy, Ty) != Sema::Compatible) { S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_func_arg_incompatible_type) << Attr.getParameterName() << ParamTy << Ty; return; } D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD)); S.MarkFunctionReferenced(Attr.getParameterLoc(), FD); } /// Handle __attribute__((format_arg((idx)))) attribute based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 1)) return; if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; unsigned FirstIdx = 1; // checks for the 2nd argument Expr *IdxExpr = Attr.getArg(0); llvm::APSInt Idx(32); if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 2 << IdxExpr->getSourceRange(); return; } if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 2 << IdxExpr->getSourceRange(); return; } unsigned ArgIdx = Idx.getZExtValue() - 1; if (HasImplicitThisParam) { if (ArgIdx == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument) << "format_arg" << IdxExpr->getSourceRange(); return; } ArgIdx--; } // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(D, ArgIdx); bool not_nsstring_type = !isNSStringType(Ty, S.Context); if (not_nsstring_type && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << (not_nsstring_type ? "a string type" : "an NSString") << IdxExpr->getSourceRange(); return; } Ty = getFunctionOrMethodResultType(D); if (!isNSStringType(Ty, S.Context) && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not) << (not_nsstring_type ? "string type" : "NSString") << IdxExpr->getSourceRange(); return; } D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context, Idx.getZExtValue())); } enum FormatAttrKind { CFStringFormat, NSStringFormat, StrftimeFormat, SupportedFormat, IgnoredFormat, InvalidFormat }; /// getFormatAttrKind - Map from format attribute names to supported format /// types. static FormatAttrKind getFormatAttrKind(StringRef Format) { // Check for formats that get handled specially. if (Format == "NSString") return NSStringFormat; if (Format == "CFString") return CFStringFormat; if (Format == "strftime") return StrftimeFormat; // Otherwise, check for supported formats. if (Format == "scanf" || Format == "printf" || Format == "printf0" || Format == "strfmon" || Format == "cmn_err" || Format == "vcmn_err" || Format == "zcmn_err" || Format == "kprintf") // OpenBSD. return SupportedFormat; if (Format == "gcc_diag" || Format == "gcc_cdiag" || Format == "gcc_cxxdiag" || Format == "gcc_tdiag") return IgnoredFormat; return InvalidFormat; } /// Handle __attribute__((init_priority(priority))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html static void handleInitPriorityAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!S.getLangOpts().CPlusPlus) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); return; } if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) { S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); Attr.setInvalid(); return; } QualType T = dyn_cast<VarDecl>(D)->getType(); if (S.Context.getAsArrayType(T)) T = S.Context.getBaseElementType(T); if (!T->getAs<RecordType>()) { S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); Attr.setInvalid(); return; } if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; Attr.setInvalid(); return; } Expr *priorityExpr = Attr.getArg(0); llvm::APSInt priority(32); if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() || !priorityExpr->isIntegerConstantExpr(priority, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "init_priority" << priorityExpr->getSourceRange(); Attr.setInvalid(); return; } unsigned prioritynum = priority.getZExtValue(); if (prioritynum < 101 || prioritynum > 65535) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range) << priorityExpr->getSourceRange(); Attr.setInvalid(); return; } D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context, prioritynum)); } /// Handle __attribute__((format(type,idx,firstarg))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "format" << 1; return; } if (Attr.getNumArgs() != 2) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3; return; } if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; unsigned FirstIdx = 1; StringRef Format = Attr.getParameterName()->getName(); // Normalize the argument, __foo__ becomes foo. if (Format.startswith("__") && Format.endswith("__")) Format = Format.substr(2, Format.size() - 4); // Check for supported formats. FormatAttrKind Kind = getFormatAttrKind(Format); if (Kind == IgnoredFormat) return; if (Kind == InvalidFormat) { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "format" << Attr.getParameterName()->getName(); return; } // checks for the 2nd argument Expr *IdxExpr = Attr.getArg(0); llvm::APSInt Idx(32); if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 2 << IdxExpr->getSourceRange(); return; } if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 2 << IdxExpr->getSourceRange(); return; } // FIXME: Do we need to bounds check? unsigned ArgIdx = Idx.getZExtValue() - 1; if (HasImplicitThisParam) { if (ArgIdx == 0) { S.Diag(Attr.getLoc(), diag::err_format_attribute_implicit_this_format_string) << IdxExpr->getSourceRange(); return; } ArgIdx--; } // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(D, ArgIdx); if (Kind == CFStringFormat) { if (!isCFStringType(Ty, S.Context)) { S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a CFString" << IdxExpr->getSourceRange(); return; } } else if (Kind == NSStringFormat) { // FIXME: do we need to check if the type is NSString*? What are the // semantics? if (!isNSStringType(Ty, S.Context)) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "an NSString" << IdxExpr->getSourceRange(); return; } } else if (!Ty->isPointerType() || !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a string type" << IdxExpr->getSourceRange(); return; } // check the 3rd argument Expr *FirstArgExpr = Attr.getArg(1); llvm::APSInt FirstArg(32); if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() || !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } // check if the function is variadic if the 3rd argument non-zero if (FirstArg != 0) { if (isFunctionOrMethodVariadic(D)) { ++NumArgs; // +1 for ... } else { S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); return; } } // strftime requires FirstArg to be 0 because it doesn't read from any // variable the input is just the current time + the format string. if (Kind == StrftimeFormat) { if (FirstArg != 0) { S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) << FirstArgExpr->getSourceRange(); return; } // if 0 it disables parameter checking (to use with e.g. va_list) } else if (FirstArg != 0 && FirstArg != NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } // Check whether we already have an equivalent format attribute. for (specific_attr_iterator<FormatAttr> i = D->specific_attr_begin<FormatAttr>(), e = D->specific_attr_end<FormatAttr>(); i != e ; ++i) { FormatAttr *f = *i; if (f->getType() == Format && f->getFormatIdx() == (int)Idx.getZExtValue() && f->getFirstArg() == (int)FirstArg.getZExtValue()) { // If we don't have a valid location for this attribute, adopt the // location. if (f->getLocation().isInvalid()) f->setRange(Attr.getRange()); return; } } D->addAttr(::new (S.Context) FormatAttr(Attr.getRange(), S.Context, Format, Idx.getZExtValue(), FirstArg.getZExtValue())); } static void handleTransparentUnionAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; // Try to find the underlying union declaration. RecordDecl *RD = 0; TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D); if (TD && TD->getUnderlyingType()->isUnionType()) RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); else RD = dyn_cast<RecordDecl>(D); if (!RD || !RD->isUnion()) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedUnion; return; } if (!RD->isCompleteDefinition()) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_not_definition); return; } RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); if (Field == FieldEnd) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields); return; } FieldDecl *FirstField = *Field; QualType FirstType = FirstField->getType(); if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { S.Diag(FirstField->getLocation(), diag::warn_transparent_union_attribute_floating) << FirstType->isVectorType() << FirstType; return; } uint64_t FirstSize = S.Context.getTypeSize(FirstType); uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); for (; Field != FieldEnd; ++Field) { QualType FieldType = Field->getType(); if (S.Context.getTypeSize(FieldType) != FirstSize || S.Context.getTypeAlign(FieldType) != FirstAlign) { // Warn if we drop the attribute. bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) : S.Context.getTypeAlign(FieldType); S.Diag(Field->getLocation(), diag::warn_transparent_union_attribute_field_size_align) << isSize << Field->getDeclName() << FieldBits; unsigned FirstBits = isSize? FirstSize : FirstAlign; S.Diag(FirstField->getLocation(), diag::note_transparent_union_first_field_size_align) << isSize << FirstBits; return; } } RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context)); } static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 1)) return; Expr *ArgExpr = Attr.getArg(0); StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr); // Make sure that there is a string literal as the annotation's single // argument. if (!SE) { S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate"; return; } // Don't duplicate annotations that are already set. for (specific_attr_iterator<AnnotateAttr> i = D->specific_attr_begin<AnnotateAttr>(), e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) { if ((*i)->getAnnotation() == SE->getString()) return; } D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context, SE->getString())); } static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } //FIXME: The C++0x version of this attribute has more limited applicabilty // than GNU's, and should error out when it is used to specify a // weaker alignment, rather than being silently ignored. if (Attr.getNumArgs() == 0) { D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0)); return; } S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0)); } void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E) { // FIXME: Handle pack-expansions here. if (DiagnoseUnexpandedParameterPack(E)) return; if (E->isTypeDependent() || E->isValueDependent()) { // Save dependent expressions in the AST to be instantiated. D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E)); return; } SourceLocation AttrLoc = AttrRange.getBegin(); // FIXME: Cache the number on the Attr object? llvm::APSInt Alignment(32); ExprResult ICE = VerifyIntegerConstantExpression(E, &Alignment, PDiag(diag::err_attribute_argument_not_int) << "aligned", /*AllowFold*/ false); if (ICE.isInvalid()) return; if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) { Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two) << E->getSourceRange(); return; } D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take())); } void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS) { // FIXME: Cache the number on the Attr object if non-dependent? // FIXME: Perform checking of type validity D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS)); return; } /// handleModeAttr - This attribute modifies the width of a decl with primitive /// type. /// /// Despite what would be logical, the mode attribute is a decl attribute, not a /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be /// HImode, not an intermediate pointer. static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) { // This attribute isn't documented, but glibc uses it. It changes // the width of an int or unsigned int to the specified size. // Check that there aren't any arguments if (!checkAttributeNumArgs(S, Attr, 0)) return; IdentifierInfo *Name = Attr.getParameterName(); if (!Name) { S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name); return; } StringRef Str = Attr.getParameterName()->getName(); // Normalize the attribute name, __foo__ becomes foo. if (Str.startswith("__") && Str.endswith("__")) Str = Str.substr(2, Str.size() - 4); unsigned DestWidth = 0; bool IntegerMode = true; bool ComplexMode = false; switch (Str.size()) { case 2: switch (Str[0]) { case 'Q': DestWidth = 8; break; case 'H': DestWidth = 16; break; case 'S': DestWidth = 32; break; case 'D': DestWidth = 64; break; case 'X': DestWidth = 96; break; case 'T': DestWidth = 128; break; } if (Str[1] == 'F') { IntegerMode = false; } else if (Str[1] == 'C') { IntegerMode = false; ComplexMode = true; } else if (Str[1] != 'I') { DestWidth = 0; } break; case 4: // FIXME: glibc uses 'word' to define register_t; this is narrower than a // pointer on PIC16 and other embedded platforms. if (Str == "word") DestWidth = S.Context.getTargetInfo().getPointerWidth(0); else if (Str == "byte") DestWidth = S.Context.getTargetInfo().getCharWidth(); break; case 7: if (Str == "pointer") DestWidth = S.Context.getTargetInfo().getPointerWidth(0); break; } QualType OldTy; if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) OldTy = TD->getUnderlyingType(); else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) OldTy = VD->getType(); else { S.Diag(D->getLocation(), diag::err_attr_wrong_decl) << "mode" << Attr.getRange(); return; } if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType()) S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); else if (IntegerMode) { if (!OldTy->isIntegralOrEnumerationType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } else if (ComplexMode) { if (!OldTy->isComplexType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } else { if (!OldTy->isFloatingType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t // and friends, at least with glibc. // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong // width on unusual platforms. // FIXME: Make sure floating-point mappings are accurate // FIXME: Support XF and TF types QualType NewTy; switch (DestWidth) { case 0: S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name; return; default: S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; case 8: if (!IntegerMode) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } if (OldTy->isSignedIntegerType()) NewTy = S.Context.SignedCharTy; else NewTy = S.Context.UnsignedCharTy; break; case 16: if (!IntegerMode) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } if (OldTy->isSignedIntegerType()) NewTy = S.Context.ShortTy; else NewTy = S.Context.UnsignedShortTy; break; case 32: if (!IntegerMode) NewTy = S.Context.FloatTy; else if (OldTy->isSignedIntegerType()) NewTy = S.Context.IntTy; else NewTy = S.Context.UnsignedIntTy; break; case 64: if (!IntegerMode) NewTy = S.Context.DoubleTy; else if (OldTy->isSignedIntegerType()) if (S.Context.getTargetInfo().getLongWidth() == 64) NewTy = S.Context.LongTy; else NewTy = S.Context.LongLongTy; else if (S.Context.getTargetInfo().getLongWidth() == 64) NewTy = S.Context.UnsignedLongTy; else NewTy = S.Context.UnsignedLongLongTy; break; case 96: NewTy = S.Context.LongDoubleTy; break; case 128: if (!IntegerMode) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } if (OldTy->isSignedIntegerType()) NewTy = S.Context.Int128Ty; else NewTy = S.Context.UnsignedInt128Ty; break; } if (ComplexMode) { NewTy = S.Context.getComplexType(NewTy); } // Install the new type. if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { // FIXME: preserve existing source info. TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy)); } else cast<ValueDecl>(D)->setType(NewTy); } static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context)); } static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context)); } static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(), S.Context)); } static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { // check the attribute arguments. if (Attr.hasParameterOrArguments()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa<VarDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; return; } D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context)); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant"; } } static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context)); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device"; } } static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } FunctionDecl *FD = cast<FunctionDecl>(D); if (!FD->getResultType()->isVoidType()) { TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens(); if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) { S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) << FD->getType() << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(), "void"); } else { S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) << FD->getType(); } return; } D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context)); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global"; } } static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<FunctionDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context)); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host"; } } static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; if (!isa<VarDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; return; } D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context)); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared"; } } static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 0)) return; FunctionDecl *Fn = dyn_cast<FunctionDecl>(D); if (Fn == 0) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } if (!Fn->isInlineSpecified()) { S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); return; } D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context)); } static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (hasDeclarator(D)) return; // Diagnostic is emitted elsewhere: here we store the (valid) Attr // in the Decl node for syntactic reasoning, e.g., pretty-printing. CallingConv CC; if (S.CheckCallingConvAttr(Attr, CC)) return; if (!isa<ObjCMethodDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } switch (Attr.getKind()) { case AttributeList::AT_fastcall: D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_stdcall: D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_thiscall: D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_cdecl: D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_pascal: D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_pcs: { Expr *Arg = Attr.getArg(0); StringLiteral *Str = dyn_cast<StringLiteral>(Arg); if (!Str || !Str->isAscii()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "pcs" << 1; Attr.setInvalid(); return; } StringRef StrRef = Str->getString(); PcsAttr::PCSType PCS; if (StrRef == "aapcs") PCS = PcsAttr::AAPCS; else if (StrRef == "aapcs-vfp") PCS = PcsAttr::AAPCS_VFP; else { S.Diag(Attr.getLoc(), diag::err_invalid_pcs); Attr.setInvalid(); return; } D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS)); } default: llvm_unreachable("unexpected attribute kind"); } } static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){ assert(!Attr.isInvalid()); D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context)); } bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) { if (attr.isInvalid()) return true; if ((attr.getNumArgs() != 0 && !(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) || attr.getParameterName()) { Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; attr.setInvalid(); return true; } // TODO: diagnose uses of these conventions on the wrong target. Or, better // move to TargetAttributesSema one day. switch (attr.getKind()) { case AttributeList::AT_cdecl: CC = CC_C; break; case AttributeList::AT_fastcall: CC = CC_X86FastCall; break; case AttributeList::AT_stdcall: CC = CC_X86StdCall; break; case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break; case AttributeList::AT_pascal: CC = CC_X86Pascal; break; case AttributeList::AT_pcs: { Expr *Arg = attr.getArg(0); StringLiteral *Str = dyn_cast<StringLiteral>(Arg); if (!Str || !Str->isAscii()) { Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string) << "pcs" << 1; attr.setInvalid(); return true; } StringRef StrRef = Str->getString(); if (StrRef == "aapcs") { CC = CC_AAPCS; break; } else if (StrRef == "aapcs-vfp") { CC = CC_AAPCS_VFP; break; } // FALLS THROUGH } default: llvm_unreachable("unexpected attribute kind"); } return false; } static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (hasDeclarator(D)) return; unsigned numParams; if (S.CheckRegparmAttr(Attr, numParams)) return; if (!isa<ObjCMethodDecl>(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams)); } /// Checks a regparm attribute, returning true if it is ill-formed and /// otherwise setting numParams to the appropriate value. bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) { if (Attr.isInvalid()) return true; if (Attr.getNumArgs() != 1) { Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; Attr.setInvalid(); return true; } Expr *NumParamsExpr = Attr.getArg(0); llvm::APSInt NumParams(32); if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() || !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) { Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "regparm" << NumParamsExpr->getSourceRange(); Attr.setInvalid(); return true; } if (Context.getTargetInfo().getRegParmMax() == 0) { Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform) << NumParamsExpr->getSourceRange(); Attr.setInvalid(); return true; } numParams = NumParams.getZExtValue(); if (numParams > Context.getTargetInfo().getRegParmMax()) { Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number) << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); Attr.setInvalid(); return true; } return false; } static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){ if (S.LangOpts.CUDA) { // check the attribute arguments. if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) { // FIXME: 0 is not okay. S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2; return; } if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } Expr *MaxThreadsExpr = Attr.getArg(0); llvm::APSInt MaxThreads(32); if (MaxThreadsExpr->isTypeDependent() || MaxThreadsExpr->isValueDependent() || !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange(); return; } llvm::APSInt MinBlocks(32); if (Attr.getNumArgs() > 1) { Expr *MinBlocksExpr = Attr.getArg(1); if (MinBlocksExpr->isTypeDependent() || MinBlocksExpr->isValueDependent() || !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange(); return; } } D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context, MaxThreads.getZExtValue(), MinBlocks.getZExtValue())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds"; } } //===----------------------------------------------------------------------===// // Checker-specific attribute handlers. //===----------------------------------------------------------------------===// static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) { return type->isDependentType() || type->isObjCObjectPointerType() || S.Context.isObjCNSObjectType(type); } static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) { return type->isDependentType() || type->isPointerType() || isValidSubjectOfNSAttribute(S, type); } static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) { ParmVarDecl *param = dyn_cast<ParmVarDecl>(D); if (!param) { S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedParameter; return; } bool typeOK, cf; if (Attr.getKind() == AttributeList::AT_ns_consumed) { typeOK = isValidSubjectOfNSAttribute(S, param->getType()); cf = false; } else { typeOK = isValidSubjectOfCFAttribute(S, param->getType()); cf = true; } if (!typeOK) { S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type) << Attr.getRange() << Attr.getName() << cf; return; } if (cf) param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context)); else param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context)); } static void handleNSConsumesSelfAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa<ObjCMethodDecl>(D)) { S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedMethod; return; } D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context)); } static void handleNSReturnsRetainedAttr(Sema &S, Decl *D, const AttributeList &Attr) { QualType returnType; if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) returnType = MD->getResultType(); else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) returnType = PD->getType(); else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && (Attr.getKind() == AttributeList::AT_ns_returns_retained)) return; // ignore: was handled as a type attribute else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) returnType = FD->getResultType(); else { S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedFunctionOrMethod; return; } bool typeOK; bool cf; switch (Attr.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case AttributeList::AT_ns_returns_autoreleased: case AttributeList::AT_ns_returns_retained: case AttributeList::AT_ns_returns_not_retained: typeOK = isValidSubjectOfNSAttribute(S, returnType); cf = false; break; case AttributeList::AT_cf_returns_retained: case AttributeList::AT_cf_returns_not_retained: typeOK = isValidSubjectOfCFAttribute(S, returnType); cf = true; break; } if (!typeOK) { S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf; return; } switch (Attr.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case AttributeList::AT_ns_returns_autoreleased: D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_cf_returns_not_retained: D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_ns_returns_not_retained: D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_cf_returns_retained: D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(), S.Context)); return; case AttributeList::AT_ns_returns_retained: D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(), S.Context)); return; }; } static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, const AttributeList &attr) { SourceLocation loc = attr.getLoc(); ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D); if (!isa<ObjCMethodDecl>(method)) { S.Diag(method->getLocStart(), diag::err_attribute_wrong_decl_type) << SourceRange(loc, loc) << attr.getName() << ExpectedMethod; return; } // Check that the method returns a normal pointer. QualType resultType = method->getResultType(); if (!resultType->isReferenceType() && (!resultType->isPointerType() || resultType->isObjCRetainableType())) { S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type) << SourceRange(loc) << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2; // Drop the attribute. return; } method->addAttr( ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context)); } /// Handle cf_audited_transfer and cf_unknown_transfer. static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) { if (!isa<FunctionDecl>(D)) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << A.getRange() << A.getName() << ExpectedFunction; return; } bool IsAudited = (A.getKind() == AttributeList::AT_cf_audited_transfer); // Check whether there's a conflicting attribute already present. Attr *Existing; if (IsAudited) { Existing = D->getAttr<CFUnknownTransferAttr>(); } else { Existing = D->getAttr<CFAuditedTransferAttr>(); } if (Existing) { S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible) << A.getName() << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer") << A.getRange() << Existing->getRange(); return; } // All clear; add the attribute. if (IsAudited) { D->addAttr( ::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context)); } else { D->addAttr( ::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context)); } } static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D, const AttributeList &Attr) { RecordDecl *RD = dyn_cast<RecordDecl>(D); if (!RD || RD->isUnion()) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedStruct; } IdentifierInfo *ParmName = Attr.getParameterName(); // In Objective-C, verify that the type names an Objective-C type. // We don't want to check this outside of ObjC because people sometimes // do crazy C declarations of Objective-C types. if (ParmName && S.getLangOpts().ObjC1) { // Check for an existing type with this name. LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(), Sema::LookupOrdinaryName); if (S.LookupName(R, Sc)) { NamedDecl *Target = R.getFoundDecl(); if (Target && !isa<ObjCInterfaceDecl>(Target)) { S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface); S.Diag(Target->getLocStart(), diag::note_declared_at); } } } D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context, ParmName)); } static void handleObjCOwnershipAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (hasDeclarator(D)) return; S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedVariable; } static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedVariable; return; } ValueDecl *vd = cast<ValueDecl>(D); QualType type = vd->getType(); if (!type->isDependentType() && !type->isObjCLifetimeType()) { S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type) << type; return; } Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); // If we have no lifetime yet, check the lifetime we're presumably // going to infer. if (lifetime == Qualifiers::OCL_None && !type->isDependentType()) lifetime = type->getObjCARCImplicitLifetime(); switch (lifetime) { case Qualifiers::OCL_None: assert(type->isDependentType() && "didn't infer lifetime for non-dependent type?"); break; case Qualifiers::OCL_Weak: // meaningful case Qualifiers::OCL_Strong: // meaningful break; case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless) << (lifetime == Qualifiers::OCL_Autoreleasing); break; } D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context)); } static bool isKnownDeclSpecAttr(const AttributeList &Attr) { switch (Attr.getKind()) { default: return false; case AttributeList::AT_dllimport: case AttributeList::AT_dllexport: case AttributeList::AT_uuid: case AttributeList::AT_deprecated: case AttributeList::AT_noreturn: case AttributeList::AT_nothrow: case AttributeList::AT_naked: case AttributeList::AT_noinline: return true; } } //===----------------------------------------------------------------------===// // Microsoft specific attribute handlers. //===----------------------------------------------------------------------===// static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) { // check the attribute arguments. if (!checkAttributeNumArgs(S, Attr, 1)) return; Expr *Arg = Attr.getArg(0); StringLiteral *Str = dyn_cast<StringLiteral>(Arg); if (!Str || !Str->isAscii()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "uuid" << 1; return; } StringRef StrRef = Str->getString(); bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' && StrRef.back() == '}'; // Validate GUID length. if (IsCurly && StrRef.size() != 38) { S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); return; } if (!IsCurly && StrRef.size() != 36) { S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); return; } // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}" StringRef::iterator I = StrRef.begin(); if (IsCurly) // Skip the optional '{' ++I; for (int i = 0; i < 36; ++i) { if (i == 8 || i == 13 || i == 18 || i == 23) { if (*I != '-') { S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); return; } } else if (!isxdigit(*I)) { S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); return; } I++; } D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, Str->getString())); } else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid"; } //===----------------------------------------------------------------------===// // Top Level Sema Entry Points //===----------------------------------------------------------------------===// static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr) { switch (Attr.getKind()) { case AttributeList::AT_device: handleDeviceAttr (S, D, Attr); break; case AttributeList::AT_host: handleHostAttr (S, D, Attr); break; case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break; default: break; } } static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr) { switch (Attr.getKind()) { case AttributeList::AT_ibaction: handleIBAction(S, D, Attr); break; case AttributeList::AT_iboutlet: handleIBOutlet(S, D, Attr); break; case AttributeList::AT_iboutletcollection: handleIBOutletCollection(S, D, Attr); break; case AttributeList::AT_address_space: case AttributeList::AT_opencl_image_access: case AttributeList::AT_objc_gc: case AttributeList::AT_vector_size: case AttributeList::AT_neon_vector_type: case AttributeList::AT_neon_polyvector_type: // Ignore these, these are type attributes, handled by // ProcessTypeAttributes. break; case AttributeList::AT_device: case AttributeList::AT_host: case AttributeList::AT_overloadable: // Ignore, this is a non-inheritable attribute, handled // by ProcessNonInheritableDeclAttr. break; case AttributeList::AT_alias: handleAliasAttr (S, D, Attr); break; case AttributeList::AT_aligned: handleAlignedAttr (S, D, Attr); break; case AttributeList::AT_always_inline: handleAlwaysInlineAttr (S, D, Attr); break; case AttributeList::AT_analyzer_noreturn: handleAnalyzerNoReturnAttr (S, D, Attr); break; case AttributeList::AT_annotate: handleAnnotateAttr (S, D, Attr); break; case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break; case AttributeList::AT_carries_dependency: handleDependencyAttr (S, D, Attr); break; case AttributeList::AT_common: handleCommonAttr (S, D, Attr); break; case AttributeList::AT_constant: handleConstantAttr (S, D, Attr); break; case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break; case AttributeList::AT_deprecated: handleDeprecatedAttr (S, D, Attr); break; case AttributeList::AT_destructor: handleDestructorAttr (S, D, Attr); break; case AttributeList::AT_ext_vector_type: handleExtVectorTypeAttr(S, scope, D, Attr); break; case AttributeList::AT_format: handleFormatAttr (S, D, Attr); break; case AttributeList::AT_format_arg: handleFormatArgAttr (S, D, Attr); break; case AttributeList::AT_global: handleGlobalAttr (S, D, Attr); break; case AttributeList::AT_gnu_inline: handleGNUInlineAttr (S, D, Attr); break; case AttributeList::AT_launch_bounds: handleLaunchBoundsAttr(S, D, Attr); break; case AttributeList::AT_mode: handleModeAttr (S, D, Attr); break; case AttributeList::AT_malloc: handleMallocAttr (S, D, Attr); break; case AttributeList::AT_may_alias: handleMayAliasAttr (S, D, Attr); break; case AttributeList::AT_nocommon: handleNoCommonAttr (S, D, Attr); break; case AttributeList::AT_nonnull: handleNonNullAttr (S, D, Attr); break; case AttributeList::AT_ownership_returns: case AttributeList::AT_ownership_takes: case AttributeList::AT_ownership_holds: handleOwnershipAttr (S, D, Attr); break; case AttributeList::AT_naked: handleNakedAttr (S, D, Attr); break; case AttributeList::AT_noreturn: handleNoReturnAttr (S, D, Attr); break; case AttributeList::AT_nothrow: handleNothrowAttr (S, D, Attr); break; case AttributeList::AT_shared: handleSharedAttr (S, D, Attr); break; case AttributeList::AT_vecreturn: handleVecReturnAttr (S, D, Attr); break; case AttributeList::AT_objc_ownership: handleObjCOwnershipAttr(S, D, Attr); break; case AttributeList::AT_objc_precise_lifetime: handleObjCPreciseLifetimeAttr(S, D, Attr); break; case AttributeList::AT_objc_returns_inner_pointer: handleObjCReturnsInnerPointerAttr(S, D, Attr); break; case AttributeList::AT_ns_bridged: handleNSBridgedAttr(S, scope, D, Attr); break; case AttributeList::AT_cf_audited_transfer: case AttributeList::AT_cf_unknown_transfer: handleCFTransferAttr(S, D, Attr); break; // Checker-specific. case AttributeList::AT_cf_consumed: case AttributeList::AT_ns_consumed: handleNSConsumedAttr (S, D, Attr); break; case AttributeList::AT_ns_consumes_self: handleNSConsumesSelfAttr(S, D, Attr); break; case AttributeList::AT_ns_returns_autoreleased: case AttributeList::AT_ns_returns_not_retained: case AttributeList::AT_cf_returns_not_retained: case AttributeList::AT_ns_returns_retained: case AttributeList::AT_cf_returns_retained: handleNSReturnsRetainedAttr(S, D, Attr); break; case AttributeList::AT_reqd_work_group_size: handleReqdWorkGroupSize(S, D, Attr); break; case AttributeList::AT_init_priority: handleInitPriorityAttr(S, D, Attr); break; case AttributeList::AT_packed: handlePackedAttr (S, D, Attr); break; case AttributeList::AT_ms_struct: handleMsStructAttr (S, D, Attr); break; case AttributeList::AT_section: handleSectionAttr (S, D, Attr); break; case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break; case AttributeList::AT_objc_arc_weak_reference_unavailable: handleArcWeakrefUnavailableAttr (S, D, Attr); break; case AttributeList::AT_objc_root_class: handleObjCRootClassAttr(S, D, Attr); break; case AttributeList::AT_objc_requires_property_definitions: handleObjCRequiresPropertyDefsAttr (S, D, Attr); break; case AttributeList::AT_unused: handleUnusedAttr (S, D, Attr); break; case AttributeList::AT_returns_twice: handleReturnsTwiceAttr(S, D, Attr); break; case AttributeList::AT_used: handleUsedAttr (S, D, Attr); break; case AttributeList::AT_visibility: handleVisibilityAttr (S, D, Attr); break; case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr); break; case AttributeList::AT_weak: handleWeakAttr (S, D, Attr); break; case AttributeList::AT_weakref: handleWeakRefAttr (S, D, Attr); break; case AttributeList::AT_weak_import: handleWeakImportAttr (S, D, Attr); break; case AttributeList::AT_transparent_union: handleTransparentUnionAttr(S, D, Attr); break; case AttributeList::AT_objc_exception: handleObjCExceptionAttr(S, D, Attr); break; case AttributeList::AT_objc_method_family: handleObjCMethodFamilyAttr(S, D, Attr); break; case AttributeList::AT_NSObject: handleObjCNSObject (S, D, Attr); break; case AttributeList::AT_blocks: handleBlocksAttr (S, D, Attr); break; case AttributeList::AT_sentinel: handleSentinelAttr (S, D, Attr); break; case AttributeList::AT_const: handleConstAttr (S, D, Attr); break; case AttributeList::AT_pure: handlePureAttr (S, D, Attr); break; case AttributeList::AT_cleanup: handleCleanupAttr (S, D, Attr); break; case AttributeList::AT_nodebug: handleNoDebugAttr (S, D, Attr); break; case AttributeList::AT_noinline: handleNoInlineAttr (S, D, Attr); break; case AttributeList::AT_regparm: handleRegparmAttr (S, D, Attr); break; case AttributeList::IgnoredAttribute: // Just ignore break; case AttributeList::AT_no_instrument_function: // Interacts with -pg. handleNoInstrumentFunctionAttr(S, D, Attr); break; case AttributeList::AT_stdcall: case AttributeList::AT_cdecl: case AttributeList::AT_fastcall: case AttributeList::AT_thiscall: case AttributeList::AT_pascal: case AttributeList::AT_pcs: handleCallConvAttr(S, D, Attr); break; case AttributeList::AT_opencl_kernel_function: handleOpenCLKernelAttr(S, D, Attr); break; case AttributeList::AT_uuid: handleUuidAttr(S, D, Attr); break; // Thread safety attributes: case AttributeList::AT_guarded_var: handleGuardedVarAttr(S, D, Attr); break; case AttributeList::AT_pt_guarded_var: handleGuardedVarAttr(S, D, Attr, /*pointer = */true); break; case AttributeList::AT_scoped_lockable: handleLockableAttr(S, D, Attr, /*scoped = */true); break; case AttributeList::AT_no_address_safety_analysis: handleNoAddressSafetyAttr(S, D, Attr); break; case AttributeList::AT_no_thread_safety_analysis: handleNoThreadSafetyAttr(S, D, Attr); break; case AttributeList::AT_lockable: handleLockableAttr(S, D, Attr); break; case AttributeList::AT_guarded_by: handleGuardedByAttr(S, D, Attr); break; case AttributeList::AT_pt_guarded_by: handleGuardedByAttr(S, D, Attr, /*pointer = */true); break; case AttributeList::AT_exclusive_lock_function: handleLockFunAttr(S, D, Attr, /*exclusive = */true); break; case AttributeList::AT_exclusive_locks_required: handleLocksRequiredAttr(S, D, Attr, /*exclusive = */true); break; case AttributeList::AT_exclusive_trylock_function: handleTrylockFunAttr(S, D, Attr, /*exclusive = */true); break; case AttributeList::AT_lock_returned: handleLockReturnedAttr(S, D, Attr); break; case AttributeList::AT_locks_excluded: handleLocksExcludedAttr(S, D, Attr); break; case AttributeList::AT_shared_lock_function: handleLockFunAttr(S, D, Attr); break; case AttributeList::AT_shared_locks_required: handleLocksRequiredAttr(S, D, Attr); break; case AttributeList::AT_shared_trylock_function: handleTrylockFunAttr(S, D, Attr); break; case AttributeList::AT_unlock_function: handleUnlockFunAttr(S, D, Attr); break; case AttributeList::AT_acquired_before: handleAcquireOrderAttr(S, D, Attr, /*before = */true); break; case AttributeList::AT_acquired_after: handleAcquireOrderAttr(S, D, Attr, /*before = */false); break; default: // Ask target about the attribute. const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema(); if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S)) S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored) << Attr.getName(); break; } } /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if /// the attribute applies to decls. If the attribute is a type attribute, just /// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to /// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4). static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr, bool NonInheritable, bool Inheritable) { if (Attr.isInvalid()) return; if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr)) // FIXME: Try to deal with other __declspec attributes! return; if (NonInheritable) ProcessNonInheritableDeclAttr(S, scope, D, Attr); if (Inheritable) ProcessInheritableDeclAttr(S, scope, D, Attr); } /// ProcessDeclAttributeList - Apply all the decl attributes in the specified /// attribute list to the specified decl, ignoring any type attributes. void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AttrList, bool NonInheritable, bool Inheritable) { for (const AttributeList* l = AttrList; l; l = l->getNext()) { ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable); } // GCC accepts // static int a9 __attribute__((weakref)); // but that looks really pointless. We reject it. if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) << dyn_cast<NamedDecl>(D)->getNameAsString(); return; } } // Annotation attributes are the only attributes allowed after an access // specifier. bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const AttributeList *AttrList) { for (const AttributeList* l = AttrList; l; l = l->getNext()) { if (l->getKind() == AttributeList::AT_annotate) { handleAnnotateAttr(*this, ASDecl, *l); } else { Diag(l->getLoc(), diag::err_only_annotate_after_access_spec); return true; } } return false; } /// checkUnusedDeclAttributes - Check a list of attributes to see if it /// contains any decl attributes that we should warn about. static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) { for ( ; A; A = A->getNext()) { // Only warn if the attribute is an unignored, non-type attribute. if (A->isUsedAsTypeAttr()) continue; if (A->getKind() == AttributeList::IgnoredAttribute) continue; if (A->getKind() == AttributeList::UnknownAttribute) { S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored) << A->getName() << A->getRange(); } else { S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl) << A->getName() << A->getRange(); } } } /// checkUnusedDeclAttributes - Given a declarator which is not being /// used to build a declaration, complain about any decl attributes /// which might be lying around on it. void Sema::checkUnusedDeclAttributes(Declarator &D) { ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList()); ::checkUnusedDeclAttributes(*this, D.getAttributes()); for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); } /// DeclClonePragmaWeak - clone existing decl (maybe definition), /// #pragma weak needs a non-definition decl and source may not have one NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, SourceLocation Loc) { assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); NamedDecl *NewD = 0; if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { FunctionDecl *NewFD; // FIXME: Missing call to CheckFunctionDeclaration(). // FIXME: Mangling? // FIXME: Is the qualifier info correct? // FIXME: Is the DeclContext correct? NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(), Loc, Loc, DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, SC_None, false/*isInlineSpecified*/, FD->hasPrototype(), false/*isConstexprSpecified*/); NewD = NewFD; if (FD->getQualifier()) NewFD->setQualifierInfo(FD->getQualifierLoc()); // Fake up parameter variables; they are declared as if this were // a typedef. QualType FDTy = FD->getType(); if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) { SmallVector<ParmVarDecl*, 16> Params; for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(), AE = FT->arg_type_end(); AI != AE; ++AI) { ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI); Param->setScopeInfo(0, Params.size()); Params.push_back(Param); } NewFD->setParams(Params); } } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) { NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), VD->getInnerLocStart(), VD->getLocation(), II, VD->getType(), VD->getTypeSourceInfo(), VD->getStorageClass(), VD->getStorageClassAsWritten()); if (VD->getQualifier()) { VarDecl *NewVD = cast<VarDecl>(NewD); NewVD->setQualifierInfo(VD->getQualifierLoc()); } } return NewD; } /// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak /// applied to it, possibly with an alias. void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { if (W.getUsed()) return; // only do this once W.setUsed(true); if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) IdentifierInfo *NDId = ND->getIdentifier(); NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context, NDId->getName())); NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context)); WeakTopLevelDecl.push_back(NewD); // FIXME: "hideous" code from Sema::LazilyCreateBuiltin // to insert Decl at TU scope, sorry. DeclContext *SavedContext = CurContext; CurContext = Context.getTranslationUnitDecl(); PushOnScopeChains(NewD, S); CurContext = SavedContext; } else { // just add weak to existing ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context)); } } /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in /// it, apply them to D. This is a bit tricky because PD can have attributes /// specified in many different places, and we need to find and apply them all. void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD, bool NonInheritable, bool Inheritable) { // It's valid to "forward-declare" #pragma weak, in which case we // have to do this. if (Inheritable) { LoadExternalWeakUndeclaredIdentifiers(); if (!WeakUndeclaredIdentifiers.empty()) { if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) { if (IdentifierInfo *Id = ND->getIdentifier()) { llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I = WeakUndeclaredIdentifiers.find(Id); if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) { WeakInfo W = I->second; DeclApplyPragmaWeak(S, ND, W); WeakUndeclaredIdentifiers[Id] = W; } } } } } // Apply decl attributes from the DeclSpec if present. if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList()) ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable); // Walk the declarator structure, applying decl attributes that were in a type // position to the decl itself. This handles cases like: // int *__attr__(x)** D; // when X is a decl attribute. for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable); // Finally, apply any attributes on the decl itself. if (const AttributeList *Attrs = PD.getAttributes()) ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable); } /// Is the given declaration allowed to use a forbidden type? static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) { // Private ivars are always okay. Unfortunately, people don't // always properly make their ivars private, even in system headers. // Plus we need to make fields okay, too. // Function declarations in sys headers will be marked unavailable. if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) && !isa<FunctionDecl>(decl)) return false; // Require it to be declared in a system header. return S.Context.getSourceManager().isInSystemHeader(decl->getLocation()); } /// Handle a delayed forbidden-type diagnostic. static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag, Decl *decl) { if (decl && isForbiddenTypeAllowed(S, decl)) { decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context, "this system declaration uses an unsupported type")); return; } if (S.getLangOpts().ObjCAutoRefCount) if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) { // FIXME. we may want to supress diagnostics for all // kind of forbidden type messages on unavailable functions. if (FD->hasAttr<UnavailableAttr>() && diag.getForbiddenTypeDiagnostic() == diag::err_arc_array_param_no_ownership) { diag.Triggered = true; return; } } S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic()) << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument(); diag.Triggered = true; } // This duplicates a vector push_back but hides the need to know the // size of the type. void Sema::DelayedDiagnostics::add(const DelayedDiagnostic &diag) { assert(StackSize <= StackCapacity); // Grow the stack if necessary. if (StackSize == StackCapacity) { unsigned newCapacity = 2 * StackCapacity + 2; char *newBuffer = new char[newCapacity * sizeof(DelayedDiagnostic)]; const char *oldBuffer = (const char*) Stack; if (StackCapacity) memcpy(newBuffer, oldBuffer, StackCapacity * sizeof(DelayedDiagnostic)); delete[] oldBuffer; Stack = reinterpret_cast<sema::DelayedDiagnostic*>(newBuffer); StackCapacity = newCapacity; } assert(StackSize < StackCapacity); new (&Stack[StackSize++]) DelayedDiagnostic(diag); } void Sema::DelayedDiagnostics::popParsingDecl(Sema &S, ParsingDeclState state, Decl *decl) { DelayedDiagnostics &DD = S.DelayedDiagnostics; // Check the invariants. assert(DD.StackSize >= state.SavedStackSize); assert(state.SavedStackSize >= DD.ActiveStackBase); assert(DD.ParsingDepth > 0); // Drop the parsing depth. DD.ParsingDepth--; // If there are no active diagnostics, we're done. if (DD.StackSize == DD.ActiveStackBase) return; // We only want to actually emit delayed diagnostics when we // successfully parsed a decl. if (decl) { // We emit all the active diagnostics, not just those starting // from the saved state. The idea is this: we get one push for a // decl spec and another for each declarator; in a decl group like: // deprecated_typedef foo, *bar, baz(); // only the declarator pops will be passed decls. This is correct; // we really do need to consider delayed diagnostics from the decl spec // for each of the different declarations. for (unsigned i = DD.ActiveStackBase, e = DD.StackSize; i != e; ++i) { DelayedDiagnostic &diag = DD.Stack[i]; if (diag.Triggered) continue; switch (diag.Kind) { case DelayedDiagnostic::Deprecation: // Don't bother giving deprecation diagnostics if the decl is invalid. if (!decl->isInvalidDecl()) S.HandleDelayedDeprecationCheck(diag, decl); break; case DelayedDiagnostic::Access: S.HandleDelayedAccessCheck(diag, decl); break; case DelayedDiagnostic::ForbiddenType: handleDelayedForbiddenType(S, diag, decl); break; } } } // Destroy all the delayed diagnostics we're about to pop off. for (unsigned i = state.SavedStackSize, e = DD.StackSize; i != e; ++i) DD.Stack[i].Destroy(); DD.StackSize = state.SavedStackSize; } static bool isDeclDeprecated(Decl *D) { do { if (D->isDeprecated()) return true; // A category implicitly has the availability of the interface. if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D)) return CatD->getClassInterface()->isDeprecated(); } while ((D = cast_or_null<Decl>(D->getDeclContext()))); return false; } void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD, Decl *Ctx) { if (isDeclDeprecated(Ctx)) return; DD.Triggered = true; if (!DD.getDeprecationMessage().empty()) Diag(DD.Loc, diag::warn_deprecated_message) << DD.getDeprecationDecl()->getDeclName() << DD.getDeprecationMessage(); else if (DD.getUnknownObjCClass()) { Diag(DD.Loc, diag::warn_deprecated_fwdclass_message) << DD.getDeprecationDecl()->getDeclName(); Diag(DD.getUnknownObjCClass()->getLocation(), diag::note_forward_class); } else Diag(DD.Loc, diag::warn_deprecated) << DD.getDeprecationDecl()->getDeclName(); } void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message, SourceLocation Loc, const ObjCInterfaceDecl *UnknownObjCClass) { // Delay if we're currently parsing a declaration. if (DelayedDiagnostics.shouldDelayDiagnostics()) { DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D, UnknownObjCClass, Message)); return; } // Otherwise, don't warn if our current context is deprecated. if (isDeclDeprecated(cast<Decl>(getCurLexicalContext()))) return; if (!Message.empty()) Diag(Loc, diag::warn_deprecated_message) << D->getDeclName() << Message; else { if (!UnknownObjCClass) Diag(Loc, diag::warn_deprecated) << D->getDeclName(); else { Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName(); Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); } } }