Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp |
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for Objective C declarations. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ASTMutationListener.h" #include "clang/Basic/SourceManager.h" #include "clang/Sema/DeclSpec.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/DenseSet.h" using namespace clang; /// Check whether the given method, which must be in the 'init' /// family, is a valid member of that family. /// /// \param receiverTypeIfCall - if null, check this as if declaring it; /// if non-null, check this as if making a call to it with the given /// receiver type /// /// \return true to indicate that there was an error and appropriate /// actions were taken bool Sema::checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall) { if (method->isInvalidDecl()) return true; // This castAs is safe: methods that don't return an object // pointer won't be inferred as inits and will reject an explicit // objc_method_family(init). // We ignore protocols here. Should we? What about Class? const ObjCObjectType *result = method->getResultType() ->castAs<ObjCObjectPointerType>()->getObjectType(); if (result->isObjCId()) { return false; } else if (result->isObjCClass()) { // fall through: always an error } else { ObjCInterfaceDecl *resultClass = result->getInterface(); assert(resultClass && "unexpected object type!"); // It's okay for the result type to still be a forward declaration // if we're checking an interface declaration. if (!resultClass->hasDefinition()) { if (receiverTypeIfCall.isNull() && !isa<ObjCImplementationDecl>(method->getDeclContext())) return false; // Otherwise, we try to compare class types. } else { // If this method was declared in a protocol, we can't check // anything unless we have a receiver type that's an interface. const ObjCInterfaceDecl *receiverClass = 0; if (isa<ObjCProtocolDecl>(method->getDeclContext())) { if (receiverTypeIfCall.isNull()) return false; receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() ->getInterfaceDecl(); // This can be null for calls to e.g. id<Foo>. if (!receiverClass) return false; } else { receiverClass = method->getClassInterface(); assert(receiverClass && "method not associated with a class!"); } // If either class is a subclass of the other, it's fine. if (receiverClass->isSuperClassOf(resultClass) || resultClass->isSuperClassOf(receiverClass)) return false; } } SourceLocation loc = method->getLocation(); // If we're in a system header, and this is not a call, just make // the method unusable. if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { method->addAttr(new (Context) UnavailableAttr(loc, Context, "init method returns a type unrelated to its receiver type")); return true; } // Otherwise, it's an error. Diag(loc, diag::err_arc_init_method_unrelated_result_type); method->setInvalidDecl(); return true; } void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, const ObjCMethodDecl *Overridden, bool IsImplementation) { if (Overridden->hasRelatedResultType() && !NewMethod->hasRelatedResultType()) { // This can only happen when the method follows a naming convention that // implies a related result type, and the original (overridden) method has // a suitable return type, but the new (overriding) method does not have // a suitable return type. QualType ResultType = NewMethod->getResultType(); SourceRange ResultTypeRange; if (const TypeSourceInfo *ResultTypeInfo = NewMethod->getResultTypeSourceInfo()) ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); // Figure out which class this method is part of, if any. ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); if (!CurrentClass) { DeclContext *DC = NewMethod->getDeclContext(); if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) CurrentClass = Cat->getClassInterface(); else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) CurrentClass = Impl->getClassInterface(); else if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(DC)) CurrentClass = CatImpl->getClassInterface(); } if (CurrentClass) { Diag(NewMethod->getLocation(), diag::warn_related_result_type_compatibility_class) << Context.getObjCInterfaceType(CurrentClass) << ResultType << ResultTypeRange; } else { Diag(NewMethod->getLocation(), diag::warn_related_result_type_compatibility_protocol) << ResultType << ResultTypeRange; } if (ObjCMethodFamily Family = Overridden->getMethodFamily()) Diag(Overridden->getLocation(), diag::note_related_result_type_overridden_family) << Family; else Diag(Overridden->getLocation(), diag::note_related_result_type_overridden); } if (getLangOpts().ObjCAutoRefCount) { if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != Overridden->hasAttr<NSReturnsRetainedAttr>())) { Diag(NewMethod->getLocation(), diag::err_nsreturns_retained_attribute_mismatch) << 1; Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; } if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { Diag(NewMethod->getLocation(), diag::err_nsreturns_retained_attribute_mismatch) << 0; Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; } ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(); for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), ne = NewMethod->param_end(); ni != ne; ++ni, ++oi) { const ParmVarDecl *oldDecl = (*oi); ParmVarDecl *newDecl = (*ni); if (newDecl->hasAttr<NSConsumedAttr>() != oldDecl->hasAttr<NSConsumedAttr>()) { Diag(newDecl->getLocation(), diag::err_nsconsumed_attribute_mismatch); Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; } } } } /// \brief Check a method declaration for compatibility with the Objective-C /// ARC conventions. static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { ObjCMethodFamily family = method->getMethodFamily(); switch (family) { case OMF_None: case OMF_dealloc: case OMF_finalize: case OMF_retain: case OMF_release: case OMF_autorelease: case OMF_retainCount: case OMF_self: case OMF_performSelector: return false; case OMF_init: // If the method doesn't obey the init rules, don't bother annotating it. if (S.checkInitMethod(method, QualType())) return true; method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), S.Context)); // Don't add a second copy of this attribute, but otherwise don't // let it be suppressed. if (method->hasAttr<NSReturnsRetainedAttr>()) return false; break; case OMF_alloc: case OMF_copy: case OMF_mutableCopy: case OMF_new: if (method->hasAttr<NSReturnsRetainedAttr>() || method->hasAttr<NSReturnsNotRetainedAttr>() || method->hasAttr<NSReturnsAutoreleasedAttr>()) return false; break; } method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), S.Context)); return false; } static void DiagnoseObjCImplementedDeprecations(Sema &S, NamedDecl *ND, SourceLocation ImplLoc, int select) { if (ND && ND->isDeprecated()) { S.Diag(ImplLoc, diag::warn_deprecated_def) << select; if (select == 0) S.Diag(ND->getLocation(), diag::note_method_declared_at) << ND->getDeclName(); else S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; } } /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global /// pool. void Sema::AddAnyMethodToGlobalPool(Decl *D) { ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); // If we don't have a valid method decl, simply return. if (!MDecl) return; if (MDecl->isInstanceMethod()) AddInstanceMethodToGlobalPool(MDecl, true); else AddFactoryMethodToGlobalPool(MDecl, true); } /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible /// and user declared, in the method definition's AST. void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { assert(getCurMethodDecl() == 0 && "Method parsing confused"); ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); // If we don't have a valid method decl, simply return. if (!MDecl) return; // Allow all of Sema to see that we are entering a method definition. PushDeclContext(FnBodyScope, MDecl); PushFunctionScope(); // Create Decl objects for each parameter, entrring them in the scope for // binding to their use. // Insert the invisible arguments, self and _cmd! MDecl->createImplicitParams(Context, MDecl->getClassInterface()); PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); // Introduce all of the other parameters into this scope. for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), E = MDecl->param_end(); PI != E; ++PI) { ParmVarDecl *Param = (*PI); if (!Param->isInvalidDecl() && RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) Param->setInvalidDecl(); if ((*PI)->getIdentifier()) PushOnScopeChains(*PI, FnBodyScope); } // In ARC, disallow definition of retain/release/autorelease/retainCount if (getLangOpts().ObjCAutoRefCount) { switch (MDecl->getMethodFamily()) { case OMF_retain: case OMF_retainCount: case OMF_release: case OMF_autorelease: Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) << MDecl->getSelector(); break; case OMF_None: case OMF_dealloc: case OMF_finalize: case OMF_alloc: case OMF_init: case OMF_mutableCopy: case OMF_copy: case OMF_new: case OMF_self: case OMF_performSelector: break; } } // Warn on deprecated methods under -Wdeprecated-implementations, // and prepare for warning on missing super calls. if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { if (ObjCMethodDecl *IMD = IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) DiagnoseObjCImplementedDeprecations(*this, dyn_cast<NamedDecl>(IMD), MDecl->getLocation(), 0); // If this is "dealloc" or "finalize", set some bit here. // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. // Only do this if the current class actually has a superclass. if (IC->getSuperClass()) { ObjCShouldCallSuperDealloc = !(Context.getLangOpts().ObjCAutoRefCount || Context.getLangOpts().getGC() == LangOptions::GCOnly) && MDecl->getMethodFamily() == OMF_dealloc; ObjCShouldCallSuperFinalize = Context.getLangOpts().getGC() != LangOptions::NonGC && MDecl->getMethodFamily() == OMF_finalize; } } } namespace { // Callback to only accept typo corrections that are Objective-C classes. // If an ObjCInterfaceDecl* is given to the constructor, then the validation // function will reject corrections to that class. class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { public: ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {} explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) : CurrentIDecl(IDecl) {} virtual bool ValidateCandidate(const TypoCorrection &candidate) { ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); return ID && !declaresSameEntity(ID, CurrentIDecl); } private: ObjCInterfaceDecl *CurrentIDecl; }; } Decl *Sema:: ActOnStartClassInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, Decl * const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, AttributeList *AttrList) { assert(ClassName && "Missing class identifier"); // Check for another declaration kind with the same name. NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, ForRedeclaration); if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; Diag(PrevDecl->getLocation(), diag::note_previous_definition); } // Create a declaration to describe this @interface. ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, PrevIDecl, ClassLoc); if (PrevIDecl) { // Class already seen. Was it a definition? if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { Diag(AtInterfaceLoc, diag::err_duplicate_class_def) << PrevIDecl->getDeclName(); Diag(Def->getLocation(), diag::note_previous_definition); IDecl->setInvalidDecl(); } } if (AttrList) ProcessDeclAttributeList(TUScope, IDecl, AttrList); PushOnScopeChains(IDecl, TUScope); // Start the definition of this class. If we're in a redefinition case, there // may already be a definition, so we'll end up adding to it. if (!IDecl->hasDefinition()) IDecl->startDefinition(); if (SuperName) { // Check if a different kind of symbol declared in this scope. PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, LookupOrdinaryName); if (!PrevDecl) { // Try to correct for a typo in the superclass name without correcting // to the class we're defining. ObjCInterfaceValidatorCCC Validator(IDecl); if (TypoCorrection Corrected = CorrectTypo( DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, NULL, Validator)) { PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); Diag(SuperLoc, diag::err_undef_superclass_suggest) << SuperName << ClassName << PrevDecl->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl->getDeclName(); } } if (declaresSameEntity(PrevDecl, IDecl)) { Diag(SuperLoc, diag::err_recursive_superclass) << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); IDecl->setEndOfDefinitionLoc(ClassLoc); } else { ObjCInterfaceDecl *SuperClassDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); // Diagnose classes that inherit from deprecated classes. if (SuperClassDecl) (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); if (PrevDecl && SuperClassDecl == 0) { // The previous declaration was not a class decl. Check if we have a // typedef. If we do, get the underlying class type. if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { QualType T = TDecl->getUnderlyingType(); if (T->isObjCObjectType()) { if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); } } // This handles the following case: // // typedef int SuperClass; // @interface MyClass : SuperClass {} @end // if (!SuperClassDecl) { Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; Diag(PrevDecl->getLocation(), diag::note_previous_definition); } } if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { if (!SuperClassDecl) Diag(SuperLoc, diag::err_undef_superclass) << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); else if (RequireCompleteType(SuperLoc, Context.getObjCInterfaceType(SuperClassDecl), PDiag(diag::err_forward_superclass) << SuperClassDecl->getDeclName() << ClassName << SourceRange(AtInterfaceLoc, ClassLoc))) { SuperClassDecl = 0; } } IDecl->setSuperClass(SuperClassDecl); IDecl->setSuperClassLoc(SuperLoc); IDecl->setEndOfDefinitionLoc(SuperLoc); } } else { // we have a root class. IDecl->setEndOfDefinitionLoc(ClassLoc); } // Check then save referenced protocols. if (NumProtoRefs) { IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, ProtoLocs, Context); IDecl->setEndOfDefinitionLoc(EndProtoLoc); } CheckObjCDeclScope(IDecl); return ActOnObjCContainerStartDefinition(IDecl); } /// ActOnCompatiblityAlias - this action is called after complete parsing of /// @compatibility_alias declaration. It sets up the alias relationships. Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation) { // Look for previous declaration of alias name NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName, ForRedeclaration); if (ADecl) { if (isa<ObjCCompatibleAliasDecl>(ADecl)) Diag(AliasLocation, diag::warn_previous_alias_decl); else Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; Diag(ADecl->getLocation(), diag::note_previous_declaration); return 0; } // Check for class declaration NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, ForRedeclaration); if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { QualType T = TDecl->getUnderlyingType(); if (T->isObjCObjectType()) { if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { ClassName = IDecl->getIdentifier(); CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, ForRedeclaration); } } } ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); if (CDecl == 0) { Diag(ClassLocation, diag::warn_undef_interface) << ClassName; if (CDeclU) Diag(CDeclU->getLocation(), diag::note_previous_declaration); return 0; } // Everything checked out, instantiate a new alias declaration AST. ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); if (!CheckObjCDeclScope(AliasDecl)) PushOnScopeChains(AliasDecl, TUScope); return AliasDecl; } bool Sema::CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc, const ObjCList<ObjCProtocolDecl> &PList) { bool res = false; for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), E = PList.end(); I != E; ++I) { if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), Ploc)) { if (PDecl->getIdentifier() == PName) { Diag(Ploc, diag::err_protocol_has_circular_dependency); Diag(PrevLoc, diag::note_previous_definition); res = true; } if (!PDecl->hasDefinition()) continue; if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, PDecl->getLocation(), PDecl->getReferencedProtocols())) res = true; } } return res; } Decl * Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, Decl * const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, AttributeList *AttrList) { bool err = false; // FIXME: Deal with AttrList. assert(ProtocolName && "Missing protocol identifier"); ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, ForRedeclaration); ObjCProtocolDecl *PDecl = 0; if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) { // If we already have a definition, complain. Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; Diag(Def->getLocation(), diag::note_previous_definition); // Create a new protocol that is completely distinct from previous // declarations, and do not make this protocol available for name lookup. // That way, we'll end up completely ignoring the duplicate. // FIXME: Can we turn this into an error? PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, ProtocolLoc, AtProtoInterfaceLoc, /*PrevDecl=*/0); PDecl->startDefinition(); } else { if (PrevDecl) { // Check for circular dependencies among protocol declarations. This can // only happen if this protocol was forward-declared. ObjCList<ObjCProtocolDecl> PList; PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); err = CheckForwardProtocolDeclarationForCircularDependency( ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); } // Create the new declaration. PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, ProtocolLoc, AtProtoInterfaceLoc, /*PrevDecl=*/PrevDecl); PushOnScopeChains(PDecl, TUScope); PDecl->startDefinition(); } if (AttrList) ProcessDeclAttributeList(TUScope, PDecl, AttrList); // Merge attributes from previous declarations. if (PrevDecl) mergeDeclAttributes(PDecl, PrevDecl); if (!err && NumProtoRefs ) { /// Check then save referenced protocols. PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, ProtoLocs, Context); } CheckObjCDeclScope(PDecl); return ActOnObjCContainerStartDefinition(PDecl); } /// FindProtocolDeclaration - This routine looks up protocols and /// issues an error if they are not declared. It returns list of /// protocol declarations in its 'Protocols' argument. void Sema::FindProtocolDeclaration(bool WarnOnDeclarations, const IdentifierLocPair *ProtocolId, unsigned NumProtocols, SmallVectorImpl<Decl *> &Protocols) { for (unsigned i = 0; i != NumProtocols; ++i) { ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, ProtocolId[i].second); if (!PDecl) { DeclFilterCCC<ObjCProtocolDecl> Validator; TypoCorrection Corrected = CorrectTypo( DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), LookupObjCProtocolName, TUScope, NULL, Validator); if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) << ProtocolId[i].first << Corrected.getCorrection(); Diag(PDecl->getLocation(), diag::note_previous_decl) << PDecl->getDeclName(); } } if (!PDecl) { Diag(ProtocolId[i].second, diag::err_undeclared_protocol) << ProtocolId[i].first; continue; } (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); // If this is a forward declaration and we are supposed to warn in this // case, do it. if (WarnOnDeclarations && !PDecl->hasDefinition()) Diag(ProtocolId[i].second, diag::warn_undef_protocolref) << ProtocolId[i].first; Protocols.push_back(PDecl); } } /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of /// a class method in its extension. /// void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID) { if (!ID) return; // Possibly due to previous error llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), e = ID->meth_end(); i != e; ++i) { ObjCMethodDecl *MD = *i; MethodMap[MD->getSelector()] = MD; } if (MethodMap.empty()) return; for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), e = CAT->meth_end(); i != e; ++i) { ObjCMethodDecl *Method = *i; const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { Diag(Method->getLocation(), diag::err_duplicate_method_decl) << Method->getDeclName(); Diag(PrevMethod->getLocation(), diag::note_previous_declaration); } } } /// ActOnForwardProtocolDeclaration - Handle @protocol foo; Sema::DeclGroupPtrTy Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, const IdentifierLocPair *IdentList, unsigned NumElts, AttributeList *attrList) { SmallVector<Decl *, 8> DeclsInGroup; for (unsigned i = 0; i != NumElts; ++i) { IdentifierInfo *Ident = IdentList[i].first; ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, ForRedeclaration); ObjCProtocolDecl *PDecl = ObjCProtocolDecl::Create(Context, CurContext, Ident, IdentList[i].second, AtProtocolLoc, PrevDecl); PushOnScopeChains(PDecl, TUScope); CheckObjCDeclScope(PDecl); if (attrList) ProcessDeclAttributeList(TUScope, PDecl, attrList); if (PrevDecl) mergeDeclAttributes(PDecl, PrevDecl); DeclsInGroup.push_back(PDecl); } return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); } Decl *Sema:: ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl * const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc) { ObjCCategoryDecl *CDecl; ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); /// Check that class of this category is already completely declared. if (!IDecl || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), PDiag(diag::err_category_forward_interface) << (CategoryName == 0))) { // Create an invalid ObjCCategoryDecl to serve as context for // the enclosing method declarations. We mark the decl invalid // to make it clear that this isn't a valid AST. CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, ClassLoc, CategoryLoc, CategoryName,IDecl); CDecl->setInvalidDecl(); CurContext->addDecl(CDecl); if (!IDecl) Diag(ClassLoc, diag::err_undef_interface) << ClassName; return ActOnObjCContainerStartDefinition(CDecl); } if (!CategoryName && IDecl->getImplementation()) { Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; Diag(IDecl->getImplementation()->getLocation(), diag::note_implementation_declared); } if (CategoryName) { /// Check for duplicate interface declaration for this category ObjCCategoryDecl *CDeclChain; for (CDeclChain = IDecl->getCategoryList(); CDeclChain; CDeclChain = CDeclChain->getNextClassCategory()) { if (CDeclChain->getIdentifier() == CategoryName) { // Class extensions can be declared multiple times. Diag(CategoryLoc, diag::warn_dup_category_def) << ClassName << CategoryName; Diag(CDeclChain->getLocation(), diag::note_previous_definition); break; } } } CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, ClassLoc, CategoryLoc, CategoryName, IDecl); // FIXME: PushOnScopeChains? CurContext->addDecl(CDecl); if (NumProtoRefs) { CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, ProtoLocs, Context); // Protocols in the class extension belong to the class. if (CDecl->IsClassExtension()) IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, Context); } CheckObjCDeclScope(CDecl); return ActOnObjCContainerStartDefinition(CDecl); } /// ActOnStartCategoryImplementation - Perform semantic checks on the /// category implementation declaration and build an ObjCCategoryImplDecl /// object. Decl *Sema::ActOnStartCategoryImplementation( SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc) { ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); ObjCCategoryDecl *CatIDecl = 0; if (IDecl && IDecl->hasDefinition()) { CatIDecl = IDecl->FindCategoryDeclaration(CatName); if (!CatIDecl) { // Category @implementation with no corresponding @interface. // Create and install one. CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, ClassLoc, CatLoc, CatName, IDecl); CatIDecl->setImplicit(); } } ObjCCategoryImplDecl *CDecl = ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, ClassLoc, AtCatImplLoc, CatLoc); /// Check that class of this category is already completely declared. if (!IDecl) { Diag(ClassLoc, diag::err_undef_interface) << ClassName; CDecl->setInvalidDecl(); } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), diag::err_undef_interface)) { CDecl->setInvalidDecl(); } // FIXME: PushOnScopeChains? CurContext->addDecl(CDecl); // If the interface is deprecated/unavailable, warn/error about it. if (IDecl) DiagnoseUseOfDecl(IDecl, ClassLoc); /// Check that CatName, category name, is not used in another implementation. if (CatIDecl) { if (CatIDecl->getImplementation()) { Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName << CatName; Diag(CatIDecl->getImplementation()->getLocation(), diag::note_previous_definition); } else { CatIDecl->setImplementation(CDecl); // Warn on implementating category of deprecated class under // -Wdeprecated-implementations flag. DiagnoseObjCImplementedDeprecations(*this, dyn_cast<NamedDecl>(IDecl), CDecl->getLocation(), 2); } } CheckObjCDeclScope(CDecl); return ActOnObjCContainerStartDefinition(CDecl); } Decl *Sema::ActOnStartClassImplementation( SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc) { ObjCInterfaceDecl* IDecl = 0; // Check for another declaration kind with the same name. NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, ForRedeclaration); if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; Diag(PrevDecl->getLocation(), diag::note_previous_definition); } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), diag::warn_undef_interface); } else { // We did not find anything with the name ClassName; try to correct for // typos in the class name. ObjCInterfaceValidatorCCC Validator; if (TypoCorrection Corrected = CorrectTypo( DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, NULL, Validator)) { // Suggest the (potentially) correct interface name. However, put the // fix-it hint itself in a separate note, since changing the name in // the warning would make the fix-it change semantics.However, don't // provide a code-modification hint or use the typo name for recovery, // because this is just a warning. The program may actually be correct. IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); DeclarationName CorrectedName = Corrected.getCorrection(); Diag(ClassLoc, diag::warn_undef_interface_suggest) << ClassName << CorrectedName; Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); IDecl = 0; } else { Diag(ClassLoc, diag::warn_undef_interface) << ClassName; } } // Check that super class name is valid class name ObjCInterfaceDecl* SDecl = 0; if (SuperClassname) { // Check if a different kind of symbol declared in this scope. PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, LookupOrdinaryName); if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { Diag(SuperClassLoc, diag::err_redefinition_different_kind) << SuperClassname; Diag(PrevDecl->getLocation(), diag::note_previous_definition); } else { SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); if (SDecl && !SDecl->hasDefinition()) SDecl = 0; if (!SDecl) Diag(SuperClassLoc, diag::err_undef_superclass) << SuperClassname << ClassName; else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { // This implementation and its interface do not have the same // super class. Diag(SuperClassLoc, diag::err_conflicting_super_class) << SDecl->getDeclName(); Diag(SDecl->getLocation(), diag::note_previous_definition); } } } if (!IDecl) { // Legacy case of @implementation with no corresponding @interface. // Build, chain & install the interface decl into the identifier. // FIXME: Do we support attributes on the @implementation? If so we should // copy them over. IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, ClassName, /*PrevDecl=*/0, ClassLoc, true); IDecl->startDefinition(); if (SDecl) { IDecl->setSuperClass(SDecl); IDecl->setSuperClassLoc(SuperClassLoc); IDecl->setEndOfDefinitionLoc(SuperClassLoc); } else { IDecl->setEndOfDefinitionLoc(ClassLoc); } PushOnScopeChains(IDecl, TUScope); } else { // Mark the interface as being completed, even if it was just as // @class ....; // declaration; the user cannot reopen it. if (!IDecl->hasDefinition()) IDecl->startDefinition(); } ObjCImplementationDecl* IMPDecl = ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, ClassLoc, AtClassImplLoc); if (CheckObjCDeclScope(IMPDecl)) return ActOnObjCContainerStartDefinition(IMPDecl); // Check that there is no duplicate implementation of this class. if (IDecl->getImplementation()) { // FIXME: Don't leak everything! Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; Diag(IDecl->getImplementation()->getLocation(), diag::note_previous_definition); } else { // add it to the list. IDecl->setImplementation(IMPDecl); PushOnScopeChains(IMPDecl, TUScope); // Warn on implementating deprecated class under // -Wdeprecated-implementations flag. DiagnoseObjCImplementedDeprecations(*this, dyn_cast<NamedDecl>(IDecl), IMPDecl->getLocation(), 1); } return ActOnObjCContainerStartDefinition(IMPDecl); } Sema::DeclGroupPtrTy Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { SmallVector<Decl *, 64> DeclsInGroup; DeclsInGroup.reserve(Decls.size() + 1); for (unsigned i = 0, e = Decls.size(); i != e; ++i) { Decl *Dcl = Decls[i]; if (!Dcl) continue; if (Dcl->getDeclContext()->isFileContext()) Dcl->setTopLevelDeclInObjCContainer(); DeclsInGroup.push_back(Dcl); } DeclsInGroup.push_back(ObjCImpDecl); return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); } void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **ivars, unsigned numIvars, SourceLocation RBrace) { assert(ImpDecl && "missing implementation decl"); ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); if (!IDecl) return; /// Check case of non-existing @interface decl. /// (legacy objective-c @implementation decl without an @interface decl). /// Add implementations's ivar to the synthesize class's ivar list. if (IDecl->isImplicitInterfaceDecl()) { IDecl->setEndOfDefinitionLoc(RBrace); // Add ivar's to class's DeclContext. for (unsigned i = 0, e = numIvars; i != e; ++i) { ivars[i]->setLexicalDeclContext(ImpDecl); IDecl->makeDeclVisibleInContext(ivars[i]); ImpDecl->addDecl(ivars[i]); } return; } // If implementation has empty ivar list, just return. if (numIvars == 0) return; assert(ivars && "missing @implementation ivars"); if (LangOpts.ObjCNonFragileABI2) { if (ImpDecl->getSuperClass()) Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); for (unsigned i = 0; i < numIvars; i++) { ObjCIvarDecl* ImplIvar = ivars[i]; if (const ObjCIvarDecl *ClsIvar = IDecl->getIvarDecl(ImplIvar->getIdentifier())) { Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); Diag(ClsIvar->getLocation(), diag::note_previous_definition); continue; } // Instance ivar to Implementation's DeclContext. ImplIvar->setLexicalDeclContext(ImpDecl); IDecl->makeDeclVisibleInContext(ImplIvar); ImpDecl->addDecl(ImplIvar); } return; } // Check interface's Ivar list against those in the implementation. // names and types must match. // unsigned j = 0; ObjCInterfaceDecl::ivar_iterator IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); for (; numIvars > 0 && IVI != IVE; ++IVI) { ObjCIvarDecl* ImplIvar = ivars[j++]; ObjCIvarDecl* ClsIvar = *IVI; assert (ImplIvar && "missing implementation ivar"); assert (ClsIvar && "missing class ivar"); // First, make sure the types match. if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) << ImplIvar->getIdentifier() << ImplIvar->getType() << ClsIvar->getType(); Diag(ClsIvar->getLocation(), diag::note_previous_definition); } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && ImplIvar->getBitWidthValue(Context) != ClsIvar->getBitWidthValue(Context)) { Diag(ImplIvar->getBitWidth()->getLocStart(), diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); Diag(ClsIvar->getBitWidth()->getLocStart(), diag::note_previous_definition); } // Make sure the names are identical. if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); Diag(ClsIvar->getLocation(), diag::note_previous_definition); } --numIvars; } if (numIvars > 0) Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); else if (IVI != IVE) Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); } void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID) { // No point warning no definition of method which is 'unavailable'. if (method->hasAttr<UnavailableAttr>()) return; if (!IncompleteImpl) { Diag(ImpLoc, diag::warn_incomplete_impl); IncompleteImpl = true; } if (DiagID == diag::warn_unimplemented_protocol_method) Diag(ImpLoc, DiagID) << method->getDeclName(); else Diag(method->getLocation(), DiagID) << method->getDeclName(); } /// Determines if type B can be substituted for type A. Returns true if we can /// guarantee that anything that the user will do to an object of type A can /// also be done to an object of type B. This is trivially true if the two /// types are the same, or if B is a subclass of A. It becomes more complex /// in cases where protocols are involved. /// /// Object types in Objective-C describe the minimum requirements for an /// object, rather than providing a complete description of a type. For /// example, if A is a subclass of B, then B* may refer to an instance of A. /// The principle of substitutability means that we may use an instance of A /// anywhere that we may use an instance of B - it will implement all of the /// ivars of B and all of the methods of B. /// /// This substitutability is important when type checking methods, because /// the implementation may have stricter type definitions than the interface. /// The interface specifies minimum requirements, but the implementation may /// have more accurate ones. For example, a method may privately accept /// instances of B, but only publish that it accepts instances of A. Any /// object passed to it will be type checked against B, and so will implicitly /// by a valid A*. Similarly, a method may return a subclass of the class that /// it is declared as returning. /// /// This is most important when considering subclassing. A method in a /// subclass must accept any object as an argument that its superclass's /// implementation accepts. It may, however, accept a more general type /// without breaking substitutability (i.e. you can still use the subclass /// anywhere that you can use the superclass, but not vice versa). The /// converse requirement applies to return types: the return type for a /// subclass method must be a valid object of the kind that the superclass /// advertises, but it may be specified more accurately. This avoids the need /// for explicit down-casting by callers. /// /// Note: This is a stricter requirement than for assignment. static bool isObjCTypeSubstitutable(ASTContext &Context, const ObjCObjectPointerType *A, const ObjCObjectPointerType *B, bool rejectId) { // Reject a protocol-unqualified id. if (rejectId && B->isObjCIdType()) return false; // If B is a qualified id, then A must also be a qualified id and it must // implement all of the protocols in B. It may not be a qualified class. // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a // stricter definition so it is not substitutable for id<A>. if (B->isObjCQualifiedIdType()) { return A->isObjCQualifiedIdType() && Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), QualType(B,0), false); } /* // id is a special type that bypasses type checking completely. We want a // warning when it is used in one place but not another. if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; // If B is a qualified id, then A must also be a qualified id (which it isn't // if we've got this far) if (B->isObjCQualifiedIdType()) return false; */ // Now we know that A and B are (potentially-qualified) class types. The // normal rules for assignment apply. return Context.canAssignObjCInterfaces(A, B); } static SourceRange getTypeRange(TypeSourceInfo *TSI) { return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); } static bool CheckMethodOverrideReturn(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn) { if (IsProtocolMethodDecl && (MethodDecl->getObjCDeclQualifier() != MethodImpl->getObjCDeclQualifier())) { if (Warn) { S.Diag(MethodImpl->getLocation(), (IsOverridingMode ? diag::warn_conflicting_overriding_ret_type_modifiers : diag::warn_conflicting_ret_type_modifiers)) << MethodImpl->getDeclName() << getTypeRange(MethodImpl->getResultTypeSourceInfo()); S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) << getTypeRange(MethodDecl->getResultTypeSourceInfo()); } else return false; } if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), MethodDecl->getResultType())) return true; if (!Warn) return false; unsigned DiagID = IsOverridingMode ? diag::warn_conflicting_overriding_ret_types : diag::warn_conflicting_ret_types; // Mismatches between ObjC pointers go into a different warning // category, and sometimes they're even completely whitelisted. if (const ObjCObjectPointerType *ImplPtrTy = MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { if (const ObjCObjectPointerType *IfacePtrTy = MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { // Allow non-matching return types as long as they don't violate // the principle of substitutability. Specifically, we permit // return types that are subclasses of the declared return type, // or that are more-qualified versions of the declared type. if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) return false; DiagID = IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types : diag::warn_non_covariant_ret_types; } } S.Diag(MethodImpl->getLocation(), DiagID) << MethodImpl->getDeclName() << MethodDecl->getResultType() << MethodImpl->getResultType() << getTypeRange(MethodImpl->getResultTypeSourceInfo()); S.Diag(MethodDecl->getLocation(), IsOverridingMode ? diag::note_previous_declaration : diag::note_previous_definition) << getTypeRange(MethodDecl->getResultTypeSourceInfo()); return false; } static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn) { if (IsProtocolMethodDecl && (ImplVar->getObjCDeclQualifier() != IfaceVar->getObjCDeclQualifier())) { if (Warn) { if (IsOverridingMode) S.Diag(ImplVar->getLocation(), diag::warn_conflicting_overriding_param_modifiers) << getTypeRange(ImplVar->getTypeSourceInfo()) << MethodImpl->getDeclName(); else S.Diag(ImplVar->getLocation(), diag::warn_conflicting_param_modifiers) << getTypeRange(ImplVar->getTypeSourceInfo()) << MethodImpl->getDeclName(); S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) << getTypeRange(IfaceVar->getTypeSourceInfo()); } else return false; } QualType ImplTy = ImplVar->getType(); QualType IfaceTy = IfaceVar->getType(); if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) return true; if (!Warn) return false; unsigned DiagID = IsOverridingMode ? diag::warn_conflicting_overriding_param_types : diag::warn_conflicting_param_types; // Mismatches between ObjC pointers go into a different warning // category, and sometimes they're even completely whitelisted. if (const ObjCObjectPointerType *ImplPtrTy = ImplTy->getAs<ObjCObjectPointerType>()) { if (const ObjCObjectPointerType *IfacePtrTy = IfaceTy->getAs<ObjCObjectPointerType>()) { // Allow non-matching argument types as long as they don't // violate the principle of substitutability. Specifically, the // implementation must accept any objects that the superclass // accepts, however it may also accept others. if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) return false; DiagID = IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types : diag::warn_non_contravariant_param_types; } } S.Diag(ImplVar->getLocation(), DiagID) << getTypeRange(ImplVar->getTypeSourceInfo()) << MethodImpl->getDeclName() << IfaceTy << ImplTy; S.Diag(IfaceVar->getLocation(), (IsOverridingMode ? diag::note_previous_declaration : diag::note_previous_definition)) << getTypeRange(IfaceVar->getTypeSourceInfo()); return false; } /// In ARC, check whether the conventional meanings of the two methods /// match. If they don't, it's a hard error. static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, ObjCMethodDecl *decl) { ObjCMethodFamily implFamily = impl->getMethodFamily(); ObjCMethodFamily declFamily = decl->getMethodFamily(); if (implFamily == declFamily) return false; // Since conventions are sorted by selector, the only possibility is // that the types differ enough to cause one selector or the other // to fall out of the family. assert(implFamily == OMF_None || declFamily == OMF_None); // No further diagnostics required on invalid declarations. if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; const ObjCMethodDecl *unmatched = impl; ObjCMethodFamily family = declFamily; unsigned errorID = diag::err_arc_lost_method_convention; unsigned noteID = diag::note_arc_lost_method_convention; if (declFamily == OMF_None) { unmatched = decl; family = implFamily; errorID = diag::err_arc_gained_method_convention; noteID = diag::note_arc_gained_method_convention; } // Indexes into a %select clause in the diagnostic. enum FamilySelector { F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new }; FamilySelector familySelector = FamilySelector(); switch (family) { case OMF_None: llvm_unreachable("logic error, no method convention"); case OMF_retain: case OMF_release: case OMF_autorelease: case OMF_dealloc: case OMF_finalize: case OMF_retainCount: case OMF_self: case OMF_performSelector: // Mismatches for these methods don't change ownership // conventions, so we don't care. return false; case OMF_init: familySelector = F_init; break; case OMF_alloc: familySelector = F_alloc; break; case OMF_copy: familySelector = F_copy; break; case OMF_mutableCopy: familySelector = F_mutableCopy; break; case OMF_new: familySelector = F_new; break; } enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; ReasonSelector reasonSelector; // The only reason these methods don't fall within their families is // due to unusual result types. if (unmatched->getResultType()->isObjCObjectPointerType()) { reasonSelector = R_UnrelatedReturn; } else { reasonSelector = R_NonObjectReturn; } S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; return true; } void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl) { if (getLangOpts().ObjCAutoRefCount && checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) return; CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, IsProtocolMethodDecl, false, true); for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); IM != EM; ++IM, ++IF) { CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, IsProtocolMethodDecl, false, true); } if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic); Diag(MethodDecl->getLocation(), diag::note_previous_declaration); } } void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, ObjCMethodDecl *Overridden, bool IsProtocolMethodDecl) { CheckMethodOverrideReturn(*this, Method, Overridden, IsProtocolMethodDecl, true, true); for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), IF = Overridden->param_begin(), EM = Method->param_end(); IM != EM; ++IM, ++IF) { CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, IsProtocolMethodDecl, true, true); } if (Method->isVariadic() != Overridden->isVariadic()) { Diag(Method->getLocation(), diag::warn_conflicting_overriding_variadic); Diag(Overridden->getLocation(), diag::note_previous_declaration); } } /// WarnExactTypedMethods - This routine issues a warning if method /// implementation declaration matches exactly that of its declaration. void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl) { // don't issue warning when protocol method is optional because primary // class is not required to implement it and it is safe for protocol // to implement it. if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) return; // don't issue warning when primary class's method is // depecated/unavailable. if (MethodDecl->hasAttr<UnavailableAttr>() || MethodDecl->hasAttr<DeprecatedAttr>()) return; bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, IsProtocolMethodDecl, false, false); if (match) for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); IM != EM; ++IM, ++IF) { match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, IsProtocolMethodDecl, false, false); if (!match) break; } if (match) match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); if (match) match = !(MethodDecl->isClassMethod() && MethodDecl->getSelector() == GetNullarySelector("load", Context)); if (match) { Diag(ImpMethodDecl->getLocation(), diag::warn_category_method_impl_match); Diag(MethodDecl->getLocation(), diag::note_method_declared_at) << MethodDecl->getDeclName(); } } /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely /// improve the efficiency of selector lookups and type checking by associating /// with each protocol / interface / category the flattened instance tables. If /// we used an immutable set to keep the table then it wouldn't add significant /// memory cost and it would be handy for lookups. /// CheckProtocolMethodDefs - This routine checks unimplemented methods /// Declared in protocol, and those referenced by it. void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, ObjCProtocolDecl *PDecl, bool& IncompleteImpl, const llvm::DenseSet<Selector> &InsMap, const llvm::DenseSet<Selector> &ClsMap, ObjCContainerDecl *CDecl) { ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() : dyn_cast<ObjCInterfaceDecl>(CDecl); assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); ObjCInterfaceDecl *Super = IDecl->getSuperClass(); ObjCInterfaceDecl *NSIDecl = 0; if (getLangOpts().NeXTRuntime) { // check to see if class implements forwardInvocation method and objects // of this class are derived from 'NSProxy' so that to forward requests // from one object to another. // Under such conditions, which means that every method possible is // implemented in the class, we should not issue "Method definition not // found" warnings. // FIXME: Use a general GetUnarySelector method for this. IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); Selector fISelector = Context.Selectors.getSelector(1, &II); if (InsMap.count(fISelector)) // Is IDecl derived from 'NSProxy'? If so, no instance methods // need be implemented in the implementation. NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); } // If a method lookup fails locally we still need to look and see if // the method was implemented by a base class or an inherited // protocol. This lookup is slow, but occurs rarely in correct code // and otherwise would terminate in a warning. // check unimplemented instance methods. if (!NSIDecl) for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), E = PDecl->instmeth_end(); I != E; ++I) { ObjCMethodDecl *method = *I; if (method->getImplementationControl() != ObjCMethodDecl::Optional && !method->isSynthesized() && !InsMap.count(method->getSelector()) && (!Super || !Super->lookupInstanceMethod(method->getSelector()))) { // If a method is not implemented in the category implementation but // has been declared in its primary class, superclass, // or in one of their protocols, no need to issue the warning. // This is because method will be implemented in the primary class // or one of its super class implementation. // Ugly, but necessary. Method declared in protcol might have // have been synthesized due to a property declared in the class which // uses the protocol. if (ObjCMethodDecl *MethodInClass = IDecl->lookupInstanceMethod(method->getSelector(), true /*shallowCategoryLookup*/)) if (C || MethodInClass->isSynthesized()) continue; unsigned DIAG = diag::warn_unimplemented_protocol_method; if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != DiagnosticsEngine::Ignored) { WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); Diag(method->getLocation(), diag::note_method_declared_at) << method->getDeclName(); Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) << PDecl->getDeclName(); } } } // check unimplemented class methods for (ObjCProtocolDecl::classmeth_iterator I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); I != E; ++I) { ObjCMethodDecl *method = *I; if (method->getImplementationControl() != ObjCMethodDecl::Optional && !ClsMap.count(method->getSelector()) && (!Super || !Super->lookupClassMethod(method->getSelector()))) { // See above comment for instance method lookups. if (C && IDecl->lookupClassMethod(method->getSelector(), true /*shallowCategoryLookup*/)) continue; unsigned DIAG = diag::warn_unimplemented_protocol_method; if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != DiagnosticsEngine::Ignored) { WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); Diag(method->getLocation(), diag::note_method_declared_at) << method->getDeclName(); Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << PDecl->getDeclName(); } } } // Check on this protocols's referenced protocols, recursively. for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), E = PDecl->protocol_end(); PI != E; ++PI) CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl); } /// MatchAllMethodDeclarations - Check methods declared in interface /// or protocol against those declared in their implementations. /// void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, const llvm::DenseSet<Selector> &ClsMap, llvm::DenseSet<Selector> &InsMapSeen, llvm::DenseSet<Selector> &ClsMapSeen, ObjCImplDecl* IMPDecl, ObjCContainerDecl* CDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl) { // Check and see if instance methods in class interface have been // implemented in the implementation class. If so, their types match. for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), E = CDecl->instmeth_end(); I != E; ++I) { if (InsMapSeen.count((*I)->getSelector())) continue; InsMapSeen.insert((*I)->getSelector()); if (!(*I)->isSynthesized() && !InsMap.count((*I)->getSelector())) { if (ImmediateClass) WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, diag::note_undef_method_impl); continue; } else { ObjCMethodDecl *ImpMethodDecl = IMPDecl->getInstanceMethod((*I)->getSelector()); assert(CDecl->getInstanceMethod((*I)->getSelector()) && "Expected to find the method through lookup as well"); ObjCMethodDecl *MethodDecl = *I; // ImpMethodDecl may be null as in a @dynamic property. if (ImpMethodDecl) { if (!WarnCategoryMethodImpl) WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, isa<ObjCProtocolDecl>(CDecl)); else if (!MethodDecl->isSynthesized()) WarnExactTypedMethods(ImpMethodDecl, MethodDecl, isa<ObjCProtocolDecl>(CDecl)); } } } // Check and see if class methods in class interface have been // implemented in the implementation class. If so, their types match. for (ObjCInterfaceDecl::classmeth_iterator I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { if (ClsMapSeen.count((*I)->getSelector())) continue; ClsMapSeen.insert((*I)->getSelector()); if (!ClsMap.count((*I)->getSelector())) { if (ImmediateClass) WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, diag::note_undef_method_impl); } else { ObjCMethodDecl *ImpMethodDecl = IMPDecl->getClassMethod((*I)->getSelector()); assert(CDecl->getClassMethod((*I)->getSelector()) && "Expected to find the method through lookup as well"); ObjCMethodDecl *MethodDecl = *I; if (!WarnCategoryMethodImpl) WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, isa<ObjCProtocolDecl>(CDecl)); else WarnExactTypedMethods(ImpMethodDecl, MethodDecl, isa<ObjCProtocolDecl>(CDecl)); } } if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { // Also methods in class extensions need be looked at next. for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, IMPDecl, const_cast<ObjCCategoryDecl *>(ClsExtDecl), IncompleteImpl, false, WarnCategoryMethodImpl); // Check for any implementation of a methods declared in protocol. for (ObjCInterfaceDecl::all_protocol_iterator PI = I->all_referenced_protocol_begin(), E = I->all_referenced_protocol_end(); PI != E; ++PI) MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, IMPDecl, (*PI), IncompleteImpl, false, WarnCategoryMethodImpl); // FIXME. For now, we are not checking for extact match of methods // in category implementation and its primary class's super class. if (!WarnCategoryMethodImpl && I->getSuperClass()) MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, IMPDecl, I->getSuperClass(), IncompleteImpl, false); } } /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in /// category matches with those implemented in its primary class and /// warns each time an exact match is found. void Sema::CheckCategoryVsClassMethodMatches( ObjCCategoryImplDecl *CatIMPDecl) { llvm::DenseSet<Selector> InsMap, ClsMap; for (ObjCImplementationDecl::instmeth_iterator I = CatIMPDecl->instmeth_begin(), E = CatIMPDecl->instmeth_end(); I!=E; ++I) InsMap.insert((*I)->getSelector()); for (ObjCImplementationDecl::classmeth_iterator I = CatIMPDecl->classmeth_begin(), E = CatIMPDecl->classmeth_end(); I != E; ++I) ClsMap.insert((*I)->getSelector()); if (InsMap.empty() && ClsMap.empty()) return; // Get category's primary class. ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); if (!CatDecl) return; ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); if (!IDecl) return; llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; bool IncompleteImpl = false; MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, CatIMPDecl, IDecl, IncompleteImpl, false, true /*WarnCategoryMethodImpl*/); } void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl* CDecl, bool IncompleteImpl) { llvm::DenseSet<Selector> InsMap; // Check and see if instance methods in class interface have been // implemented in the implementation class. for (ObjCImplementationDecl::instmeth_iterator I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) InsMap.insert((*I)->getSelector()); // Check and see if properties declared in the interface have either 1) // an implementation or 2) there is a @synthesize/@dynamic implementation // of the property in the @implementation. if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) if (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) || IDecl->isObjCRequiresPropertyDefs()) DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); llvm::DenseSet<Selector> ClsMap; for (ObjCImplementationDecl::classmeth_iterator I = IMPDecl->classmeth_begin(), E = IMPDecl->classmeth_end(); I != E; ++I) ClsMap.insert((*I)->getSelector()); // Check for type conflict of methods declared in a class/protocol and // its implementation; if any. llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, IMPDecl, CDecl, IncompleteImpl, true); // check all methods implemented in category against those declared // in its primary class. if (ObjCCategoryImplDecl *CatDecl = dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) CheckCategoryVsClassMethodMatches(CatDecl); // Check the protocol list for unimplemented methods in the @implementation // class. // Check and see if class methods in class interface have been // implemented in the implementation class. if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { for (ObjCInterfaceDecl::all_protocol_iterator PI = I->all_referenced_protocol_begin(), E = I->all_referenced_protocol_end(); PI != E; ++PI) CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, InsMap, ClsMap, I); // Check class extensions (unnamed categories) for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); Categories; Categories = Categories->getNextClassExtension()) ImplMethodsVsClassMethods(S, IMPDecl, const_cast<ObjCCategoryDecl*>(Categories), IncompleteImpl); } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { // For extended class, unimplemented methods in its protocols will // be reported in the primary class. if (!C->IsClassExtension()) { for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), E = C->protocol_end(); PI != E; ++PI) CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, InsMap, ClsMap, CDecl); // Report unimplemented properties in the category as well. // When reporting on missing setter/getters, do not report when // setter/getter is implemented in category's primary class // implementation. if (ObjCInterfaceDecl *ID = C->getClassInterface()) if (ObjCImplDecl *IMP = ID->getImplementation()) { for (ObjCImplementationDecl::instmeth_iterator I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) InsMap.insert((*I)->getSelector()); } DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); } } else llvm_unreachable("invalid ObjCContainerDecl type."); } /// ActOnForwardClassDeclaration - Sema::DeclGroupPtrTy Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, unsigned NumElts) { SmallVector<Decl *, 8> DeclsInGroup; for (unsigned i = 0; i != NumElts; ++i) { // Check for another declaration kind with the same name. NamedDecl *PrevDecl = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], LookupOrdinaryName, ForRedeclaration); if (PrevDecl && PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); // Just pretend that we didn't see the previous declaration. PrevDecl = 0; } if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { // GCC apparently allows the following idiom: // // typedef NSObject < XCElementTogglerP > XCElementToggler; // @class XCElementToggler; // // Here we have chosen to ignore the forward class declaration // with a warning. Since this is the implied behavior. TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; Diag(PrevDecl->getLocation(), diag::note_previous_definition); } else { // a forward class declaration matching a typedef name of a class refers // to the underlying class. Just ignore the forward class with a warning // as this will force the intended behavior which is to lookup the typedef // name. if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; Diag(PrevDecl->getLocation(), diag::note_previous_definition); continue; } } } // Create a declaration to describe this forward declaration. ObjCInterfaceDecl *PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, IdentList[i], PrevIDecl, IdentLocs[i]); IDecl->setAtEndRange(IdentLocs[i]); PushOnScopeChains(IDecl, TUScope); CheckObjCDeclScope(IDecl); DeclsInGroup.push_back(IDecl); } return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); } static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *left, const Type *right); static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, QualType leftQT, QualType rightQT) { const Type *left = Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); const Type *right = Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); if (left == right) return true; // If we're doing a strict match, the types have to match exactly. if (strategy == Sema::MMS_strict) return false; if (left->isIncompleteType() || right->isIncompleteType()) return false; // Otherwise, use this absurdly complicated algorithm to try to // validate the basic, low-level compatibility of the two types. // As a minimum, require the sizes and alignments to match. if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) return false; // Consider all the kinds of non-dependent canonical types: // - functions and arrays aren't possible as return and parameter types // - vector types of equal size can be arbitrarily mixed if (isa<VectorType>(left)) return isa<VectorType>(right); if (isa<VectorType>(right)) return false; // - references should only match references of identical type // - structs, unions, and Objective-C objects must match more-or-less // exactly // - everything else should be a scalar if (!left->isScalarType() || !right->isScalarType()) return tryMatchRecordTypes(Context, strategy, left, right); // Make scalars agree in kind, except count bools as chars, and group // all non-member pointers together. Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) leftSK = Type::STK_ObjCObjectPointer; if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) rightSK = Type::STK_ObjCObjectPointer; // Note that data member pointers and function member pointers don't // intermix because of the size differences. return (leftSK == rightSK); } static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *lt, const Type *rt) { assert(lt && rt && lt != rt); if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; RecordDecl *left = cast<RecordType>(lt)->getDecl(); RecordDecl *right = cast<RecordType>(rt)->getDecl(); // Require union-hood to match. if (left->isUnion() != right->isUnion()) return false; // Require an exact match if either is non-POD. if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) return false; // Require size and alignment to match. if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; // Require fields to match. RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); for (; li != le && ri != re; ++li, ++ri) { if (!matchTypes(Context, strategy, li->getType(), ri->getType())) return false; } return (li == le && ri == re); } /// MatchTwoMethodDeclarations - Checks that two methods have matching type and /// returns true, or false, accordingly. /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, const ObjCMethodDecl *right, MethodMatchStrategy strategy) { if (!matchTypes(Context, strategy, left->getResultType(), right->getResultType())) return false; if (getLangOpts().ObjCAutoRefCount && (left->hasAttr<NSReturnsRetainedAttr>() != right->hasAttr<NSReturnsRetainedAttr>() || left->hasAttr<NSConsumesSelfAttr>() != right->hasAttr<NSConsumesSelfAttr>())) return false; ObjCMethodDecl::param_const_iterator li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); for (; li != le; ++li, ++ri) { assert(ri != right->param_end() && "Param mismatch"); const ParmVarDecl *lparm = *li, *rparm = *ri; if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) return false; if (getLangOpts().ObjCAutoRefCount && lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) return false; } return true; } void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { // If the list is empty, make it a singleton list. if (List->Method == 0) { List->Method = Method; List->Next = 0; return; } // We've seen a method with this name, see if we have already seen this type // signature. ObjCMethodList *Previous = List; for (; List; Previous = List, List = List->Next) { if (!MatchTwoMethodDeclarations(Method, List->Method)) continue; ObjCMethodDecl *PrevObjCMethod = List->Method; // Propagate the 'defined' bit. if (Method->isDefined()) PrevObjCMethod->setDefined(true); // If a method is deprecated, push it in the global pool. // This is used for better diagnostics. if (Method->isDeprecated()) { if (!PrevObjCMethod->isDeprecated()) List->Method = Method; } // If new method is unavailable, push it into global pool // unless previous one is deprecated. if (Method->isUnavailable()) { if (PrevObjCMethod->getAvailability() < AR_Deprecated) List->Method = Method; } return; } // We have a new signature for an existing method - add it. // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); Previous->Next = new (Mem) ObjCMethodList(Method, 0); } /// \brief Read the contents of the method pool for a given selector from /// external storage. void Sema::ReadMethodPool(Selector Sel) { assert(ExternalSource && "We need an external AST source"); ExternalSource->ReadMethodPool(Sel); } void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance) { // Ignore methods of invalid containers. if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) return; if (ExternalSource) ReadMethodPool(Method->getSelector()); GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); if (Pos == MethodPool.end()) Pos = MethodPool.insert(std::make_pair(Method->getSelector(), GlobalMethods())).first; Method->setDefined(impl); ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; addMethodToGlobalList(&Entry, Method); } /// Determines if this is an "acceptable" loose mismatch in the global /// method pool. This exists mostly as a hack to get around certain /// global mismatches which we can't afford to make warnings / errors. /// Really, what we want is a way to take a method out of the global /// method pool. static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, ObjCMethodDecl *other) { if (!chosen->isInstanceMethod()) return false; Selector sel = chosen->getSelector(); if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") return false; // Don't complain about mismatches for -length if the method we // chose has an integral result type. return (chosen->getResultType()->isIntegerType()); } ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass, bool warn, bool instance) { if (ExternalSource) ReadMethodPool(Sel); GlobalMethodPool::iterator Pos = MethodPool.find(Sel); if (Pos == MethodPool.end()) return 0; ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; if (warn && MethList.Method && MethList.Next) { bool issueDiagnostic = false, issueError = false; // We support a warning which complains about *any* difference in // method signature. bool strictSelectorMatch = (receiverIdOrClass && warn && (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, R.getBegin()) != DiagnosticsEngine::Ignored)); if (strictSelectorMatch) for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, MMS_strict)) { issueDiagnostic = true; break; } } // If we didn't see any strict differences, we won't see any loose // differences. In ARC, however, we also need to check for loose // mismatches, because most of them are errors. if (!strictSelectorMatch || (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { // This checks if the methods differ in type mismatch. if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, MMS_loose) && !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { issueDiagnostic = true; if (getLangOpts().ObjCAutoRefCount) issueError = true; break; } } if (issueDiagnostic) { if (issueError) Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; else if (strictSelectorMatch) Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; else Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; Diag(MethList.Method->getLocStart(), issueError ? diag::note_possibility : diag::note_using) << MethList.Method->getSourceRange(); for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) Diag(Next->Method->getLocStart(), diag::note_also_found) << Next->Method->getSourceRange(); } } return MethList.Method; } ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { GlobalMethodPool::iterator Pos = MethodPool.find(Sel); if (Pos == MethodPool.end()) return 0; GlobalMethods &Methods = Pos->second; if (Methods.first.Method && Methods.first.Method->isDefined()) return Methods.first.Method; if (Methods.second.Method && Methods.second.Method->isDefined()) return Methods.second.Method; return 0; } /// CompareMethodParamsInBaseAndSuper - This routine compares methods with /// identical selector names in current and its super classes and issues /// a warning if any of their argument types are incompatible. void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, ObjCMethodDecl *Method, bool IsInstance) { ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); if (ID == 0) return; while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { ObjCMethodDecl *SuperMethodDecl = SD->lookupMethod(Method->getSelector(), IsInstance); if (SuperMethodDecl == 0) { ID = SD; continue; } ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), E = Method->param_end(); ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); for (; ParamI != E; ++ParamI, ++PrevI) { // Number of parameters are the same and is guaranteed by selector match. assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); QualType T1 = Context.getCanonicalType((*ParamI)->getType()); QualType T2 = Context.getCanonicalType((*PrevI)->getType()); // If type of argument of method in this class does not match its // respective argument type in the super class method, issue warning; if (!Context.typesAreCompatible(T1, T2)) { Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) << T1 << T2; Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); return; } } ID = SD; } } /// DiagnoseDuplicateIvars - /// Check for duplicate ivars in the entire class at the start of /// @implementation. This becomes necesssary because class extension can /// add ivars to a class in random order which will not be known until /// class's @implementation is seen. void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID) { for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), IVE = ID->ivar_end(); IVI != IVE; ++IVI) { ObjCIvarDecl* Ivar = (*IVI); if (Ivar->isInvalidDecl()) continue; if (IdentifierInfo *II = Ivar->getIdentifier()) { ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); if (prevIvar) { Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; Diag(prevIvar->getLocation(), diag::note_previous_declaration); Ivar->setInvalidDecl(); } } } } Sema::ObjCContainerKind Sema::getObjCContainerKind() const { switch (CurContext->getDeclKind()) { case Decl::ObjCInterface: return Sema::OCK_Interface; case Decl::ObjCProtocol: return Sema::OCK_Protocol; case Decl::ObjCCategory: if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) return Sema::OCK_ClassExtension; else return Sema::OCK_Category; case Decl::ObjCImplementation: return Sema::OCK_Implementation; case Decl::ObjCCategoryImpl: return Sema::OCK_CategoryImplementation; default: return Sema::OCK_None; } } // Note: For class/category implemenations, allMethods/allProperties is // always null. Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, Decl **allMethods, unsigned allNum, Decl **allProperties, unsigned pNum, DeclGroupPtrTy *allTUVars, unsigned tuvNum) { if (getObjCContainerKind() == Sema::OCK_None) return 0; assert(AtEnd.isValid() && "Invalid location for '@end'"); ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); Decl *ClassDecl = cast<Decl>(OCD); bool isInterfaceDeclKind = isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) || isa<ObjCProtocolDecl>(ClassDecl); bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; for (unsigned i = 0; i < allNum; i++ ) { ObjCMethodDecl *Method = cast_or_null<ObjCMethodDecl>(allMethods[i]); if (!Method) continue; // Already issued a diagnostic. if (Method->isInstanceMethod()) { /// Check for instance method of the same name with incompatible types const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) : false; if ((isInterfaceDeclKind && PrevMethod && !match) || (checkIdenticalMethods && match)) { Diag(Method->getLocation(), diag::err_duplicate_method_decl) << Method->getDeclName(); Diag(PrevMethod->getLocation(), diag::note_previous_declaration); Method->setInvalidDecl(); } else { if (PrevMethod) { Method->setAsRedeclaration(PrevMethod); if (!Context.getSourceManager().isInSystemHeader( Method->getLocation())) Diag(Method->getLocation(), diag::warn_duplicate_method_decl) << Method->getDeclName(); Diag(PrevMethod->getLocation(), diag::note_previous_declaration); } InsMap[Method->getSelector()] = Method; /// The following allows us to typecheck messages to "id". AddInstanceMethodToGlobalPool(Method); // verify that the instance method conforms to the same definition of // parent methods if it shadows one. CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); } } else { /// Check for class method of the same name with incompatible types const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) : false; if ((isInterfaceDeclKind && PrevMethod && !match) || (checkIdenticalMethods && match)) { Diag(Method->getLocation(), diag::err_duplicate_method_decl) << Method->getDeclName(); Diag(PrevMethod->getLocation(), diag::note_previous_declaration); Method->setInvalidDecl(); } else { if (PrevMethod) { Method->setAsRedeclaration(PrevMethod); if (!Context.getSourceManager().isInSystemHeader( Method->getLocation())) Diag(Method->getLocation(), diag::warn_duplicate_method_decl) << Method->getDeclName(); Diag(PrevMethod->getLocation(), diag::note_previous_declaration); } ClsMap[Method->getSelector()] = Method; /// The following allows us to typecheck messages to "Class". AddFactoryMethodToGlobalPool(Method); // verify that the class method conforms to the same definition of // parent methods if it shadows one. CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); } } } if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { // Compares properties declared in this class to those of its // super class. ComparePropertiesInBaseAndSuper(I); CompareProperties(I, I); } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { // Categories are used to extend the class by declaring new methods. // By the same token, they are also used to add new properties. No // need to compare the added property to those in the class. // Compare protocol properties with those in category CompareProperties(C, C); if (C->IsClassExtension()) { ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); DiagnoseClassExtensionDupMethods(C, CCPrimary); } } if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { if (CDecl->getIdentifier()) // ProcessPropertyDecl is responsible for diagnosing conflicts with any // user-defined setter/getter. It also synthesizes setter/getter methods // and adds them to the DeclContext and global method pools. for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), E = CDecl->prop_end(); I != E; ++I) ProcessPropertyDecl(*I, CDecl); CDecl->setAtEndRange(AtEnd); } if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { IC->setAtEndRange(AtEnd); if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { // Any property declared in a class extension might have user // declared setter or getter in current class extension or one // of the other class extensions. Mark them as synthesized as // property will be synthesized when property with same name is // seen in the @implementation. for (const ObjCCategoryDecl *ClsExtDecl = IDecl->getFirstClassExtension(); ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), E = ClsExtDecl->prop_end(); I != E; ++I) { ObjCPropertyDecl *Property = (*I); // Skip over properties declared @dynamic if (const ObjCPropertyImplDecl *PIDecl = IC->FindPropertyImplDecl(Property->getIdentifier())) if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) continue; for (const ObjCCategoryDecl *CExtDecl = IDecl->getFirstClassExtension(); CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { if (ObjCMethodDecl *GetterMethod = CExtDecl->getInstanceMethod(Property->getGetterName())) GetterMethod->setSynthesized(true); if (!Property->isReadOnly()) if (ObjCMethodDecl *SetterMethod = CExtDecl->getInstanceMethod(Property->getSetterName())) SetterMethod->setSynthesized(true); } } } ImplMethodsVsClassMethods(S, IC, IDecl); AtomicPropertySetterGetterRules(IC, IDecl); DiagnoseOwningPropertyGetterSynthesis(IC); bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); if (IDecl->getSuperClass() == NULL) { // This class has no superclass, so check that it has been marked with // __attribute((objc_root_class)). if (!HasRootClassAttr) { SourceLocation DeclLoc(IDecl->getLocation()); SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc)); Diag(DeclLoc, diag::warn_objc_root_class_missing) << IDecl->getIdentifier(); // See if NSObject is in the current scope, and if it is, suggest // adding " : NSObject " to the class declaration. NamedDecl *IF = LookupSingleName(TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), DeclLoc, LookupOrdinaryName); ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); if (NSObjectDecl && NSObjectDecl->getDefinition()) { Diag(SuperClassLoc, diag::note_objc_needs_superclass) << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); } else { Diag(SuperClassLoc, diag::note_objc_needs_superclass); } } } else if (HasRootClassAttr) { // Complain that only root classes may have this attribute. Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); } if (LangOpts.ObjCNonFragileABI2) { while (IDecl->getSuperClass()) { DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); IDecl = IDecl->getSuperClass(); } } } SetIvarInitializers(IC); } else if (ObjCCategoryImplDecl* CatImplClass = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { CatImplClass->setAtEndRange(AtEnd); // Find category interface decl and then check that all methods declared // in this interface are implemented in the category @implementation. if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); Categories; Categories = Categories->getNextClassCategory()) { if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { ImplMethodsVsClassMethods(S, CatImplClass, Categories); break; } } } } if (isInterfaceDeclKind) { // Reject invalid vardecls. for (unsigned i = 0; i != tuvNum; i++) { DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { if (!VDecl->hasExternalStorage()) Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); } } } ActOnObjCContainerFinishDefinition(); for (unsigned i = 0; i != tuvNum; i++) { DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) (*I)->setTopLevelDeclInObjCContainer(); Consumer.HandleTopLevelDeclInObjCContainer(DG); } return ClassDecl; } /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for /// objective-c's type qualifier from the parser version of the same info. static Decl::ObjCDeclQualifier CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; } static inline bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD, const AttrVec &A) { // If method is only declared in implementation (private method), // No need to issue any diagnostics on method definition with attributes. if (!IMD) return false; // method declared in interface has no attribute. // But implementation has attributes. This is invalid if (!IMD->hasAttrs()) return true; const AttrVec &D = IMD->getAttrs(); if (D.size() != A.size()) return true; // attributes on method declaration and definition must match exactly. // Note that we have at most a couple of attributes on methods, so this // n*n search is good enough. for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) { bool match = false; for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) { if ((*i)->getKind() == (*i1)->getKind()) { match = true; break; } } if (!match) return true; } return false; } namespace { /// \brief Describes the compatibility of a result type with its method. enum ResultTypeCompatibilityKind { RTC_Compatible, RTC_Incompatible, RTC_Unknown }; } /// \brief Check whether the declared result type of the given Objective-C /// method declaration is compatible with the method's class. /// static ResultTypeCompatibilityKind CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, ObjCInterfaceDecl *CurrentClass) { QualType ResultType = Method->getResultType(); // If an Objective-C method inherits its related result type, then its // declared result type must be compatible with its own class type. The // declared result type is compatible if: if (const ObjCObjectPointerType *ResultObjectType = ResultType->getAs<ObjCObjectPointerType>()) { // - it is id or qualified id, or if (ResultObjectType->isObjCIdType() || ResultObjectType->isObjCQualifiedIdType()) return RTC_Compatible; if (CurrentClass) { if (ObjCInterfaceDecl *ResultClass = ResultObjectType->getInterfaceDecl()) { // - it is the same as the method's class type, or if (declaresSameEntity(CurrentClass, ResultClass)) return RTC_Compatible; // - it is a superclass of the method's class type if (ResultClass->isSuperClassOf(CurrentClass)) return RTC_Compatible; } } else { // Any Objective-C pointer type might be acceptable for a protocol // method; we just don't know. return RTC_Unknown; } } return RTC_Incompatible; } namespace { /// A helper class for searching for methods which a particular method /// overrides. class OverrideSearch { public: Sema &S; ObjCMethodDecl *Method; llvm::SmallPtrSet<ObjCContainerDecl*, 128> Searched; llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; bool Recursive; public: OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { Selector selector = method->getSelector(); // Bypass this search if we've never seen an instance/class method // with this selector before. Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); if (it == S.MethodPool.end()) { if (!S.ExternalSource) return; S.ReadMethodPool(selector); it = S.MethodPool.find(selector); if (it == S.MethodPool.end()) return; } ObjCMethodList &list = method->isInstanceMethod() ? it->second.first : it->second.second; if (!list.Method) return; ObjCContainerDecl *container = cast<ObjCContainerDecl>(method->getDeclContext()); // Prevent the search from reaching this container again. This is // important with categories, which override methods from the // interface and each other. Searched.insert(container); searchFromContainer(container); } typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; iterator begin() const { return Overridden.begin(); } iterator end() const { return Overridden.end(); } private: void searchFromContainer(ObjCContainerDecl *container) { if (container->isInvalidDecl()) return; switch (container->getDeclKind()) { #define OBJCCONTAINER(type, base) \ case Decl::type: \ searchFrom(cast<type##Decl>(container)); \ break; #define ABSTRACT_DECL(expansion) #define DECL(type, base) \ case Decl::type: #include "clang/AST/DeclNodes.inc" llvm_unreachable("not an ObjC container!"); } } void searchFrom(ObjCProtocolDecl *protocol) { if (!protocol->hasDefinition()) return; // A method in a protocol declaration overrides declarations from // referenced ("parent") protocols. search(protocol->getReferencedProtocols()); } void searchFrom(ObjCCategoryDecl *category) { // A method in a category declaration overrides declarations from // the main class and from protocols the category references. search(category->getClassInterface()); search(category->getReferencedProtocols()); } void searchFrom(ObjCCategoryImplDecl *impl) { // A method in a category definition that has a category // declaration overrides declarations from the category // declaration. if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { search(category); // Otherwise it overrides declarations from the class. } else { search(impl->getClassInterface()); } } void searchFrom(ObjCInterfaceDecl *iface) { // A method in a class declaration overrides declarations from if (!iface->hasDefinition()) return; // - categories, for (ObjCCategoryDecl *category = iface->getCategoryList(); category; category = category->getNextClassCategory()) search(category); // - the super class, and if (ObjCInterfaceDecl *super = iface->getSuperClass()) search(super); // - any referenced protocols. search(iface->getReferencedProtocols()); } void searchFrom(ObjCImplementationDecl *impl) { // A method in a class implementation overrides declarations from // the class interface. search(impl->getClassInterface()); } void search(const ObjCProtocolList &protocols) { for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); i != e; ++i) search(*i); } void search(ObjCContainerDecl *container) { // Abort if we've already searched this container. if (!Searched.insert(container)) return; // Check for a method in this container which matches this selector. ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), Method->isInstanceMethod()); // If we find one, record it and bail out. if (meth) { Overridden.insert(meth); return; } // Otherwise, search for methods that a hypothetical method here // would have overridden. // Note that we're now in a recursive case. Recursive = true; searchFromContainer(container); } }; } Decl *Sema::ActOnMethodDeclaration( Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, ArrayRef<SourceLocation> SelectorLocs, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, bool isVariadic, bool MethodDefinition) { // Make sure we can establish a context for the method. if (!CurContext->isObjCContainer()) { Diag(MethodLoc, diag::error_missing_method_context); return 0; } ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); Decl *ClassDecl = cast<Decl>(OCD); QualType resultDeclType; bool HasRelatedResultType = false; TypeSourceInfo *ResultTInfo = 0; if (ReturnType) { resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); // Methods cannot return interface types. All ObjC objects are // passed by reference. if (resultDeclType->isObjCObjectType()) { Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << resultDeclType; return 0; } HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); } else { // get the type for "id". resultDeclType = Context.getObjCIdType(); Diag(MethodLoc, diag::warn_missing_method_return_type) << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); } ObjCMethodDecl* ObjCMethod = ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, ResultTInfo, CurContext, MethodType == tok::minus, isVariadic, /*isSynthesized=*/false, /*isImplicitlyDeclared=*/false, /*isDefined=*/false, MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional : ObjCMethodDecl::Required, HasRelatedResultType); SmallVector<ParmVarDecl*, 16> Params; for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { QualType ArgType; TypeSourceInfo *DI; if (ArgInfo[i].Type == 0) { ArgType = Context.getObjCIdType(); DI = 0; } else { ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). ArgType = Context.getAdjustedParameterType(ArgType); } LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, LookupOrdinaryName, ForRedeclaration); LookupName(R, S); if (R.isSingleResult()) { NamedDecl *PrevDecl = R.getFoundDecl(); if (S->isDeclScope(PrevDecl)) { Diag(ArgInfo[i].NameLoc, (MethodDefinition ? diag::warn_method_param_redefinition : diag::warn_method_param_declaration)) << ArgInfo[i].Name; Diag(PrevDecl->getLocation(), diag::note_previous_declaration); } } SourceLocation StartLoc = DI ? DI->getTypeLoc().getBeginLoc() : ArgInfo[i].NameLoc; ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, ArgInfo[i].NameLoc, ArgInfo[i].Name, ArgType, DI, SC_None, SC_None); Param->setObjCMethodScopeInfo(i); Param->setObjCDeclQualifier( CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); // Apply the attributes to the parameter. ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); if (Param->hasAttr<BlocksAttr>()) { Diag(Param->getLocation(), diag::err_block_on_nonlocal); Param->setInvalidDecl(); } S->AddDecl(Param); IdResolver.AddDecl(Param); Params.push_back(Param); } for (unsigned i = 0, e = CNumArgs; i != e; ++i) { ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); QualType ArgType = Param->getType(); if (ArgType.isNull()) ArgType = Context.getObjCIdType(); else // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). ArgType = Context.getAdjustedParameterType(ArgType); if (ArgType->isObjCObjectType()) { Diag(Param->getLocation(), diag::err_object_cannot_be_passed_returned_by_value) << 1 << ArgType; Param->setInvalidDecl(); } Param->setDeclContext(ObjCMethod); Params.push_back(Param); } ObjCMethod->setMethodParams(Context, Params, SelectorLocs); ObjCMethod->setObjCDeclQualifier( CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); if (AttrList) ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); // Add the method now. const ObjCMethodDecl *PrevMethod = 0; if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { if (MethodType == tok::minus) { PrevMethod = ImpDecl->getInstanceMethod(Sel); ImpDecl->addInstanceMethod(ObjCMethod); } else { PrevMethod = ImpDecl->getClassMethod(Sel); ImpDecl->addClassMethod(ObjCMethod); } ObjCMethodDecl *IMD = 0; if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), ObjCMethod->isInstanceMethod()); if (ObjCMethod->hasAttrs() && containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) { SourceLocation MethodLoc = IMD->getLocation(); if (!getSourceManager().isInSystemHeader(MethodLoc)) { Diag(EndLoc, diag::warn_attribute_method_def); Diag(MethodLoc, diag::note_method_declared_at) << ObjCMethod->getDeclName(); } } } else { cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); } if (PrevMethod) { // You can never have two method definitions with the same name. Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) << ObjCMethod->getDeclName(); Diag(PrevMethod->getLocation(), diag::note_previous_declaration); } // If this Objective-C method does not have a related result type, but we // are allowed to infer related result types, try to do so based on the // method family. ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); if (!CurrentClass) { if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) CurrentClass = Cat->getClassInterface(); else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) CurrentClass = Impl->getClassInterface(); else if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) CurrentClass = CatImpl->getClassInterface(); } ResultTypeCompatibilityKind RTC = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); // Search for overridden methods and merge information down from them. OverrideSearch overrides(*this, ObjCMethod); for (OverrideSearch::iterator i = overrides.begin(), e = overrides.end(); i != e; ++i) { ObjCMethodDecl *overridden = *i; // Propagate down the 'related result type' bit from overridden methods. if (RTC != RTC_Incompatible && overridden->hasRelatedResultType()) ObjCMethod->SetRelatedResultType(); // Then merge the declarations. mergeObjCMethodDecls(ObjCMethod, overridden); // Check for overriding methods if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) CheckConflictingOverridingMethod(ObjCMethod, overridden, isa<ObjCProtocolDecl>(overridden->getDeclContext())); } bool ARCError = false; if (getLangOpts().ObjCAutoRefCount) ARCError = CheckARCMethodDecl(*this, ObjCMethod); // Infer the related result type when possible. if (!ARCError && RTC == RTC_Compatible && !ObjCMethod->hasRelatedResultType() && LangOpts.ObjCInferRelatedResultType) { bool InferRelatedResultType = false; switch (ObjCMethod->getMethodFamily()) { case OMF_None: case OMF_copy: case OMF_dealloc: case OMF_finalize: case OMF_mutableCopy: case OMF_release: case OMF_retainCount: case OMF_performSelector: break; case OMF_alloc: case OMF_new: InferRelatedResultType = ObjCMethod->isClassMethod(); break; case OMF_init: case OMF_autorelease: case OMF_retain: case OMF_self: InferRelatedResultType = ObjCMethod->isInstanceMethod(); break; } if (InferRelatedResultType) ObjCMethod->SetRelatedResultType(); } return ObjCMethod; } bool Sema::CheckObjCDeclScope(Decl *D) { // Following is also an error. But it is caused by a missing @end // and diagnostic is issued elsewhere. if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) return false; // If we switched context to translation unit while we are still lexically in // an objc container, it means the parser missed emitting an error. if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) return false; Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); D->setInvalidDecl(); return true; } /// Called whenever @defs(ClassName) is encountered in the source. Inserts the /// instance variables of ClassName into Decls. void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl<Decl*> &Decls) { // Check that ClassName is a valid class ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); if (!Class) { Diag(DeclStart, diag::err_undef_interface) << ClassName; return; } if (LangOpts.ObjCNonFragileABI) { Diag(DeclStart, diag::err_atdef_nonfragile_interface); return; } // Collect the instance variables SmallVector<const ObjCIvarDecl*, 32> Ivars; Context.DeepCollectObjCIvars(Class, true, Ivars); // For each ivar, create a fresh ObjCAtDefsFieldDecl. for (unsigned i = 0; i < Ivars.size(); i++) { const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); RecordDecl *Record = dyn_cast<RecordDecl>(TagD); Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, /*FIXME: StartL=*/ID->getLocation(), ID->getLocation(), ID->getIdentifier(), ID->getType(), ID->getBitWidth()); Decls.push_back(FD); } // Introduce all of these fields into the appropriate scope. for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); D != Decls.end(); ++D) { FieldDecl *FD = cast<FieldDecl>(*D); if (getLangOpts().CPlusPlus) PushOnScopeChains(cast<FieldDecl>(FD), S); else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) Record->addDecl(FD); } } /// \brief Build a type-check a new Objective-C exception variable declaration. VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, bool Invalid) { // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage // duration shall not be qualified by an address-space qualifier." // Since all parameters have automatic store duration, they can not have // an address space. if (T.getAddressSpace() != 0) { Diag(IdLoc, diag::err_arg_with_address_space); Invalid = true; } // An @catch parameter must be an unqualified object pointer type; // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? if (Invalid) { // Don't do any further checking. } else if (T->isDependentType()) { // Okay: we don't know what this type will instantiate to. } else if (!T->isObjCObjectPointerType()) { Invalid = true; Diag(IdLoc ,diag::err_catch_param_not_objc_type); } else if (T->isObjCQualifiedIdType()) { Invalid = true; Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); } VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, T, TInfo, SC_None, SC_None); New->setExceptionVariable(true); // In ARC, infer 'retaining' for variables of retainable type. if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) Invalid = true; if (Invalid) New->setInvalidDecl(); return New; } Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { const DeclSpec &DS = D.getDeclSpec(); // We allow the "register" storage class on exception variables because // GCC did, but we drop it completely. Any other storage class is an error. if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) << DS.getStorageClassSpec(); } if (D.getDeclSpec().isThreadSpecified()) Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); D.getMutableDeclSpec().ClearStorageClassSpecs(); DiagnoseFunctionSpecifiers(D); // Check that there are no default arguments inside the type of this // exception object (C++ only). if (getLangOpts().CPlusPlus) CheckExtraCXXDefaultArguments(D); TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); QualType ExceptionType = TInfo->getType(); VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getSourceRange().getBegin(), D.getIdentifierLoc(), D.getIdentifier(), D.isInvalidType()); // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). if (D.getCXXScopeSpec().isSet()) { Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) << D.getCXXScopeSpec().getRange(); New->setInvalidDecl(); } // Add the parameter declaration into this scope. S->AddDecl(New); if (D.getIdentifier()) IdResolver.AddDecl(New); ProcessDeclAttributes(S, New, D); if (New->hasAttr<BlocksAttr>()) Diag(New->getLocation(), diag::err_block_on_nonlocal); return New; } /// CollectIvarsToConstructOrDestruct - Collect those ivars which require /// initialization. void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl*> &Ivars) { for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; Iv= Iv->getNextIvar()) { QualType QT = Context.getBaseElementType(Iv->getType()); if (QT->isRecordType()) Ivars.push_back(Iv); } } void Sema::DiagnoseUseOfUnimplementedSelectors() { // Load referenced selectors from the external source. if (ExternalSource) { SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; ExternalSource->ReadReferencedSelectors(Sels); for (unsigned I = 0, N = Sels.size(); I != N; ++I) ReferencedSelectors[Sels[I].first] = Sels[I].second; } // Warning will be issued only when selector table is // generated (which means there is at lease one implementation // in the TU). This is to match gcc's behavior. if (ReferencedSelectors.empty() || !Context.AnyObjCImplementation()) return; for (llvm::DenseMap<Selector, SourceLocation>::iterator S = ReferencedSelectors.begin(), E = ReferencedSelectors.end(); S != E; ++S) { Selector Sel = (*S).first; if (!LookupImplementedMethodInGlobalPool(Sel)) Diag((*S).second, diag::warn_unimplemented_selector) << Sel; } return; }