Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp |
//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines malloc/free checker, which checks for potential memory // leaks, double free, and use-after-free problems. // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "InterCheckerAPI.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include <climits> using namespace clang; using namespace ento; namespace { class RefState { enum Kind { AllocateUnchecked, AllocateFailed, Released, Escaped, Relinquished } K; const Stmt *S; public: RefState(Kind k, const Stmt *s) : K(k), S(s) {} bool isAllocated() const { return K == AllocateUnchecked; } bool isReleased() const { return K == Released; } const Stmt *getStmt() const { return S; } bool operator==(const RefState &X) const { return K == X.K && S == X.S; } static RefState getAllocateUnchecked(const Stmt *s) { return RefState(AllocateUnchecked, s); } static RefState getAllocateFailed() { return RefState(AllocateFailed, 0); } static RefState getReleased(const Stmt *s) { return RefState(Released, s); } static RefState getEscaped(const Stmt *s) { return RefState(Escaped, s); } static RefState getRelinquished(const Stmt *s) { return RefState(Relinquished, s); } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(K); ID.AddPointer(S); } }; struct ReallocPair { SymbolRef ReallocatedSym; bool IsFreeOnFailure; ReallocPair(SymbolRef S, bool F) : ReallocatedSym(S), IsFreeOnFailure(F) {} void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(IsFreeOnFailure); ID.AddPointer(ReallocatedSym); } bool operator==(const ReallocPair &X) const { return ReallocatedSym == X.ReallocatedSym && IsFreeOnFailure == X.IsFreeOnFailure; } }; typedef std::pair<const Stmt*, const MemRegion*> LeakInfo; class MallocChecker : public Checker<check::DeadSymbols, check::EndPath, check::PreStmt<ReturnStmt>, check::PreStmt<CallExpr>, check::PostStmt<CallExpr>, check::PostStmt<BlockExpr>, check::Location, check::Bind, eval::Assume, check::RegionChanges> { mutable OwningPtr<BugType> BT_DoubleFree; mutable OwningPtr<BugType> BT_Leak; mutable OwningPtr<BugType> BT_UseFree; mutable OwningPtr<BugType> BT_BadFree; mutable IdentifierInfo *II_malloc, *II_free, *II_realloc, *II_calloc, *II_valloc, *II_reallocf, *II_strndup, *II_strdup; public: MallocChecker() : II_malloc(0), II_free(0), II_realloc(0), II_calloc(0), II_valloc(0), II_reallocf(0), II_strndup(0), II_strdup(0) {} /// In pessimistic mode, the checker assumes that it does not know which /// functions might free the memory. struct ChecksFilter { DefaultBool CMallocPessimistic; DefaultBool CMallocOptimistic; }; ChecksFilter Filter; void checkPreStmt(const CallExpr *S, CheckerContext &C) const; void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; void checkEndPath(CheckerContext &C) const; void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, bool Assumption) const; void checkLocation(SVal l, bool isLoad, const Stmt *S, CheckerContext &C) const; void checkBind(SVal location, SVal val, const Stmt*S, CheckerContext &C) const; ProgramStateRef checkRegionChanges(ProgramStateRef state, const StoreManager::InvalidatedSymbols *invalidated, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallOrObjCMessage *Call) const; bool wantsRegionChangeUpdate(ProgramStateRef state) const { return true; } private: void initIdentifierInfo(ASTContext &C) const; /// Check if this is one of the functions which can allocate/reallocate memory /// pointed to by one of its arguments. bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; static ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att); static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, const Expr *SizeEx, SVal Init, ProgramStateRef state) { return MallocMemAux(C, CE, state->getSVal(SizeEx, C.getLocationContext()), Init, state); } static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, SVal SizeEx, SVal Init, ProgramStateRef state); /// Update the RefState to reflect the new memory allocation. static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const CallExpr *CE, ProgramStateRef state); ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att) const; ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, ProgramStateRef state, unsigned Num, bool Hold) const; ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, bool FreesMemOnFailure) const; static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE); bool checkEscape(SymbolRef Sym, const Stmt *S, CheckerContext &C) const; bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S = 0) const; /// Check if the function is not known to us. So, for example, we could /// conservatively assume it can free/reallocate it's pointer arguments. bool doesNotFreeMemory(const CallOrObjCMessage *Call, ProgramStateRef State) const; static bool SummarizeValue(raw_ostream &os, SVal V); static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) const; /// Find the location of the allocation for Sym on the path leading to the /// exploded node N. LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, CheckerContext &C) const; void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; /// The bug visitor which allows us to print extra diagnostics along the /// BugReport path. For example, showing the allocation site of the leaked /// region. class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> { protected: enum NotificationMode { Normal, ReallocationFailed }; // The allocated region symbol tracked by the main analysis. SymbolRef Sym; // The mode we are in, i.e. what kind of diagnostics will be emitted. NotificationMode Mode; // A symbol from when the primary region should have been reallocated. SymbolRef FailedReallocSymbol; public: MallocBugVisitor(SymbolRef S) : Sym(S), Mode(Normal), FailedReallocSymbol(0) {} virtual ~MallocBugVisitor() {} void Profile(llvm::FoldingSetNodeID &ID) const { static int X = 0; ID.AddPointer(&X); ID.AddPointer(Sym); } inline bool isAllocated(const RefState *S, const RefState *SPrev, const Stmt *Stmt) { // Did not track -> allocated. Other state (released) -> allocated. return (Stmt && isa<CallExpr>(Stmt) && (S && S->isAllocated()) && (!SPrev || !SPrev->isAllocated())); } inline bool isReleased(const RefState *S, const RefState *SPrev, const Stmt *Stmt) { // Did not track -> released. Other state (allocated) -> released. return (Stmt && isa<CallExpr>(Stmt) && (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); } inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, const Stmt *Stmt) { // If the expression is not a call, and the state change is // released -> allocated, it must be the realloc return value // check. If we have to handle more cases here, it might be cleaner just // to track this extra bit in the state itself. return ((!Stmt || !isa<CallExpr>(Stmt)) && (S && S->isAllocated()) && (SPrev && !SPrev->isAllocated())); } PathDiagnosticPiece *VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR); private: class StackHintGeneratorForReallocationFailed : public StackHintGeneratorForSymbol { public: StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) : StackHintGeneratorForSymbol(S, M) {} virtual std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) { SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << "Reallocation of "; // Printed parameters start at 1, not 0. printOrdinal(++ArgIndex, os); os << " parameter failed"; return os.str(); } virtual std::string getMessageForReturn(const CallExpr *CallExpr) { return "Reallocation of returned value failed"; } }; }; }; } // end anonymous namespace typedef llvm::ImmutableMap<SymbolRef, RefState> RegionStateTy; typedef llvm::ImmutableMap<SymbolRef, ReallocPair > ReallocMap; class RegionState {}; class ReallocPairs {}; namespace clang { namespace ento { template <> struct ProgramStateTrait<RegionState> : public ProgramStatePartialTrait<RegionStateTy> { static void *GDMIndex() { static int x; return &x; } }; template <> struct ProgramStateTrait<ReallocPairs> : public ProgramStatePartialTrait<ReallocMap> { static void *GDMIndex() { static int x; return &x; } }; } } namespace { class StopTrackingCallback : public SymbolVisitor { ProgramStateRef state; public: StopTrackingCallback(ProgramStateRef st) : state(st) {} ProgramStateRef getState() const { return state; } bool VisitSymbol(SymbolRef sym) { state = state->remove<RegionState>(sym); return true; } }; } // end anonymous namespace void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { if (!II_malloc) II_malloc = &Ctx.Idents.get("malloc"); if (!II_free) II_free = &Ctx.Idents.get("free"); if (!II_realloc) II_realloc = &Ctx.Idents.get("realloc"); if (!II_reallocf) II_reallocf = &Ctx.Idents.get("reallocf"); if (!II_calloc) II_calloc = &Ctx.Idents.get("calloc"); if (!II_valloc) II_valloc = &Ctx.Idents.get("valloc"); if (!II_strdup) II_strdup = &Ctx.Idents.get("strdup"); if (!II_strndup) II_strndup = &Ctx.Idents.get("strndup"); } bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { if (!FD) return false; IdentifierInfo *FunI = FD->getIdentifier(); if (!FunI) return false; initIdentifierInfo(C); if (FunI == II_malloc || FunI == II_free || FunI == II_realloc || FunI == II_reallocf || FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || FunI == II_strndup) return true; if (Filter.CMallocOptimistic && FD->hasAttrs() && FD->specific_attr_begin<OwnershipAttr>() != FD->specific_attr_end<OwnershipAttr>()) return true; return false; } void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { const FunctionDecl *FD = C.getCalleeDecl(CE); if (!FD) return; initIdentifierInfo(C.getASTContext()); IdentifierInfo *FunI = FD->getIdentifier(); if (!FunI) return; ProgramStateRef State = C.getState(); if (FunI == II_malloc || FunI == II_valloc) { if (CE->getNumArgs() < 1) return; State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); } else if (FunI == II_realloc) { State = ReallocMem(C, CE, false); } else if (FunI == II_reallocf) { State = ReallocMem(C, CE, true); } else if (FunI == II_calloc) { State = CallocMem(C, CE); } else if (FunI == II_free) { State = FreeMemAux(C, CE, C.getState(), 0, false); } else if (FunI == II_strdup) { State = MallocUpdateRefState(C, CE, State); } else if (FunI == II_strndup) { State = MallocUpdateRefState(C, CE, State); } else if (Filter.CMallocOptimistic) { // Check all the attributes, if there are any. // There can be multiple of these attributes. if (FD->hasAttrs()) for (specific_attr_iterator<OwnershipAttr> i = FD->specific_attr_begin<OwnershipAttr>(), e = FD->specific_attr_end<OwnershipAttr>(); i != e; ++i) { switch ((*i)->getOwnKind()) { case OwnershipAttr::Returns: State = MallocMemReturnsAttr(C, CE, *i); break; case OwnershipAttr::Takes: case OwnershipAttr::Holds: State = FreeMemAttr(C, CE, *i); break; } } } C.addTransition(State); } ProgramStateRef MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att) { if (Att->getModule() != "malloc") return 0; OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); if (I != E) { return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), C.getState()); } return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), C.getState()); } ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, const CallExpr *CE, SVal Size, SVal Init, ProgramStateRef state) { // Get the return value. SVal retVal = state->getSVal(CE, C.getLocationContext()); // We expect the malloc functions to return a pointer. if (!isa<Loc>(retVal)) return 0; // Fill the region with the initialization value. state = state->bindDefault(retVal, Init); // Set the region's extent equal to the Size parameter. const SymbolicRegion *R = dyn_cast_or_null<SymbolicRegion>(retVal.getAsRegion()); if (!R) return 0; if (isa<DefinedOrUnknownSVal>(Size)) { SValBuilder &svalBuilder = C.getSValBuilder(); DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); DefinedOrUnknownSVal DefinedSize = cast<DefinedOrUnknownSVal>(Size); DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ(state, Extent, DefinedSize); state = state->assume(extentMatchesSize, true); assert(state); } return MallocUpdateRefState(C, CE, state); } ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, const CallExpr *CE, ProgramStateRef state) { // Get the return value. SVal retVal = state->getSVal(CE, C.getLocationContext()); // We expect the malloc functions to return a pointer. if (!isa<Loc>(retVal)) return 0; SymbolRef Sym = retVal.getAsLocSymbol(); assert(Sym); // Set the symbol's state to Allocated. return state->set<RegionState>(Sym, RefState::getAllocateUnchecked(CE)); } ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att) const { if (Att->getModule() != "malloc") return 0; ProgramStateRef State = C.getState(); for (OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); I != E; ++I) { ProgramStateRef StateI = FreeMemAux(C, CE, State, *I, Att->getOwnKind() == OwnershipAttr::Holds); if (StateI) State = StateI; } return State; } ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, ProgramStateRef state, unsigned Num, bool Hold) const { if (CE->getNumArgs() < (Num + 1)) return 0; const Expr *ArgExpr = CE->getArg(Num); SVal ArgVal = state->getSVal(ArgExpr, C.getLocationContext()); if (!isa<DefinedOrUnknownSVal>(ArgVal)) return 0; DefinedOrUnknownSVal location = cast<DefinedOrUnknownSVal>(ArgVal); // Check for null dereferences. if (!isa<Loc>(location)) return 0; // The explicit NULL case, no operation is performed. ProgramStateRef notNullState, nullState; llvm::tie(notNullState, nullState) = state->assume(location); if (nullState && !notNullState) return 0; // Unknown values could easily be okay // Undefined values are handled elsewhere if (ArgVal.isUnknownOrUndef()) return 0; const MemRegion *R = ArgVal.getAsRegion(); // Nonlocs can't be freed, of course. // Non-region locations (labels and fixed addresses) also shouldn't be freed. if (!R) { ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return 0; } R = R->StripCasts(); // Blocks might show up as heap data, but should not be free()d if (isa<BlockDataRegion>(R)) { ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return 0; } const MemSpaceRegion *MS = R->getMemorySpace(); // Parameters, locals, statics, and globals shouldn't be freed. if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { // FIXME: at the time this code was written, malloc() regions were // represented by conjured symbols, which are all in UnknownSpaceRegion. // This means that there isn't actually anything from HeapSpaceRegion // that should be freed, even though we allow it here. // Of course, free() can work on memory allocated outside the current // function, so UnknownSpaceRegion is always a possibility. // False negatives are better than false positives. ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return 0; } const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R); // Various cases could lead to non-symbol values here. // For now, ignore them. if (!SR) return 0; SymbolRef Sym = SR->getSymbol(); const RefState *RS = state->get<RegionState>(Sym); // If the symbol has not been tracked, return. This is possible when free() is // called on a pointer that does not get its pointee directly from malloc(). // Full support of this requires inter-procedural analysis. if (!RS) return 0; // Check double free. if (RS->isReleased()) { if (ExplodedNode *N = C.generateSink()) { if (!BT_DoubleFree) BT_DoubleFree.reset( new BugType("Double free", "Memory Error")); BugReport *R = new BugReport(*BT_DoubleFree, "Attempt to free released memory", N); R->addRange(ArgExpr->getSourceRange()); R->markInteresting(Sym); R->addVisitor(new MallocBugVisitor(Sym)); C.EmitReport(R); } return 0; } // Normal free. if (Hold) return state->set<RegionState>(Sym, RefState::getRelinquished(CE)); return state->set<RegionState>(Sym, RefState::getReleased(CE)); } bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { if (nonloc::ConcreteInt *IntVal = dyn_cast<nonloc::ConcreteInt>(&V)) os << "an integer (" << IntVal->getValue() << ")"; else if (loc::ConcreteInt *ConstAddr = dyn_cast<loc::ConcreteInt>(&V)) os << "a constant address (" << ConstAddr->getValue() << ")"; else if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&V)) os << "the address of the label '" << Label->getLabel()->getName() << "'"; else return false; return true; } bool MallocChecker::SummarizeRegion(raw_ostream &os, const MemRegion *MR) { switch (MR->getKind()) { case MemRegion::FunctionTextRegionKind: { const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl(); if (FD) os << "the address of the function '" << *FD << '\''; else os << "the address of a function"; return true; } case MemRegion::BlockTextRegionKind: os << "block text"; return true; case MemRegion::BlockDataRegionKind: // FIXME: where the block came from? os << "a block"; return true; default: { const MemSpaceRegion *MS = MR->getMemorySpace(); if (isa<StackLocalsSpaceRegion>(MS)) { const VarRegion *VR = dyn_cast<VarRegion>(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) os << "the address of the local variable '" << VD->getName() << "'"; else os << "the address of a local stack variable"; return true; } if (isa<StackArgumentsSpaceRegion>(MS)) { const VarRegion *VR = dyn_cast<VarRegion>(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) os << "the address of the parameter '" << VD->getName() << "'"; else os << "the address of a parameter"; return true; } if (isa<GlobalsSpaceRegion>(MS)) { const VarRegion *VR = dyn_cast<VarRegion>(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) { if (VD->isStaticLocal()) os << "the address of the static variable '" << VD->getName() << "'"; else os << "the address of the global variable '" << VD->getName() << "'"; } else os << "the address of a global variable"; return true; } return false; } } } void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) const { if (ExplodedNode *N = C.generateSink()) { if (!BT_BadFree) BT_BadFree.reset(new BugType("Bad free", "Memory Error")); SmallString<100> buf; llvm::raw_svector_ostream os(buf); const MemRegion *MR = ArgVal.getAsRegion(); if (MR) { while (const ElementRegion *ER = dyn_cast<ElementRegion>(MR)) MR = ER->getSuperRegion(); // Special case for alloca() if (isa<AllocaRegion>(MR)) os << "Argument to free() was allocated by alloca(), not malloc()"; else { os << "Argument to free() is "; if (SummarizeRegion(os, MR)) os << ", which is not memory allocated by malloc()"; else os << "not memory allocated by malloc()"; } } else { os << "Argument to free() is "; if (SummarizeValue(os, ArgVal)) os << ", which is not memory allocated by malloc()"; else os << "not memory allocated by malloc()"; } BugReport *R = new BugReport(*BT_BadFree, os.str(), N); R->markInteresting(MR); R->addRange(range); C.EmitReport(R); } } ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, const CallExpr *CE, bool FreesOnFail) const { if (CE->getNumArgs() < 2) return 0; ProgramStateRef state = C.getState(); const Expr *arg0Expr = CE->getArg(0); const LocationContext *LCtx = C.getLocationContext(); SVal Arg0Val = state->getSVal(arg0Expr, LCtx); if (!isa<DefinedOrUnknownSVal>(Arg0Val)) return 0; DefinedOrUnknownSVal arg0Val = cast<DefinedOrUnknownSVal>(Arg0Val); SValBuilder &svalBuilder = C.getSValBuilder(); DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ(state, arg0Val, svalBuilder.makeNull()); // Get the size argument. If there is no size arg then give up. const Expr *Arg1 = CE->getArg(1); if (!Arg1) return 0; // Get the value of the size argument. SVal Arg1ValG = state->getSVal(Arg1, LCtx); if (!isa<DefinedOrUnknownSVal>(Arg1ValG)) return 0; DefinedOrUnknownSVal Arg1Val = cast<DefinedOrUnknownSVal>(Arg1ValG); // Compare the size argument to 0. DefinedOrUnknownSVal SizeZero = svalBuilder.evalEQ(state, Arg1Val, svalBuilder.makeIntValWithPtrWidth(0, false)); ProgramStateRef StatePtrIsNull, StatePtrNotNull; llvm::tie(StatePtrIsNull, StatePtrNotNull) = state->assume(PtrEQ); ProgramStateRef StateSizeIsZero, StateSizeNotZero; llvm::tie(StateSizeIsZero, StateSizeNotZero) = state->assume(SizeZero); // We only assume exceptional states if they are definitely true; if the // state is under-constrained, assume regular realloc behavior. bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; // If the ptr is NULL and the size is not 0, the call is equivalent to // malloc(size). if ( PrtIsNull && !SizeIsZero) { ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), StatePtrIsNull); return stateMalloc; } if (PrtIsNull && SizeIsZero) return 0; // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). assert(!PrtIsNull); SymbolRef FromPtr = arg0Val.getAsSymbol(); SVal RetVal = state->getSVal(CE, LCtx); SymbolRef ToPtr = RetVal.getAsSymbol(); if (!FromPtr || !ToPtr) return 0; // If the size is 0, free the memory. if (SizeIsZero) if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero,0,false)){ // The semantics of the return value are: // If size was equal to 0, either NULL or a pointer suitable to be passed // to free() is returned. stateFree = stateFree->set<ReallocPairs>(ToPtr, ReallocPair(FromPtr, FreesOnFail)); C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); return stateFree; } // Default behavior. if (ProgramStateRef stateFree = FreeMemAux(C, CE, state, 0, false)) { // FIXME: We should copy the content of the original buffer. ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), UnknownVal(), stateFree); if (!stateRealloc) return 0; stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, ReallocPair(FromPtr, FreesOnFail)); C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); return stateRealloc; } return 0; } ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE){ if (CE->getNumArgs() < 2) return 0; ProgramStateRef state = C.getState(); SValBuilder &svalBuilder = C.getSValBuilder(); const LocationContext *LCtx = C.getLocationContext(); SVal count = state->getSVal(CE->getArg(0), LCtx); SVal elementSize = state->getSVal(CE->getArg(1), LCtx); SVal TotalSize = svalBuilder.evalBinOp(state, BO_Mul, count, elementSize, svalBuilder.getContext().getSizeType()); SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); return MallocMemAux(C, CE, TotalSize, zeroVal, state); } LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, CheckerContext &C) const { const LocationContext *LeakContext = N->getLocationContext(); // Walk the ExplodedGraph backwards and find the first node that referred to // the tracked symbol. const ExplodedNode *AllocNode = N; const MemRegion *ReferenceRegion = 0; while (N) { ProgramStateRef State = N->getState(); if (!State->get<RegionState>(Sym)) break; // Find the most recent expression bound to the symbol in the current // context. if (!ReferenceRegion) { if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { SVal Val = State->getSVal(MR); if (Val.getAsLocSymbol() == Sym) ReferenceRegion = MR; } } // Allocation node, is the last node in the current context in which the // symbol was tracked. if (N->getLocationContext() == LeakContext) AllocNode = N; N = N->pred_empty() ? NULL : *(N->pred_begin()); } ProgramPoint P = AllocNode->getLocation(); const Stmt *AllocationStmt = 0; if (isa<StmtPoint>(P)) AllocationStmt = cast<StmtPoint>(P).getStmt(); return LeakInfo(AllocationStmt, ReferenceRegion); } void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const { assert(N); if (!BT_Leak) { BT_Leak.reset(new BugType("Memory leak", "Memory Error")); // Leaks should not be reported if they are post-dominated by a sink: // (1) Sinks are higher importance bugs. // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending // with __noreturn functions such as assert() or exit(). We choose not // to report leaks on such paths. BT_Leak->setSuppressOnSink(true); } // Most bug reports are cached at the location where they occurred. // With leaks, we want to unique them by the location where they were // allocated, and only report a single path. PathDiagnosticLocation LocUsedForUniqueing; const Stmt *AllocStmt = 0; const MemRegion *Region = 0; llvm::tie(AllocStmt, Region) = getAllocationSite(N, Sym, C); if (AllocStmt) LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocStmt, C.getSourceManager(), N->getLocationContext()); SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << "Memory is never released; potential leak"; if (Region) { os << " of memory pointed to by '"; Region->dumpPretty(os); os <<'\''; } BugReport *R = new BugReport(*BT_Leak, os.str(), N, LocUsedForUniqueing); R->markInteresting(Sym); R->addVisitor(new MallocBugVisitor(Sym)); C.EmitReport(R); } void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const { if (!SymReaper.hasDeadSymbols()) return; ProgramStateRef state = C.getState(); RegionStateTy RS = state->get<RegionState>(); RegionStateTy::Factory &F = state->get_context<RegionState>(); bool generateReport = false; llvm::SmallVector<SymbolRef, 2> Errors; for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { if (SymReaper.isDead(I->first)) { if (I->second.isAllocated()) { generateReport = true; Errors.push_back(I->first); } // Remove the dead symbol from the map. RS = F.remove(RS, I->first); } } // Cleanup the Realloc Pairs Map. ReallocMap RP = state->get<ReallocPairs>(); for (ReallocMap::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { if (SymReaper.isDead(I->first) || SymReaper.isDead(I->second.ReallocatedSym)) { state = state->remove<ReallocPairs>(I->first); } } // Generate leak node. static SimpleProgramPointTag Tag("MallocChecker : DeadSymbolsLeak"); ExplodedNode *N = C.addTransition(C.getState(), C.getPredecessor(), &Tag); if (generateReport) { for (llvm::SmallVector<SymbolRef, 2>::iterator I = Errors.begin(), E = Errors.end(); I != E; ++I) { reportLeak(*I, N, C); } } C.addTransition(state->set<RegionState>(RS), N); } void MallocChecker::checkEndPath(CheckerContext &C) const { ProgramStateRef state = C.getState(); RegionStateTy M = state->get<RegionState>(); // If inside inlined call, skip it. if (C.getLocationContext()->getParent() != 0) return; for (RegionStateTy::iterator I = M.begin(), E = M.end(); I != E; ++I) { RefState RS = I->second; if (RS.isAllocated()) { ExplodedNode *N = C.addTransition(state); if (N) reportLeak(I->first, N, C); } } } bool MallocChecker::checkEscape(SymbolRef Sym, const Stmt *S, CheckerContext &C) const { ProgramStateRef state = C.getState(); const RefState *RS = state->get<RegionState>(Sym); if (!RS) return false; if (RS->isAllocated()) { state = state->set<RegionState>(Sym, RefState::getEscaped(S)); C.addTransition(state); return true; } return false; } void MallocChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const { if (isMemFunction(C.getCalleeDecl(CE), C.getASTContext())) return; // Check use after free, when a freed pointer is passed to a call. ProgramStateRef State = C.getState(); for (CallExpr::const_arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { const Expr *A = *I; if (A->getType().getTypePtr()->isAnyPointerType()) { SymbolRef Sym = State->getSVal(A, C.getLocationContext()).getAsSymbol(); if (!Sym) continue; if (checkUseAfterFree(Sym, C, A)) return; } } } void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { const Expr *E = S->getRetValue(); if (!E) return; // Check if we are returning a symbol. SVal RetVal = C.getState()->getSVal(E, C.getLocationContext()); SymbolRef Sym = RetVal.getAsSymbol(); if (!Sym) // If we are returning a field of the allocated struct or an array element, // the callee could still free the memory. // TODO: This logic should be a part of generic symbol escape callback. if (const MemRegion *MR = RetVal.getAsRegion()) if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) if (const SymbolicRegion *BMR = dyn_cast<SymbolicRegion>(MR->getBaseRegion())) Sym = BMR->getSymbol(); if (!Sym) return; // Check if we are returning freed memory. if (checkUseAfterFree(Sym, C, E)) return; // If this function body is not inlined, check if the symbol is escaping. if (C.getLocationContext()->getParent() == 0) checkEscape(Sym, E, C); } // TODO: Blocks should be either inlined or should call invalidate regions // upon invocation. After that's in place, special casing here will not be // needed. void MallocChecker::checkPostStmt(const BlockExpr *BE, CheckerContext &C) const { // Scan the BlockDecRefExprs for any object the retain count checker // may be tracking. if (!BE->getBlockDecl()->hasCaptures()) return; ProgramStateRef state = C.getState(); const BlockDataRegion *R = cast<BlockDataRegion>(state->getSVal(BE, C.getLocationContext()).getAsRegion()); BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), E = R->referenced_vars_end(); if (I == E) return; SmallVector<const MemRegion*, 10> Regions; const LocationContext *LC = C.getLocationContext(); MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); for ( ; I != E; ++I) { const VarRegion *VR = *I; if (VR->getSuperRegion() == R) { VR = MemMgr.getVarRegion(VR->getDecl(), LC); } Regions.push_back(VR); } state = state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), Regions.data() + Regions.size()).getState(); C.addTransition(state); } bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const { assert(Sym); const RefState *RS = C.getState()->get<RegionState>(Sym); if (RS && RS->isReleased()) { if (ExplodedNode *N = C.generateSink()) { if (!BT_UseFree) BT_UseFree.reset(new BugType("Use-after-free", "Memory Error")); BugReport *R = new BugReport(*BT_UseFree, "Use of memory after it is freed",N); if (S) R->addRange(S->getSourceRange()); R->markInteresting(Sym); R->addVisitor(new MallocBugVisitor(Sym)); C.EmitReport(R); return true; } } return false; } // Check if the location is a freed symbolic region. void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, CheckerContext &C) const { SymbolRef Sym = l.getLocSymbolInBase(); if (Sym) checkUseAfterFree(Sym, C); } //===----------------------------------------------------------------------===// // Check various ways a symbol can be invalidated. // TODO: This logic (the next 3 functions) is copied/similar to the // RetainRelease checker. We might want to factor this out. //===----------------------------------------------------------------------===// // Stop tracking symbols when a value escapes as a result of checkBind. // A value escapes in three possible cases: // (1) we are binding to something that is not a memory region. // (2) we are binding to a memregion that does not have stack storage // (3) we are binding to a memregion with stack storage that the store // does not understand. void MallocChecker::checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const { // Are we storing to something that causes the value to "escape"? bool escapes = true; ProgramStateRef state = C.getState(); if (loc::MemRegionVal *regionLoc = dyn_cast<loc::MemRegionVal>(&loc)) { escapes = !regionLoc->getRegion()->hasStackStorage(); if (!escapes) { // To test (3), generate a new state with the binding added. If it is // the same state, then it escapes (since the store cannot represent // the binding). escapes = (state == (state->bindLoc(*regionLoc, val))); } if (!escapes) { // Case 4: We do not currently model what happens when a symbol is // assigned to a struct field, so be conservative here and let the symbol // go. TODO: This could definitely be improved upon. escapes = !isa<VarRegion>(regionLoc->getRegion()); } } // If our store can represent the binding and we aren't storing to something // that doesn't have local storage then just return and have the simulation // state continue as is. if (!escapes) return; // Otherwise, find all symbols referenced by 'val' that we are tracking // and stop tracking them. state = state->scanReachableSymbols<StopTrackingCallback>(val).getState(); C.addTransition(state); } // If a symbolic region is assumed to NULL (or another constant), stop tracking // it - assuming that allocation failed on this path. ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, SVal Cond, bool Assumption) const { RegionStateTy RS = state->get<RegionState>(); for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { // If the symbol is assumed to NULL or another constant, this will // return an APSInt*. if (state->getSymVal(I.getKey())) state = state->remove<RegionState>(I.getKey()); } // Realloc returns 0 when reallocation fails, which means that we should // restore the state of the pointer being reallocated. ReallocMap RP = state->get<ReallocPairs>(); for (ReallocMap::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { // If the symbol is assumed to NULL or another constant, this will // return an APSInt*. if (state->getSymVal(I.getKey())) { SymbolRef ReallocSym = I.getData().ReallocatedSym; const RefState *RS = state->get<RegionState>(ReallocSym); if (RS) { if (RS->isReleased() && ! I.getData().IsFreeOnFailure) state = state->set<RegionState>(ReallocSym, RefState::getAllocateUnchecked(RS->getStmt())); } state = state->remove<ReallocPairs>(I.getKey()); } } return state; } // Check if the function is known to us. So, for example, we could // conservatively assume it can free/reallocate it's pointer arguments. // (We assume that the pointers cannot escape through calls to system // functions not handled by this checker.) bool MallocChecker::doesNotFreeMemory(const CallOrObjCMessage *Call, ProgramStateRef State) const { if (!Call) return false; // For now, assume that any C++ call can free memory. // TODO: If we want to be more optimistic here, we'll need to make sure that // regions escape to C++ containers. They seem to do that even now, but for // mysterious reasons. if (Call->isCXXCall()) return false; const Decl *D = Call->getDecl(); if (!D) return false; ASTContext &ASTC = State->getStateManager().getContext(); // If it's one of the allocation functions we can reason about, we model // its behavior explicitly. if (isa<FunctionDecl>(D) && isMemFunction(cast<FunctionDecl>(D), ASTC)) { return true; } // If it's not a system call, assume it frees memory. SourceManager &SM = ASTC.getSourceManager(); if (!SM.isInSystemHeader(D->getLocation())) return false; // Process C/ObjC functions. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { // White list the system functions whose arguments escape. const IdentifierInfo *II = FD->getIdentifier(); if (!II) return true; StringRef FName = II->getName(); // White list thread local storage. if (FName.equals("pthread_setspecific")) return false; // White list the 'XXXNoCopy' ObjC functions. if (FName.endswith("NoCopy")) { // Look for the deallocator argument. We know that the memory ownership // is not transfered only if the deallocator argument is // 'kCFAllocatorNull'. for (unsigned i = 1; i < Call->getNumArgs(); ++i) { const Expr *ArgE = Call->getArg(i)->IgnoreParenCasts(); if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { StringRef DeallocatorName = DE->getFoundDecl()->getName(); if (DeallocatorName == "kCFAllocatorNull") return true; } } return false; } // PR12101 // Many CoreFoundation and CoreGraphics might allow a tracked object // to escape. if (Call->isCFCGAllowingEscape(FName)) return false; // Associating streams with malloced buffers. The pointer can escape if // 'closefn' is specified (and if that function does free memory). // Currently, we do not inspect the 'closefn' function (PR12101). if (FName == "funopen") if (Call->getNumArgs() >= 4 && !Call->getArgSVal(4).isConstant(0)) return false; // Do not warn on pointers passed to 'setbuf' when used with std streams, // these leaks might be intentional when setting the buffer for stdio. // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer if (FName == "setbuf" || FName =="setbuffer" || FName == "setlinebuf" || FName == "setvbuf") { if (Call->getNumArgs() >= 1) if (const DeclRefExpr *Arg = dyn_cast<DeclRefExpr>(Call->getArg(0)->IgnoreParenCasts())) if (const VarDecl *D = dyn_cast<VarDecl>(Arg->getDecl())) if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) return false; } // A bunch of other functions, which take ownership of a pointer (See retain // release checker). Not all the parameters here are invalidated, but the // Malloc checker cannot differentiate between them. The right way of doing // this would be to implement a pointer escapes callback. if (FName == "CVPixelBufferCreateWithBytes" || FName == "CGBitmapContextCreateWithData" || FName == "CVPixelBufferCreateWithPlanarBytes" || FName == "OSAtomicEnqueue") { return false; } // Whitelist NSXXInsertXX, for example NSMapInsertIfAbsent, since they can // be deallocated by NSMapRemove. if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) return false; // Otherwise, assume that the function does not free memory. // Most system calls, do not free the memory. return true; // Process ObjC functions. } else if (const ObjCMethodDecl * ObjCD = dyn_cast<ObjCMethodDecl>(D)) { Selector S = ObjCD->getSelector(); // White list the ObjC functions which do free memory. // - Anything containing 'freeWhenDone' param set to 1. // Ex: dataWithBytesNoCopy:length:freeWhenDone. for (unsigned i = 1; i < S.getNumArgs(); ++i) { if (S.getNameForSlot(i).equals("freeWhenDone")) { if (Call->getArgSVal(i).isConstant(1)) return false; else return true; } } // If the first selector ends with NoCopy, assume that the ownership is // transfered as well. // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; if (S.getNameForSlot(0).endswith("NoCopy")) { return false; } // Otherwise, assume that the function does not free memory. // Most system calls, do not free the memory. return true; } // Otherwise, assume that the function can free memory. return false; } // If the symbol we are tracking is invalidated, but not explicitly (ex: the &p // escapes, when we are tracking p), do not track the symbol as we cannot reason // about it anymore. ProgramStateRef MallocChecker::checkRegionChanges(ProgramStateRef State, const StoreManager::InvalidatedSymbols *invalidated, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallOrObjCMessage *Call) const { if (!invalidated || invalidated->empty()) return State; llvm::SmallPtrSet<SymbolRef, 8> WhitelistedSymbols; // If it's a call which might free or reallocate memory, we assume that all // regions (explicit and implicit) escaped. // Otherwise, whitelist explicit pointers; we still can track them. if (!Call || doesNotFreeMemory(Call, State)) { for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(), E = ExplicitRegions.end(); I != E; ++I) { if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>()) WhitelistedSymbols.insert(R->getSymbol()); } } for (StoreManager::InvalidatedSymbols::const_iterator I=invalidated->begin(), E = invalidated->end(); I!=E; ++I) { SymbolRef sym = *I; if (WhitelistedSymbols.count(sym)) continue; // The symbol escaped. if (const RefState *RS = State->get<RegionState>(sym)) State = State->set<RegionState>(sym, RefState::getEscaped(RS->getStmt())); } return State; } static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, ProgramStateRef prevState) { ReallocMap currMap = currState->get<ReallocPairs>(); ReallocMap prevMap = prevState->get<ReallocPairs>(); for (ReallocMap::iterator I = prevMap.begin(), E = prevMap.end(); I != E; ++I) { SymbolRef sym = I.getKey(); if (!currMap.lookup(sym)) return sym; } return NULL; } PathDiagnosticPiece * MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { ProgramStateRef state = N->getState(); ProgramStateRef statePrev = PrevN->getState(); const RefState *RS = state->get<RegionState>(Sym); const RefState *RSPrev = statePrev->get<RegionState>(Sym); if (!RS && !RSPrev) return 0; const Stmt *S = 0; const char *Msg = 0; StackHintGeneratorForSymbol *StackHint = 0; // Retrieve the associated statement. ProgramPoint ProgLoc = N->getLocation(); if (isa<StmtPoint>(ProgLoc)) S = cast<StmtPoint>(ProgLoc).getStmt(); // If an assumption was made on a branch, it should be caught // here by looking at the state transition. if (isa<BlockEdge>(ProgLoc)) { const CFGBlock *srcBlk = cast<BlockEdge>(ProgLoc).getSrc(); S = srcBlk->getTerminator(); } if (!S) return 0; // Find out if this is an interesting point and what is the kind. if (Mode == Normal) { if (isAllocated(RS, RSPrev, S)) { Msg = "Memory is allocated"; StackHint = new StackHintGeneratorForSymbol(Sym, "Returned allocated memory"); } else if (isReleased(RS, RSPrev, S)) { Msg = "Memory is released"; StackHint = new StackHintGeneratorForSymbol(Sym, "Returned released memory"); } else if (isReallocFailedCheck(RS, RSPrev, S)) { Mode = ReallocationFailed; Msg = "Reallocation failed"; StackHint = new StackHintGeneratorForReallocationFailed(Sym, "Reallocation failed"); if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { // Is it possible to fail two reallocs WITHOUT testing in between? assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && "We only support one failed realloc at a time."); BR.markInteresting(sym); FailedReallocSymbol = sym; } } // We are in a special mode if a reallocation failed later in the path. } else if (Mode == ReallocationFailed) { assert(FailedReallocSymbol && "No symbol to look for."); // Is this is the first appearance of the reallocated symbol? if (!statePrev->get<RegionState>(FailedReallocSymbol)) { // If we ever hit this assert, that means BugReporter has decided to skip // node pairs or visit them out of order. assert(state->get<RegionState>(FailedReallocSymbol) && "Missed the reallocation point"); // We're at the reallocation point. Msg = "Attempt to reallocate memory"; StackHint = new StackHintGeneratorForSymbol(Sym, "Returned reallocated memory"); FailedReallocSymbol = NULL; Mode = Normal; } } if (!Msg) return 0; assert(StackHint); // Generate the extra diagnostic. PathDiagnosticLocation Pos(S, BRC.getSourceManager(), N->getLocationContext()); return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint); } #define REGISTER_CHECKER(name) \ void ento::register##name(CheckerManager &mgr) {\ registerCStringCheckerBasic(mgr); \ mgr.registerChecker<MallocChecker>()->Filter.C##name = true;\ } REGISTER_CHECKER(MallocPessimistic) REGISTER_CHECKER(MallocOptimistic)