Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/RetainCountChecker.cpp |
//==-- RetainCountChecker.cpp - Checks for leaks and other issues -*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the methods for RetainCountChecker, which implements // a reference count checker for Core Foundation and Cocoa on (Mac OS X). // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceManager.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/AST/ParentMap.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include <cstdarg> using namespace clang; using namespace ento; using llvm::StrInStrNoCase; namespace { /// Wrapper around different kinds of node builder, so that helper functions /// can have a common interface. class GenericNodeBuilderRefCount { CheckerContext *C; const ProgramPointTag *tag; public: GenericNodeBuilderRefCount(CheckerContext &c, const ProgramPointTag *t = 0) : C(&c), tag(t){} ExplodedNode *MakeNode(ProgramStateRef state, ExplodedNode *Pred, bool MarkAsSink = false) { return C->addTransition(state, Pred, tag, MarkAsSink); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Primitives used for constructing summaries for function/method calls. //===----------------------------------------------------------------------===// /// ArgEffect is used to summarize a function/method call's effect on a /// particular argument. enum ArgEffect { DoNothing, Autorelease, Dealloc, DecRef, DecRefMsg, DecRefBridgedTransfered, IncRefMsg, IncRef, MakeCollectable, MayEscape, NewAutoreleasePool, SelfOwn, StopTracking }; namespace llvm { template <> struct FoldingSetTrait<ArgEffect> { static inline void Profile(const ArgEffect X, FoldingSetNodeID& ID) { ID.AddInteger((unsigned) X); } }; } // end llvm namespace /// ArgEffects summarizes the effects of a function/method call on all of /// its arguments. typedef llvm::ImmutableMap<unsigned,ArgEffect> ArgEffects; namespace { /// RetEffect is used to summarize a function/method call's behavior with /// respect to its return value. class RetEffect { public: enum Kind { NoRet, OwnedSymbol, OwnedAllocatedSymbol, NotOwnedSymbol, GCNotOwnedSymbol, ARCNotOwnedSymbol, OwnedWhenTrackedReceiver }; enum ObjKind { CF, ObjC, AnyObj }; private: Kind K; ObjKind O; RetEffect(Kind k, ObjKind o = AnyObj) : K(k), O(o) {} public: Kind getKind() const { return K; } ObjKind getObjKind() const { return O; } bool isOwned() const { return K == OwnedSymbol || K == OwnedAllocatedSymbol || K == OwnedWhenTrackedReceiver; } bool operator==(const RetEffect &Other) const { return K == Other.K && O == Other.O; } static RetEffect MakeOwnedWhenTrackedReceiver() { return RetEffect(OwnedWhenTrackedReceiver, ObjC); } static RetEffect MakeOwned(ObjKind o, bool isAllocated = false) { return RetEffect(isAllocated ? OwnedAllocatedSymbol : OwnedSymbol, o); } static RetEffect MakeNotOwned(ObjKind o) { return RetEffect(NotOwnedSymbol, o); } static RetEffect MakeGCNotOwned() { return RetEffect(GCNotOwnedSymbol, ObjC); } static RetEffect MakeARCNotOwned() { return RetEffect(ARCNotOwnedSymbol, ObjC); } static RetEffect MakeNoRet() { return RetEffect(NoRet); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddInteger((unsigned) K); ID.AddInteger((unsigned) O); } }; //===----------------------------------------------------------------------===// // Reference-counting logic (typestate + counts). //===----------------------------------------------------------------------===// class RefVal { public: enum Kind { Owned = 0, // Owning reference. NotOwned, // Reference is not owned by still valid (not freed). Released, // Object has been released. ReturnedOwned, // Returned object passes ownership to caller. ReturnedNotOwned, // Return object does not pass ownership to caller. ERROR_START, ErrorDeallocNotOwned, // -dealloc called on non-owned object. ErrorDeallocGC, // Calling -dealloc with GC enabled. ErrorUseAfterRelease, // Object used after released. ErrorReleaseNotOwned, // Release of an object that was not owned. ERROR_LEAK_START, ErrorLeak, // A memory leak due to excessive reference counts. ErrorLeakReturned, // A memory leak due to the returning method not having // the correct naming conventions. ErrorGCLeakReturned, ErrorOverAutorelease, ErrorReturnedNotOwned }; private: Kind kind; RetEffect::ObjKind okind; unsigned Cnt; unsigned ACnt; QualType T; RefVal(Kind k, RetEffect::ObjKind o, unsigned cnt, unsigned acnt, QualType t) : kind(k), okind(o), Cnt(cnt), ACnt(acnt), T(t) {} public: Kind getKind() const { return kind; } RetEffect::ObjKind getObjKind() const { return okind; } unsigned getCount() const { return Cnt; } unsigned getAutoreleaseCount() const { return ACnt; } unsigned getCombinedCounts() const { return Cnt + ACnt; } void clearCounts() { Cnt = 0; ACnt = 0; } void setCount(unsigned i) { Cnt = i; } void setAutoreleaseCount(unsigned i) { ACnt = i; } QualType getType() const { return T; } bool isOwned() const { return getKind() == Owned; } bool isNotOwned() const { return getKind() == NotOwned; } bool isReturnedOwned() const { return getKind() == ReturnedOwned; } bool isReturnedNotOwned() const { return getKind() == ReturnedNotOwned; } static RefVal makeOwned(RetEffect::ObjKind o, QualType t, unsigned Count = 1) { return RefVal(Owned, o, Count, 0, t); } static RefVal makeNotOwned(RetEffect::ObjKind o, QualType t, unsigned Count = 0) { return RefVal(NotOwned, o, Count, 0, t); } // Comparison, profiling, and pretty-printing. bool operator==(const RefVal& X) const { return kind == X.kind && Cnt == X.Cnt && T == X.T && ACnt == X.ACnt; } RefVal operator-(size_t i) const { return RefVal(getKind(), getObjKind(), getCount() - i, getAutoreleaseCount(), getType()); } RefVal operator+(size_t i) const { return RefVal(getKind(), getObjKind(), getCount() + i, getAutoreleaseCount(), getType()); } RefVal operator^(Kind k) const { return RefVal(k, getObjKind(), getCount(), getAutoreleaseCount(), getType()); } RefVal autorelease() const { return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount()+1, getType()); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddInteger((unsigned) kind); ID.AddInteger(Cnt); ID.AddInteger(ACnt); ID.Add(T); } void print(raw_ostream &Out) const; }; void RefVal::print(raw_ostream &Out) const { if (!T.isNull()) Out << "Tracked " << T.getAsString() << '/'; switch (getKind()) { default: llvm_unreachable("Invalid RefVal kind"); case Owned: { Out << "Owned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case NotOwned: { Out << "NotOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case ReturnedOwned: { Out << "ReturnedOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case ReturnedNotOwned: { Out << "ReturnedNotOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case Released: Out << "Released"; break; case ErrorDeallocGC: Out << "-dealloc (GC)"; break; case ErrorDeallocNotOwned: Out << "-dealloc (not-owned)"; break; case ErrorLeak: Out << "Leaked"; break; case ErrorLeakReturned: Out << "Leaked (Bad naming)"; break; case ErrorGCLeakReturned: Out << "Leaked (GC-ed at return)"; break; case ErrorUseAfterRelease: Out << "Use-After-Release [ERROR]"; break; case ErrorReleaseNotOwned: Out << "Release of Not-Owned [ERROR]"; break; case RefVal::ErrorOverAutorelease: Out << "Over autoreleased"; break; case RefVal::ErrorReturnedNotOwned: Out << "Non-owned object returned instead of owned"; break; } if (ACnt) { Out << " [ARC +" << ACnt << ']'; } } } //end anonymous namespace //===----------------------------------------------------------------------===// // RefBindings - State used to track object reference counts. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap<SymbolRef, RefVal> RefBindings; namespace clang { namespace ento { template<> struct ProgramStateTrait<RefBindings> : public ProgramStatePartialTrait<RefBindings> { static void *GDMIndex() { static int RefBIndex = 0; return &RefBIndex; } }; } } //===----------------------------------------------------------------------===// // Function/Method behavior summaries. //===----------------------------------------------------------------------===// namespace { class RetainSummary { /// Args - a map of (index, ArgEffect) pairs, where index /// specifies the argument (starting from 0). This can be sparsely /// populated; arguments with no entry in Args use 'DefaultArgEffect'. ArgEffects Args; /// DefaultArgEffect - The default ArgEffect to apply to arguments that /// do not have an entry in Args. ArgEffect DefaultArgEffect; /// Receiver - If this summary applies to an Objective-C message expression, /// this is the effect applied to the state of the receiver. ArgEffect Receiver; /// Ret - The effect on the return value. Used to indicate if the /// function/method call returns a new tracked symbol. RetEffect Ret; public: RetainSummary(ArgEffects A, RetEffect R, ArgEffect defaultEff, ArgEffect ReceiverEff) : Args(A), DefaultArgEffect(defaultEff), Receiver(ReceiverEff), Ret(R) {} /// getArg - Return the argument effect on the argument specified by /// idx (starting from 0). ArgEffect getArg(unsigned idx) const { if (const ArgEffect *AE = Args.lookup(idx)) return *AE; return DefaultArgEffect; } void addArg(ArgEffects::Factory &af, unsigned idx, ArgEffect e) { Args = af.add(Args, idx, e); } /// setDefaultArgEffect - Set the default argument effect. void setDefaultArgEffect(ArgEffect E) { DefaultArgEffect = E; } /// getRetEffect - Returns the effect on the return value of the call. RetEffect getRetEffect() const { return Ret; } /// setRetEffect - Set the effect of the return value of the call. void setRetEffect(RetEffect E) { Ret = E; } /// Sets the effect on the receiver of the message. void setReceiverEffect(ArgEffect e) { Receiver = e; } /// getReceiverEffect - Returns the effect on the receiver of the call. /// This is only meaningful if the summary applies to an ObjCMessageExpr*. ArgEffect getReceiverEffect() const { return Receiver; } /// Test if two retain summaries are identical. Note that merely equivalent /// summaries are not necessarily identical (for example, if an explicit /// argument effect matches the default effect). bool operator==(const RetainSummary &Other) const { return Args == Other.Args && DefaultArgEffect == Other.DefaultArgEffect && Receiver == Other.Receiver && Ret == Other.Ret; } /// Profile this summary for inclusion in a FoldingSet. void Profile(llvm::FoldingSetNodeID& ID) const { ID.Add(Args); ID.Add(DefaultArgEffect); ID.Add(Receiver); ID.Add(Ret); } /// A retain summary is simple if it has no ArgEffects other than the default. bool isSimple() const { return Args.isEmpty(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Data structures for constructing summaries. //===----------------------------------------------------------------------===// namespace { class ObjCSummaryKey { IdentifierInfo* II; Selector S; public: ObjCSummaryKey(IdentifierInfo* ii, Selector s) : II(ii), S(s) {} ObjCSummaryKey(const ObjCInterfaceDecl *d, Selector s) : II(d ? d->getIdentifier() : 0), S(s) {} ObjCSummaryKey(const ObjCInterfaceDecl *d, IdentifierInfo *ii, Selector s) : II(d ? d->getIdentifier() : ii), S(s) {} ObjCSummaryKey(Selector s) : II(0), S(s) {} IdentifierInfo *getIdentifier() const { return II; } Selector getSelector() const { return S; } }; } namespace llvm { template <> struct DenseMapInfo<ObjCSummaryKey> { static inline ObjCSummaryKey getEmptyKey() { return ObjCSummaryKey(DenseMapInfo<IdentifierInfo*>::getEmptyKey(), DenseMapInfo<Selector>::getEmptyKey()); } static inline ObjCSummaryKey getTombstoneKey() { return ObjCSummaryKey(DenseMapInfo<IdentifierInfo*>::getTombstoneKey(), DenseMapInfo<Selector>::getTombstoneKey()); } static unsigned getHashValue(const ObjCSummaryKey &V) { return (DenseMapInfo<IdentifierInfo*>::getHashValue(V.getIdentifier()) & 0x88888888) | (DenseMapInfo<Selector>::getHashValue(V.getSelector()) & 0x55555555); } static bool isEqual(const ObjCSummaryKey& LHS, const ObjCSummaryKey& RHS) { return DenseMapInfo<IdentifierInfo*>::isEqual(LHS.getIdentifier(), RHS.getIdentifier()) && DenseMapInfo<Selector>::isEqual(LHS.getSelector(), RHS.getSelector()); } }; template <> struct isPodLike<ObjCSummaryKey> { static const bool value = true; }; } // end llvm namespace namespace { class ObjCSummaryCache { typedef llvm::DenseMap<ObjCSummaryKey, const RetainSummary *> MapTy; MapTy M; public: ObjCSummaryCache() {} const RetainSummary * find(const ObjCInterfaceDecl *D, IdentifierInfo *ClsName, Selector S) { // Lookup the method using the decl for the class @interface. If we // have no decl, lookup using the class name. return D ? find(D, S) : find(ClsName, S); } const RetainSummary * find(const ObjCInterfaceDecl *D, Selector S) { // Do a lookup with the (D,S) pair. If we find a match return // the iterator. ObjCSummaryKey K(D, S); MapTy::iterator I = M.find(K); if (I != M.end() || !D) return I->second; // Walk the super chain. If we find a hit with a parent, we'll end // up returning that summary. We actually allow that key (null,S), as // we cache summaries for the null ObjCInterfaceDecl* to allow us to // generate initial summaries without having to worry about NSObject // being declared. // FIXME: We may change this at some point. for (ObjCInterfaceDecl *C=D->getSuperClass() ;; C=C->getSuperClass()) { if ((I = M.find(ObjCSummaryKey(C, S))) != M.end()) break; if (!C) return NULL; } // Cache the summary with original key to make the next lookup faster // and return the iterator. const RetainSummary *Summ = I->second; M[K] = Summ; return Summ; } const RetainSummary *find(IdentifierInfo* II, Selector S) { // FIXME: Class method lookup. Right now we dont' have a good way // of going between IdentifierInfo* and the class hierarchy. MapTy::iterator I = M.find(ObjCSummaryKey(II, S)); if (I == M.end()) I = M.find(ObjCSummaryKey(S)); return I == M.end() ? NULL : I->second; } const RetainSummary *& operator[](ObjCSummaryKey K) { return M[K]; } const RetainSummary *& operator[](Selector S) { return M[ ObjCSummaryKey(S) ]; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Data structures for managing collections of summaries. //===----------------------------------------------------------------------===// namespace { class RetainSummaryManager { //==-----------------------------------------------------------------==// // Typedefs. //==-----------------------------------------------------------------==// typedef llvm::DenseMap<const FunctionDecl*, const RetainSummary *> FuncSummariesTy; typedef ObjCSummaryCache ObjCMethodSummariesTy; typedef llvm::FoldingSetNodeWrapper<RetainSummary> CachedSummaryNode; //==-----------------------------------------------------------------==// // Data. //==-----------------------------------------------------------------==// /// Ctx - The ASTContext object for the analyzed ASTs. ASTContext &Ctx; /// GCEnabled - Records whether or not the analyzed code runs in GC mode. const bool GCEnabled; /// Records whether or not the analyzed code runs in ARC mode. const bool ARCEnabled; /// FuncSummaries - A map from FunctionDecls to summaries. FuncSummariesTy FuncSummaries; /// ObjCClassMethodSummaries - A map from selectors (for instance methods) /// to summaries. ObjCMethodSummariesTy ObjCClassMethodSummaries; /// ObjCMethodSummaries - A map from selectors to summaries. ObjCMethodSummariesTy ObjCMethodSummaries; /// BPAlloc - A BumpPtrAllocator used for allocating summaries, ArgEffects, /// and all other data used by the checker. llvm::BumpPtrAllocator BPAlloc; /// AF - A factory for ArgEffects objects. ArgEffects::Factory AF; /// ScratchArgs - A holding buffer for construct ArgEffects. ArgEffects ScratchArgs; /// ObjCAllocRetE - Default return effect for methods returning Objective-C /// objects. RetEffect ObjCAllocRetE; /// ObjCInitRetE - Default return effect for init methods returning /// Objective-C objects. RetEffect ObjCInitRetE; /// SimpleSummaries - Used for uniquing summaries that don't have special /// effects. llvm::FoldingSet<CachedSummaryNode> SimpleSummaries; //==-----------------------------------------------------------------==// // Methods. //==-----------------------------------------------------------------==// /// getArgEffects - Returns a persistent ArgEffects object based on the /// data in ScratchArgs. ArgEffects getArgEffects(); enum UnaryFuncKind { cfretain, cfrelease, cfmakecollectable }; public: RetEffect getObjAllocRetEffect() const { return ObjCAllocRetE; } const RetainSummary *getUnarySummary(const FunctionType* FT, UnaryFuncKind func); const RetainSummary *getCFSummaryCreateRule(const FunctionDecl *FD); const RetainSummary *getCFSummaryGetRule(const FunctionDecl *FD); const RetainSummary *getCFCreateGetRuleSummary(const FunctionDecl *FD); const RetainSummary *getPersistentSummary(const RetainSummary &OldSumm); const RetainSummary *getPersistentSummary(RetEffect RetEff, ArgEffect ReceiverEff = DoNothing, ArgEffect DefaultEff = MayEscape) { RetainSummary Summ(getArgEffects(), RetEff, DefaultEff, ReceiverEff); return getPersistentSummary(Summ); } const RetainSummary *getDefaultSummary() { return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, MayEscape); } const RetainSummary *getPersistentStopSummary() { return getPersistentSummary(RetEffect::MakeNoRet(), StopTracking, StopTracking); } void InitializeClassMethodSummaries(); void InitializeMethodSummaries(); private: void addNSObjectClsMethSummary(Selector S, const RetainSummary *Summ) { ObjCClassMethodSummaries[S] = Summ; } void addNSObjectMethSummary(Selector S, const RetainSummary *Summ) { ObjCMethodSummaries[S] = Summ; } void addClassMethSummary(const char* Cls, const char* name, const RetainSummary *Summ, bool isNullary = true) { IdentifierInfo* ClsII = &Ctx.Idents.get(Cls); Selector S = isNullary ? GetNullarySelector(name, Ctx) : GetUnarySelector(name, Ctx); ObjCClassMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addInstMethSummary(const char* Cls, const char* nullaryName, const RetainSummary *Summ) { IdentifierInfo* ClsII = &Ctx.Idents.get(Cls); Selector S = GetNullarySelector(nullaryName, Ctx); ObjCMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } Selector generateSelector(va_list argp) { SmallVector<IdentifierInfo*, 10> II; while (const char* s = va_arg(argp, const char*)) II.push_back(&Ctx.Idents.get(s)); return Ctx.Selectors.getSelector(II.size(), &II[0]); } void addMethodSummary(IdentifierInfo *ClsII, ObjCMethodSummariesTy& Summaries, const RetainSummary * Summ, va_list argp) { Selector S = generateSelector(argp); Summaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addInstMethSummary(const char* Cls, const RetainSummary * Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(&Ctx.Idents.get(Cls), ObjCMethodSummaries, Summ, argp); va_end(argp); } void addClsMethSummary(const char* Cls, const RetainSummary * Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(&Ctx.Idents.get(Cls),ObjCClassMethodSummaries, Summ, argp); va_end(argp); } void addClsMethSummary(IdentifierInfo *II, const RetainSummary * Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(II, ObjCClassMethodSummaries, Summ, argp); va_end(argp); } public: RetainSummaryManager(ASTContext &ctx, bool gcenabled, bool usesARC) : Ctx(ctx), GCEnabled(gcenabled), ARCEnabled(usesARC), AF(BPAlloc), ScratchArgs(AF.getEmptyMap()), ObjCAllocRetE(gcenabled ? RetEffect::MakeGCNotOwned() : (usesARC ? RetEffect::MakeARCNotOwned() : RetEffect::MakeOwned(RetEffect::ObjC, true))), ObjCInitRetE(gcenabled ? RetEffect::MakeGCNotOwned() : (usesARC ? RetEffect::MakeARCNotOwned() : RetEffect::MakeOwnedWhenTrackedReceiver())) { InitializeClassMethodSummaries(); InitializeMethodSummaries(); } const RetainSummary *getSummary(const FunctionDecl *FD); const RetainSummary *getMethodSummary(Selector S, IdentifierInfo *ClsName, const ObjCInterfaceDecl *ID, const ObjCMethodDecl *MD, QualType RetTy, ObjCMethodSummariesTy &CachedSummaries); const RetainSummary *getInstanceMethodSummary(const ObjCMessage &msg, ProgramStateRef state, const LocationContext *LC); const RetainSummary *getInstanceMethodSummary(const ObjCMessage &msg, const ObjCInterfaceDecl *ID) { return getMethodSummary(msg.getSelector(), 0, ID, msg.getMethodDecl(), msg.getType(Ctx), ObjCMethodSummaries); } const RetainSummary *getClassMethodSummary(const ObjCMessage &msg) { const ObjCInterfaceDecl *Class = 0; if (!msg.isInstanceMessage()) Class = msg.getReceiverInterface(); return getMethodSummary(msg.getSelector(), Class->getIdentifier(), Class, msg.getMethodDecl(), msg.getType(Ctx), ObjCClassMethodSummaries); } /// getMethodSummary - This version of getMethodSummary is used to query /// the summary for the current method being analyzed. const RetainSummary *getMethodSummary(const ObjCMethodDecl *MD) { // FIXME: Eventually this should be unneeded. const ObjCInterfaceDecl *ID = MD->getClassInterface(); Selector S = MD->getSelector(); IdentifierInfo *ClsName = ID->getIdentifier(); QualType ResultTy = MD->getResultType(); ObjCMethodSummariesTy *CachedSummaries; if (MD->isInstanceMethod()) CachedSummaries = &ObjCMethodSummaries; else CachedSummaries = &ObjCClassMethodSummaries; return getMethodSummary(S, ClsName, ID, MD, ResultTy, *CachedSummaries); } const RetainSummary *getStandardMethodSummary(const ObjCMethodDecl *MD, Selector S, QualType RetTy); void updateSummaryFromAnnotations(const RetainSummary *&Summ, const ObjCMethodDecl *MD); void updateSummaryFromAnnotations(const RetainSummary *&Summ, const FunctionDecl *FD); bool isGCEnabled() const { return GCEnabled; } bool isARCEnabled() const { return ARCEnabled; } bool isARCorGCEnabled() const { return GCEnabled || ARCEnabled; } }; // Used to avoid allocating long-term (BPAlloc'd) memory for default retain // summaries. If a function or method looks like it has a default summary, but // it has annotations, the annotations are added to the stack-based template // and then copied into managed memory. class RetainSummaryTemplate { RetainSummaryManager &Manager; const RetainSummary *&RealSummary; RetainSummary ScratchSummary; bool Accessed; public: RetainSummaryTemplate(const RetainSummary *&real, const RetainSummary &base, RetainSummaryManager &mgr) : Manager(mgr), RealSummary(real), ScratchSummary(real ? *real : base), Accessed(false) {} ~RetainSummaryTemplate() { if (Accessed) RealSummary = Manager.getPersistentSummary(ScratchSummary); } RetainSummary &operator*() { Accessed = true; return ScratchSummary; } RetainSummary *operator->() { Accessed = true; return &ScratchSummary; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of checker data structures. //===----------------------------------------------------------------------===// ArgEffects RetainSummaryManager::getArgEffects() { ArgEffects AE = ScratchArgs; ScratchArgs = AF.getEmptyMap(); return AE; } const RetainSummary * RetainSummaryManager::getPersistentSummary(const RetainSummary &OldSumm) { // Unique "simple" summaries -- those without ArgEffects. if (OldSumm.isSimple()) { llvm::FoldingSetNodeID ID; OldSumm.Profile(ID); void *Pos; CachedSummaryNode *N = SimpleSummaries.FindNodeOrInsertPos(ID, Pos); if (!N) { N = (CachedSummaryNode *) BPAlloc.Allocate<CachedSummaryNode>(); new (N) CachedSummaryNode(OldSumm); SimpleSummaries.InsertNode(N, Pos); } return &N->getValue(); } RetainSummary *Summ = (RetainSummary *) BPAlloc.Allocate<RetainSummary>(); new (Summ) RetainSummary(OldSumm); return Summ; } //===----------------------------------------------------------------------===// // Summary creation for functions (largely uses of Core Foundation). //===----------------------------------------------------------------------===// static bool isRetain(const FunctionDecl *FD, StringRef FName) { return FName.endswith("Retain"); } static bool isRelease(const FunctionDecl *FD, StringRef FName) { return FName.endswith("Release"); } static bool isMakeCollectable(const FunctionDecl *FD, StringRef FName) { // FIXME: Remove FunctionDecl parameter. // FIXME: Is it really okay if MakeCollectable isn't a suffix? return FName.find("MakeCollectable") != StringRef::npos; } const RetainSummary * RetainSummaryManager::getSummary(const FunctionDecl *FD) { // Look up a summary in our cache of FunctionDecls -> Summaries. FuncSummariesTy::iterator I = FuncSummaries.find(FD); if (I != FuncSummaries.end()) return I->second; // No summary? Generate one. const RetainSummary *S = 0; do { // We generate "stop" summaries for implicitly defined functions. if (FD->isImplicit()) { S = getPersistentStopSummary(); break; } // For C++ methods, generate an implicit "stop" summary as well. We // can relax this once we have a clear policy for C++ methods and // ownership attributes. if (isa<CXXMethodDecl>(FD)) { S = getPersistentStopSummary(); break; } // [PR 3337] Use 'getAs<FunctionType>' to strip away any typedefs on the // function's type. const FunctionType* FT = FD->getType()->getAs<FunctionType>(); const IdentifierInfo *II = FD->getIdentifier(); if (!II) break; StringRef FName = II->getName(); // Strip away preceding '_'. Doing this here will effect all the checks // down below. FName = FName.substr(FName.find_first_not_of('_')); // Inspect the result type. QualType RetTy = FT->getResultType(); // FIXME: This should all be refactored into a chain of "summary lookup" // filters. assert(ScratchArgs.isEmpty()); if (FName == "pthread_create") { // Part of: <rdar://problem/7299394>. This will be addressed // better with IPA. S = getPersistentStopSummary(); } else if (FName == "NSMakeCollectable") { // Handle: id NSMakeCollectable(CFTypeRef) S = (RetTy->isObjCIdType()) ? getUnarySummary(FT, cfmakecollectable) : getPersistentStopSummary(); } else if (FName == "IOBSDNameMatching" || FName == "IOServiceMatching" || FName == "IOServiceNameMatching" || FName == "IORegistryEntryIDMatching" || FName == "IOOpenFirmwarePathMatching") { // Part of <rdar://problem/6961230>. (IOKit) // This should be addressed using a API table. S = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true), DoNothing, DoNothing); } else if (FName == "IOServiceGetMatchingService" || FName == "IOServiceGetMatchingServices") { // FIXES: <rdar://problem/6326900> // This should be addressed using a API table. This strcmp is also // a little gross, but there is no need to super optimize here. ScratchArgs = AF.add(ScratchArgs, 1, DecRef); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "IOServiceAddNotification" || FName == "IOServiceAddMatchingNotification") { // Part of <rdar://problem/6961230>. (IOKit) // This should be addressed using a API table. ScratchArgs = AF.add(ScratchArgs, 2, DecRef); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "CVPixelBufferCreateWithBytes") { // FIXES: <rdar://problem/7283567> // Eventually this can be improved by recognizing that the pixel // buffer passed to CVPixelBufferCreateWithBytes is released via // a callback and doing full IPA to make sure this is done correctly. // FIXME: This function has an out parameter that returns an // allocated object. ScratchArgs = AF.add(ScratchArgs, 7, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "CGBitmapContextCreateWithData") { // FIXES: <rdar://problem/7358899> // Eventually this can be improved by recognizing that 'releaseInfo' // passed to CGBitmapContextCreateWithData is released via // a callback and doing full IPA to make sure this is done correctly. ScratchArgs = AF.add(ScratchArgs, 8, StopTracking); S = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true), DoNothing, DoNothing); } else if (FName == "CVPixelBufferCreateWithPlanarBytes") { // FIXES: <rdar://problem/7283567> // Eventually this can be improved by recognizing that the pixel // buffer passed to CVPixelBufferCreateWithPlanarBytes is released // via a callback and doing full IPA to make sure this is done // correctly. ScratchArgs = AF.add(ScratchArgs, 12, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "dispatch_set_context") { // <rdar://problem/11059275> - The analyzer currently doesn't have // a good way to reason about the finalizer function for libdispatch. // If we pass a context object that is memory managed, stop tracking it. // FIXME: this hack should possibly go away once we can handle // libdispatch finalizers. ScratchArgs = AF.add(ScratchArgs, 1, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) { // Whitelist NSXXInsertXX, for example NSMapInsertIfAbsent, since they can // be deallocated by NSMapRemove. (radar://11152419) ScratchArgs = AF.add(ScratchArgs, 1, StopTracking); ScratchArgs = AF.add(ScratchArgs, 2, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } // Did we get a summary? if (S) break; // Enable this code once the semantics of NSDeallocateObject are resolved // for GC. <rdar://problem/6619988> #if 0 // Handle: NSDeallocateObject(id anObject); // This method does allow 'nil' (although we don't check it now). if (strcmp(FName, "NSDeallocateObject") == 0) { return RetTy == Ctx.VoidTy ? getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, Dealloc) : getPersistentStopSummary(); } #endif if (RetTy->isPointerType()) { // For CoreFoundation ('CF') types. if (cocoa::isRefType(RetTy, "CF", FName)) { if (isRetain(FD, FName)) S = getUnarySummary(FT, cfretain); else if (isMakeCollectable(FD, FName)) S = getUnarySummary(FT, cfmakecollectable); else S = getCFCreateGetRuleSummary(FD); break; } // For CoreGraphics ('CG') types. if (cocoa::isRefType(RetTy, "CG", FName)) { if (isRetain(FD, FName)) S = getUnarySummary(FT, cfretain); else S = getCFCreateGetRuleSummary(FD); break; } // For the Disk Arbitration API (DiskArbitration/DADisk.h) if (cocoa::isRefType(RetTy, "DADisk") || cocoa::isRefType(RetTy, "DADissenter") || cocoa::isRefType(RetTy, "DASessionRef")) { S = getCFCreateGetRuleSummary(FD); break; } break; } // Check for release functions, the only kind of functions that we care // about that don't return a pointer type. if (FName[0] == 'C' && (FName[1] == 'F' || FName[1] == 'G')) { // Test for 'CGCF'. FName = FName.substr(FName.startswith("CGCF") ? 4 : 2); if (isRelease(FD, FName)) S = getUnarySummary(FT, cfrelease); else { assert (ScratchArgs.isEmpty()); // Remaining CoreFoundation and CoreGraphics functions. // We use to assume that they all strictly followed the ownership idiom // and that ownership cannot be transferred. While this is technically // correct, many methods allow a tracked object to escape. For example: // // CFMutableDictionaryRef x = CFDictionaryCreateMutable(...); // CFDictionaryAddValue(y, key, x); // CFRelease(x); // ... it is okay to use 'x' since 'y' has a reference to it // // We handle this and similar cases with the follow heuristic. If the // function name contains "InsertValue", "SetValue", "AddValue", // "AppendValue", or "SetAttribute", then we assume that arguments may // "escape." This means that something else holds on to the object, // allowing it be used even after its local retain count drops to 0. ArgEffect E = (StrInStrNoCase(FName, "InsertValue") != StringRef::npos|| StrInStrNoCase(FName, "AddValue") != StringRef::npos || StrInStrNoCase(FName, "SetValue") != StringRef::npos || StrInStrNoCase(FName, "AppendValue") != StringRef::npos|| StrInStrNoCase(FName, "SetAttribute") != StringRef::npos) ? MayEscape : DoNothing; S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, E); } } } while (0); // Annotations override defaults. updateSummaryFromAnnotations(S, FD); FuncSummaries[FD] = S; return S; } const RetainSummary * RetainSummaryManager::getCFCreateGetRuleSummary(const FunctionDecl *FD) { if (coreFoundation::followsCreateRule(FD)) return getCFSummaryCreateRule(FD); return getCFSummaryGetRule(FD); } const RetainSummary * RetainSummaryManager::getUnarySummary(const FunctionType* FT, UnaryFuncKind func) { // Sanity check that this is *really* a unary function. This can // happen if people do weird things. const FunctionProtoType* FTP = dyn_cast<FunctionProtoType>(FT); if (!FTP || FTP->getNumArgs() != 1) return getPersistentStopSummary(); assert (ScratchArgs.isEmpty()); ArgEffect Effect; switch (func) { case cfretain: Effect = IncRef; break; case cfrelease: Effect = DecRef; break; case cfmakecollectable: Effect = MakeCollectable; break; } ScratchArgs = AF.add(ScratchArgs, 0, Effect); return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } const RetainSummary * RetainSummaryManager::getCFSummaryCreateRule(const FunctionDecl *FD) { assert (ScratchArgs.isEmpty()); return getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true)); } const RetainSummary * RetainSummaryManager::getCFSummaryGetRule(const FunctionDecl *FD) { assert (ScratchArgs.isEmpty()); return getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::CF), DoNothing, DoNothing); } //===----------------------------------------------------------------------===// // Summary creation for Selectors. //===----------------------------------------------------------------------===// void RetainSummaryManager::updateSummaryFromAnnotations(const RetainSummary *&Summ, const FunctionDecl *FD) { if (!FD) return; RetainSummaryTemplate Template(Summ, *getDefaultSummary(), *this); // Effects on the parameters. unsigned parm_idx = 0; for (FunctionDecl::param_const_iterator pi = FD->param_begin(), pe = FD->param_end(); pi != pe; ++pi, ++parm_idx) { const ParmVarDecl *pd = *pi; if (pd->getAttr<NSConsumedAttr>()) { if (!GCEnabled) { Template->addArg(AF, parm_idx, DecRef); } } else if (pd->getAttr<CFConsumedAttr>()) { Template->addArg(AF, parm_idx, DecRef); } } QualType RetTy = FD->getResultType(); // Determine if there is a special return effect for this method. if (cocoa::isCocoaObjectRef(RetTy)) { if (FD->getAttr<NSReturnsRetainedAttr>()) { Template->setRetEffect(ObjCAllocRetE); } else if (FD->getAttr<CFReturnsRetainedAttr>()) { Template->setRetEffect(RetEffect::MakeOwned(RetEffect::CF, true)); } else if (FD->getAttr<NSReturnsNotRetainedAttr>()) { Template->setRetEffect(RetEffect::MakeNotOwned(RetEffect::ObjC)); } else if (FD->getAttr<CFReturnsNotRetainedAttr>()) { Template->setRetEffect(RetEffect::MakeNotOwned(RetEffect::CF)); } } else if (RetTy->getAs<PointerType>()) { if (FD->getAttr<CFReturnsRetainedAttr>()) { Template->setRetEffect(RetEffect::MakeOwned(RetEffect::CF, true)); } else if (FD->getAttr<CFReturnsNotRetainedAttr>()) { Template->setRetEffect(RetEffect::MakeNotOwned(RetEffect::CF)); } } } void RetainSummaryManager::updateSummaryFromAnnotations(const RetainSummary *&Summ, const ObjCMethodDecl *MD) { if (!MD) return; RetainSummaryTemplate Template(Summ, *getDefaultSummary(), *this); bool isTrackedLoc = false; // Effects on the receiver. if (MD->getAttr<NSConsumesSelfAttr>()) { if (!GCEnabled) Template->setReceiverEffect(DecRefMsg); } // Effects on the parameters. unsigned parm_idx = 0; for (ObjCMethodDecl::param_const_iterator pi=MD->param_begin(), pe=MD->param_end(); pi != pe; ++pi, ++parm_idx) { const ParmVarDecl *pd = *pi; if (pd->getAttr<NSConsumedAttr>()) { if (!GCEnabled) Template->addArg(AF, parm_idx, DecRef); } else if(pd->getAttr<CFConsumedAttr>()) { Template->addArg(AF, parm_idx, DecRef); } } // Determine if there is a special return effect for this method. if (cocoa::isCocoaObjectRef(MD->getResultType())) { if (MD->getAttr<NSReturnsRetainedAttr>()) { Template->setRetEffect(ObjCAllocRetE); return; } if (MD->getAttr<NSReturnsNotRetainedAttr>()) { Template->setRetEffect(RetEffect::MakeNotOwned(RetEffect::ObjC)); return; } isTrackedLoc = true; } else { isTrackedLoc = MD->getResultType()->getAs<PointerType>() != NULL; } if (isTrackedLoc) { if (MD->getAttr<CFReturnsRetainedAttr>()) Template->setRetEffect(RetEffect::MakeOwned(RetEffect::CF, true)); else if (MD->getAttr<CFReturnsNotRetainedAttr>()) Template->setRetEffect(RetEffect::MakeNotOwned(RetEffect::CF)); } } const RetainSummary * RetainSummaryManager::getStandardMethodSummary(const ObjCMethodDecl *MD, Selector S, QualType RetTy) { if (MD) { // Scan the method decl for 'void*' arguments. These should be treated // as 'StopTracking' because they are often used with delegates. // Delegates are a frequent form of false positives with the retain // count checker. unsigned i = 0; for (ObjCMethodDecl::param_const_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I, ++i) if (const ParmVarDecl *PD = *I) { QualType Ty = Ctx.getCanonicalType(PD->getType()); if (Ty.getLocalUnqualifiedType() == Ctx.VoidPtrTy) ScratchArgs = AF.add(ScratchArgs, i, StopTracking); } } // Any special effects? ArgEffect ReceiverEff = DoNothing; RetEffect ResultEff = RetEffect::MakeNoRet(); // Check the method family, and apply any default annotations. switch (MD ? MD->getMethodFamily() : S.getMethodFamily()) { case OMF_None: case OMF_performSelector: // Assume all Objective-C methods follow Cocoa Memory Management rules. // FIXME: Does the non-threaded performSelector family really belong here? // The selector could be, say, @selector(copy). if (cocoa::isCocoaObjectRef(RetTy)) ResultEff = RetEffect::MakeNotOwned(RetEffect::ObjC); else if (coreFoundation::isCFObjectRef(RetTy)) { // ObjCMethodDecl currently doesn't consider CF objects as valid return // values for alloc, new, copy, or mutableCopy, so we have to // double-check with the selector. This is ugly, but there aren't that // many Objective-C methods that return CF objects, right? if (MD) { switch (S.getMethodFamily()) { case OMF_alloc: case OMF_new: case OMF_copy: case OMF_mutableCopy: ResultEff = RetEffect::MakeOwned(RetEffect::CF, true); break; default: ResultEff = RetEffect::MakeNotOwned(RetEffect::CF); break; } } else { ResultEff = RetEffect::MakeNotOwned(RetEffect::CF); } } break; case OMF_init: ResultEff = ObjCInitRetE; ReceiverEff = DecRefMsg; break; case OMF_alloc: case OMF_new: case OMF_copy: case OMF_mutableCopy: if (cocoa::isCocoaObjectRef(RetTy)) ResultEff = ObjCAllocRetE; else if (coreFoundation::isCFObjectRef(RetTy)) ResultEff = RetEffect::MakeOwned(RetEffect::CF, true); break; case OMF_autorelease: ReceiverEff = Autorelease; break; case OMF_retain: ReceiverEff = IncRefMsg; break; case OMF_release: ReceiverEff = DecRefMsg; break; case OMF_dealloc: ReceiverEff = Dealloc; break; case OMF_self: // -self is handled specially by the ExprEngine to propagate the receiver. break; case OMF_retainCount: case OMF_finalize: // These methods don't return objects. break; } // If one of the arguments in the selector has the keyword 'delegate' we // should stop tracking the reference count for the receiver. This is // because the reference count is quite possibly handled by a delegate // method. if (S.isKeywordSelector()) { const std::string &str = S.getAsString(); assert(!str.empty()); if (StrInStrNoCase(str, "delegate:") != StringRef::npos) ReceiverEff = StopTracking; } if (ScratchArgs.isEmpty() && ReceiverEff == DoNothing && ResultEff.getKind() == RetEffect::NoRet) return getDefaultSummary(); return getPersistentSummary(ResultEff, ReceiverEff, MayEscape); } const RetainSummary * RetainSummaryManager::getInstanceMethodSummary(const ObjCMessage &msg, ProgramStateRef state, const LocationContext *LC) { // We need the type-information of the tracked receiver object // Retrieve it from the state. const Expr *Receiver = msg.getInstanceReceiver(); const ObjCInterfaceDecl *ID = 0; // FIXME: Is this really working as expected? There are cases where // we just use the 'ID' from the message expression. SVal receiverV; if (Receiver) { receiverV = state->getSValAsScalarOrLoc(Receiver, LC); // FIXME: Eventually replace the use of state->get<RefBindings> with // a generic API for reasoning about the Objective-C types of symbolic // objects. if (SymbolRef Sym = receiverV.getAsLocSymbol()) if (const RefVal *T = state->get<RefBindings>(Sym)) if (const ObjCObjectPointerType* PT = T->getType()->getAs<ObjCObjectPointerType>()) ID = PT->getInterfaceDecl(); // FIXME: this is a hack. This may or may not be the actual method // that is called. if (!ID) { if (const ObjCObjectPointerType *PT = Receiver->getType()->getAs<ObjCObjectPointerType>()) ID = PT->getInterfaceDecl(); } } else { // FIXME: Hack for 'super'. ID = msg.getReceiverInterface(); } // FIXME: The receiver could be a reference to a class, meaning that // we should use the class method. return getInstanceMethodSummary(msg, ID); } const RetainSummary * RetainSummaryManager::getMethodSummary(Selector S, IdentifierInfo *ClsName, const ObjCInterfaceDecl *ID, const ObjCMethodDecl *MD, QualType RetTy, ObjCMethodSummariesTy &CachedSummaries) { // Look up a summary in our summary cache. const RetainSummary *Summ = CachedSummaries.find(ID, ClsName, S); if (!Summ) { Summ = getStandardMethodSummary(MD, S, RetTy); // Annotations override defaults. updateSummaryFromAnnotations(Summ, MD); // Memoize the summary. CachedSummaries[ObjCSummaryKey(ID, ClsName, S)] = Summ; } return Summ; } void RetainSummaryManager::InitializeClassMethodSummaries() { assert(ScratchArgs.isEmpty()); // Create the [NSAssertionHandler currentHander] summary. addClassMethSummary("NSAssertionHandler", "currentHandler", getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::ObjC))); // Create the [NSAutoreleasePool addObject:] summary. ScratchArgs = AF.add(ScratchArgs, 0, Autorelease); addClassMethSummary("NSAutoreleasePool", "addObject", getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, Autorelease)); // Create the summaries for [NSObject performSelector...]. We treat // these as 'stop tracking' for the arguments because they are often // used for delegates that can release the object. When we have better // inter-procedural analysis we can potentially do something better. This // workaround is to remove false positives. const RetainSummary *Summ = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, StopTracking); IdentifierInfo *NSObjectII = &Ctx.Idents.get("NSObject"); addClsMethSummary(NSObjectII, Summ, "performSelector", "withObject", "afterDelay", NULL); addClsMethSummary(NSObjectII, Summ, "performSelector", "withObject", "afterDelay", "inModes", NULL); addClsMethSummary(NSObjectII, Summ, "performSelectorOnMainThread", "withObject", "waitUntilDone", NULL); addClsMethSummary(NSObjectII, Summ, "performSelectorOnMainThread", "withObject", "waitUntilDone", "modes", NULL); addClsMethSummary(NSObjectII, Summ, "performSelector", "onThread", "withObject", "waitUntilDone", NULL); addClsMethSummary(NSObjectII, Summ, "performSelector", "onThread", "withObject", "waitUntilDone", "modes", NULL); addClsMethSummary(NSObjectII, Summ, "performSelectorInBackground", "withObject", NULL); } void RetainSummaryManager::InitializeMethodSummaries() { assert (ScratchArgs.isEmpty()); // Create the "init" selector. It just acts as a pass-through for the // receiver. const RetainSummary *InitSumm = getPersistentSummary(ObjCInitRetE, DecRefMsg); addNSObjectMethSummary(GetNullarySelector("init", Ctx), InitSumm); // awakeAfterUsingCoder: behaves basically like an 'init' method. It // claims the receiver and returns a retained object. addNSObjectMethSummary(GetUnarySelector("awakeAfterUsingCoder", Ctx), InitSumm); // The next methods are allocators. const RetainSummary *AllocSumm = getPersistentSummary(ObjCAllocRetE); const RetainSummary *CFAllocSumm = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true)); // Create the "retain" selector. RetEffect NoRet = RetEffect::MakeNoRet(); const RetainSummary *Summ = getPersistentSummary(NoRet, IncRefMsg); addNSObjectMethSummary(GetNullarySelector("retain", Ctx), Summ); // Create the "release" selector. Summ = getPersistentSummary(NoRet, DecRefMsg); addNSObjectMethSummary(GetNullarySelector("release", Ctx), Summ); // Create the "drain" selector. Summ = getPersistentSummary(NoRet, isGCEnabled() ? DoNothing : DecRef); addNSObjectMethSummary(GetNullarySelector("drain", Ctx), Summ); // Create the -dealloc summary. Summ = getPersistentSummary(NoRet, Dealloc); addNSObjectMethSummary(GetNullarySelector("dealloc", Ctx), Summ); // Create the "autorelease" selector. Summ = getPersistentSummary(NoRet, Autorelease); addNSObjectMethSummary(GetNullarySelector("autorelease", Ctx), Summ); // Specially handle NSAutoreleasePool. addInstMethSummary("NSAutoreleasePool", "init", getPersistentSummary(NoRet, NewAutoreleasePool)); // For NSWindow, allocated objects are (initially) self-owned. // FIXME: For now we opt for false negatives with NSWindow, as these objects // self-own themselves. However, they only do this once they are displayed. // Thus, we need to track an NSWindow's display status. // This is tracked in <rdar://problem/6062711>. // See also http://llvm.org/bugs/show_bug.cgi?id=3714. const RetainSummary *NoTrackYet = getPersistentSummary(RetEffect::MakeNoRet(), StopTracking, StopTracking); addClassMethSummary("NSWindow", "alloc", NoTrackYet); #if 0 addInstMethSummary("NSWindow", NoTrackYet, "initWithContentRect", "styleMask", "backing", "defer", NULL); addInstMethSummary("NSWindow", NoTrackYet, "initWithContentRect", "styleMask", "backing", "defer", "screen", NULL); #endif // For NSPanel (which subclasses NSWindow), allocated objects are not // self-owned. // FIXME: For now we don't track NSPanels. object for the same reason // as for NSWindow objects. addClassMethSummary("NSPanel", "alloc", NoTrackYet); #if 0 addInstMethSummary("NSPanel", NoTrackYet, "initWithContentRect", "styleMask", "backing", "defer", NULL); addInstMethSummary("NSPanel", NoTrackYet, "initWithContentRect", "styleMask", "backing", "defer", "screen", NULL); #endif // Don't track allocated autorelease pools yet, as it is okay to prematurely // exit a method. addClassMethSummary("NSAutoreleasePool", "alloc", NoTrackYet); addClassMethSummary("NSAutoreleasePool", "allocWithZone", NoTrackYet, false); // Create summaries QCRenderer/QCView -createSnapShotImageOfType: addInstMethSummary("QCRenderer", AllocSumm, "createSnapshotImageOfType", NULL); addInstMethSummary("QCView", AllocSumm, "createSnapshotImageOfType", NULL); // Create summaries for CIContext, 'createCGImage' and // 'createCGLayerWithSize'. These objects are CF objects, and are not // automatically garbage collected. addInstMethSummary("CIContext", CFAllocSumm, "createCGImage", "fromRect", NULL); addInstMethSummary("CIContext", CFAllocSumm, "createCGImage", "fromRect", "format", "colorSpace", NULL); addInstMethSummary("CIContext", CFAllocSumm, "createCGLayerWithSize", "info", NULL); } //===----------------------------------------------------------------------===// // AutoreleaseBindings - State used to track objects in autorelease pools. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap<SymbolRef, unsigned> ARCounts; typedef llvm::ImmutableMap<SymbolRef, ARCounts> ARPoolContents; typedef llvm::ImmutableList<SymbolRef> ARStack; static int AutoRCIndex = 0; static int AutoRBIndex = 0; namespace { class AutoreleasePoolContents {}; } namespace { class AutoreleaseStack {}; } namespace clang { namespace ento { template<> struct ProgramStateTrait<AutoreleaseStack> : public ProgramStatePartialTrait<ARStack> { static inline void *GDMIndex() { return &AutoRBIndex; } }; template<> struct ProgramStateTrait<AutoreleasePoolContents> : public ProgramStatePartialTrait<ARPoolContents> { static inline void *GDMIndex() { return &AutoRCIndex; } }; } // end GR namespace } // end clang namespace static SymbolRef GetCurrentAutoreleasePool(ProgramStateRef state) { ARStack stack = state->get<AutoreleaseStack>(); return stack.isEmpty() ? SymbolRef() : stack.getHead(); } static ProgramStateRef SendAutorelease(ProgramStateRef state, ARCounts::Factory &F, SymbolRef sym) { SymbolRef pool = GetCurrentAutoreleasePool(state); const ARCounts *cnts = state->get<AutoreleasePoolContents>(pool); ARCounts newCnts(0); if (cnts) { const unsigned *cnt = (*cnts).lookup(sym); newCnts = F.add(*cnts, sym, cnt ? *cnt + 1 : 1); } else newCnts = F.add(F.getEmptyMap(), sym, 1); return state->set<AutoreleasePoolContents>(pool, newCnts); } //===----------------------------------------------------------------------===// // Error reporting. //===----------------------------------------------------------------------===// namespace { typedef llvm::DenseMap<const ExplodedNode *, const RetainSummary *> SummaryLogTy; //===-------------===// // Bug Descriptions. // //===-------------===// class CFRefBug : public BugType { protected: CFRefBug(StringRef name) : BugType(name, categories::MemoryCoreFoundationObjectiveC) {} public: // FIXME: Eventually remove. virtual const char *getDescription() const = 0; virtual bool isLeak() const { return false; } }; class UseAfterRelease : public CFRefBug { public: UseAfterRelease() : CFRefBug("Use-after-release") {} const char *getDescription() const { return "Reference-counted object is used after it is released"; } }; class BadRelease : public CFRefBug { public: BadRelease() : CFRefBug("Bad release") {} const char *getDescription() const { return "Incorrect decrement of the reference count of an object that is " "not owned at this point by the caller"; } }; class DeallocGC : public CFRefBug { public: DeallocGC() : CFRefBug("-dealloc called while using garbage collection") {} const char *getDescription() const { return "-dealloc called while using garbage collection"; } }; class DeallocNotOwned : public CFRefBug { public: DeallocNotOwned() : CFRefBug("-dealloc sent to non-exclusively owned object") {} const char *getDescription() const { return "-dealloc sent to object that may be referenced elsewhere"; } }; class OverAutorelease : public CFRefBug { public: OverAutorelease() : CFRefBug("Object sent -autorelease too many times") {} const char *getDescription() const { return "Object sent -autorelease too many times"; } }; class ReturnedNotOwnedForOwned : public CFRefBug { public: ReturnedNotOwnedForOwned() : CFRefBug("Method should return an owned object") {} const char *getDescription() const { return "Object with a +0 retain count returned to caller where a +1 " "(owning) retain count is expected"; } }; class Leak : public CFRefBug { const bool isReturn; protected: Leak(StringRef name, bool isRet) : CFRefBug(name), isReturn(isRet) { // Leaks should not be reported if they are post-dominated by a sink. setSuppressOnSink(true); } public: const char *getDescription() const { return ""; } bool isLeak() const { return true; } }; class LeakAtReturn : public Leak { public: LeakAtReturn(StringRef name) : Leak(name, true) {} }; class LeakWithinFunction : public Leak { public: LeakWithinFunction(StringRef name) : Leak(name, false) {} }; //===---------===// // Bug Reports. // //===---------===// class CFRefReportVisitor : public BugReporterVisitorImpl<CFRefReportVisitor> { protected: SymbolRef Sym; const SummaryLogTy &SummaryLog; bool GCEnabled; public: CFRefReportVisitor(SymbolRef sym, bool gcEnabled, const SummaryLogTy &log) : Sym(sym), SummaryLog(log), GCEnabled(gcEnabled) {} virtual void Profile(llvm::FoldingSetNodeID &ID) const { static int x = 0; ID.AddPointer(&x); ID.AddPointer(Sym); } virtual PathDiagnosticPiece *VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR); virtual PathDiagnosticPiece *getEndPath(BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR); }; class CFRefLeakReportVisitor : public CFRefReportVisitor { public: CFRefLeakReportVisitor(SymbolRef sym, bool GCEnabled, const SummaryLogTy &log) : CFRefReportVisitor(sym, GCEnabled, log) {} PathDiagnosticPiece *getEndPath(BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR); virtual BugReporterVisitor *clone() const { // The curiously-recurring template pattern only works for one level of // subclassing. Rather than make a new template base for // CFRefReportVisitor, we simply override clone() to do the right thing. // This could be trouble someday if BugReporterVisitorImpl is ever // used for something else besides a convenient implementation of clone(). return new CFRefLeakReportVisitor(*this); } }; class CFRefReport : public BugReport { void addGCModeDescription(const LangOptions &LOpts, bool GCEnabled); public: CFRefReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, bool registerVisitor = true) : BugReport(D, D.getDescription(), n) { if (registerVisitor) addVisitor(new CFRefReportVisitor(sym, GCEnabled, Log)); addGCModeDescription(LOpts, GCEnabled); } CFRefReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, StringRef endText) : BugReport(D, D.getDescription(), endText, n) { addVisitor(new CFRefReportVisitor(sym, GCEnabled, Log)); addGCModeDescription(LOpts, GCEnabled); } virtual std::pair<ranges_iterator, ranges_iterator> getRanges() { const CFRefBug& BugTy = static_cast<CFRefBug&>(getBugType()); if (!BugTy.isLeak()) return BugReport::getRanges(); else return std::make_pair(ranges_iterator(), ranges_iterator()); } }; class CFRefLeakReport : public CFRefReport { const MemRegion* AllocBinding; public: CFRefLeakReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, CheckerContext &Ctx); PathDiagnosticLocation getLocation(const SourceManager &SM) const { assert(Location.isValid()); return Location; } }; } // end anonymous namespace void CFRefReport::addGCModeDescription(const LangOptions &LOpts, bool GCEnabled) { const char *GCModeDescription = 0; switch (LOpts.getGC()) { case LangOptions::GCOnly: assert(GCEnabled); GCModeDescription = "Code is compiled to only use garbage collection"; break; case LangOptions::NonGC: assert(!GCEnabled); GCModeDescription = "Code is compiled to use reference counts"; break; case LangOptions::HybridGC: if (GCEnabled) { GCModeDescription = "Code is compiled to use either garbage collection " "(GC) or reference counts (non-GC). The bug occurs " "with GC enabled"; break; } else { GCModeDescription = "Code is compiled to use either garbage collection " "(GC) or reference counts (non-GC). The bug occurs " "in non-GC mode"; break; } } assert(GCModeDescription && "invalid/unknown GC mode"); addExtraText(GCModeDescription); } // FIXME: This should be a method on SmallVector. static inline bool contains(const SmallVectorImpl<ArgEffect>& V, ArgEffect X) { for (SmallVectorImpl<ArgEffect>::const_iterator I=V.begin(), E=V.end(); I!=E; ++I) if (*I == X) return true; return false; } static bool isPropertyAccess(const Stmt *S, ParentMap &PM) { unsigned maxDepth = 4; while (S && maxDepth) { if (const PseudoObjectExpr *PO = dyn_cast<PseudoObjectExpr>(S)) { if (!isa<ObjCMessageExpr>(PO->getSyntacticForm())) return true; return false; } S = PM.getParent(S); --maxDepth; } return false; } PathDiagnosticPiece *CFRefReportVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { if (!isa<StmtPoint>(N->getLocation())) return NULL; // Check if the type state has changed. ProgramStateRef PrevSt = PrevN->getState(); ProgramStateRef CurrSt = N->getState(); const LocationContext *LCtx = N->getLocationContext(); const RefVal* CurrT = CurrSt->get<RefBindings>(Sym); if (!CurrT) return NULL; const RefVal &CurrV = *CurrT; const RefVal *PrevT = PrevSt->get<RefBindings>(Sym); // Create a string buffer to constain all the useful things we want // to tell the user. std::string sbuf; llvm::raw_string_ostream os(sbuf); // This is the allocation site since the previous node had no bindings // for this symbol. if (!PrevT) { const Stmt *S = cast<StmtPoint>(N->getLocation()).getStmt(); if (isa<ObjCArrayLiteral>(S)) { os << "NSArray literal is an object with a +0 retain count"; } else if (isa<ObjCDictionaryLiteral>(S)) { os << "NSDictionary literal is an object with a +0 retain count"; } else { if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { // Get the name of the callee (if it is available). SVal X = CurrSt->getSValAsScalarOrLoc(CE->getCallee(), LCtx); if (const FunctionDecl *FD = X.getAsFunctionDecl()) os << "Call to function '" << *FD << '\''; else os << "function call"; } else { assert(isa<ObjCMessageExpr>(S)); // The message expression may have between written directly or as // a property access. Lazily determine which case we are looking at. os << (isPropertyAccess(S, N->getParentMap()) ? "Property" : "Method"); } if (CurrV.getObjKind() == RetEffect::CF) { os << " returns a Core Foundation object with a "; } else { assert (CurrV.getObjKind() == RetEffect::ObjC); os << " returns an Objective-C object with a "; } if (CurrV.isOwned()) { os << "+1 retain count"; if (GCEnabled) { assert(CurrV.getObjKind() == RetEffect::CF); os << ". " "Core Foundation objects are not automatically garbage collected."; } } else { assert (CurrV.isNotOwned()); os << "+0 retain count"; } } PathDiagnosticLocation Pos(S, BRC.getSourceManager(), N->getLocationContext()); return new PathDiagnosticEventPiece(Pos, os.str()); } // Gather up the effects that were performed on the object at this // program point SmallVector<ArgEffect, 2> AEffects; const ExplodedNode *OrigNode = BRC.getNodeResolver().getOriginalNode(N); if (const RetainSummary *Summ = SummaryLog.lookup(OrigNode)) { // We only have summaries attached to nodes after evaluating CallExpr and // ObjCMessageExprs. const Stmt *S = cast<StmtPoint>(N->getLocation()).getStmt(); if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { // Iterate through the parameter expressions and see if the symbol // was ever passed as an argument. unsigned i = 0; for (CallExpr::const_arg_iterator AI=CE->arg_begin(), AE=CE->arg_end(); AI!=AE; ++AI, ++i) { // Retrieve the value of the argument. Is it the symbol // we are interested in? if (CurrSt->getSValAsScalarOrLoc(*AI, LCtx).getAsLocSymbol() != Sym) continue; // We have an argument. Get the effect! AEffects.push_back(Summ->getArg(i)); } } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S)) { if (const Expr *receiver = ME->getInstanceReceiver()) if (CurrSt->getSValAsScalarOrLoc(receiver, LCtx) .getAsLocSymbol() == Sym) { // The symbol we are tracking is the receiver. AEffects.push_back(Summ->getReceiverEffect()); } } } do { // Get the previous type state. RefVal PrevV = *PrevT; // Specially handle -dealloc. if (!GCEnabled && contains(AEffects, Dealloc)) { // Determine if the object's reference count was pushed to zero. assert(!(PrevV == CurrV) && "The typestate *must* have changed."); // We may not have transitioned to 'release' if we hit an error. // This case is handled elsewhere. if (CurrV.getKind() == RefVal::Released) { assert(CurrV.getCombinedCounts() == 0); os << "Object released by directly sending the '-dealloc' message"; break; } } // Specially handle CFMakeCollectable and friends. if (contains(AEffects, MakeCollectable)) { // Get the name of the function. const Stmt *S = cast<StmtPoint>(N->getLocation()).getStmt(); SVal X = CurrSt->getSValAsScalarOrLoc(cast<CallExpr>(S)->getCallee(), LCtx); const FunctionDecl *FD = X.getAsFunctionDecl(); if (GCEnabled) { // Determine if the object's reference count was pushed to zero. assert(!(PrevV == CurrV) && "The typestate *must* have changed."); os << "In GC mode a call to '" << *FD << "' decrements an object's retain count and registers the " "object with the garbage collector. "; if (CurrV.getKind() == RefVal::Released) { assert(CurrV.getCount() == 0); os << "Since it now has a 0 retain count the object can be " "automatically collected by the garbage collector."; } else os << "An object must have a 0 retain count to be garbage collected. " "After this call its retain count is +" << CurrV.getCount() << '.'; } else os << "When GC is not enabled a call to '" << *FD << "' has no effect on its argument."; // Nothing more to say. break; } // Determine if the typestate has changed. if (!(PrevV == CurrV)) switch (CurrV.getKind()) { case RefVal::Owned: case RefVal::NotOwned: if (PrevV.getCount() == CurrV.getCount()) { // Did an autorelease message get sent? if (PrevV.getAutoreleaseCount() == CurrV.getAutoreleaseCount()) return 0; assert(PrevV.getAutoreleaseCount() < CurrV.getAutoreleaseCount()); os << "Object sent -autorelease message"; break; } if (PrevV.getCount() > CurrV.getCount()) os << "Reference count decremented."; else os << "Reference count incremented."; if (unsigned Count = CurrV.getCount()) os << " The object now has a +" << Count << " retain count."; if (PrevV.getKind() == RefVal::Released) { assert(GCEnabled && CurrV.getCount() > 0); os << " The object is not eligible for garbage collection until " "the retain count reaches 0 again."; } break; case RefVal::Released: os << "Object released."; break; case RefVal::ReturnedOwned: // Autoreleases can be applied after marking a node ReturnedOwned. if (CurrV.getAutoreleaseCount()) return NULL; os << "Object returned to caller as an owning reference (single " "retain count transferred to caller)"; break; case RefVal::ReturnedNotOwned: os << "Object returned to caller with a +0 retain count"; break; default: return NULL; } // Emit any remaining diagnostics for the argument effects (if any). for (SmallVectorImpl<ArgEffect>::iterator I=AEffects.begin(), E=AEffects.end(); I != E; ++I) { // A bunch of things have alternate behavior under GC. if (GCEnabled) switch (*I) { default: break; case Autorelease: os << "In GC mode an 'autorelease' has no effect."; continue; case IncRefMsg: os << "In GC mode the 'retain' message has no effect."; continue; case DecRefMsg: os << "In GC mode the 'release' message has no effect."; continue; } } } while (0); if (os.str().empty()) return 0; // We have nothing to say! const Stmt *S = cast<StmtPoint>(N->getLocation()).getStmt(); PathDiagnosticLocation Pos(S, BRC.getSourceManager(), N->getLocationContext()); PathDiagnosticPiece *P = new PathDiagnosticEventPiece(Pos, os.str()); // Add the range by scanning the children of the statement for any bindings // to Sym. for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I) if (const Expr *Exp = dyn_cast_or_null<Expr>(*I)) if (CurrSt->getSValAsScalarOrLoc(Exp, LCtx).getAsLocSymbol() == Sym) { P->addRange(Exp->getSourceRange()); break; } return P; } // Find the first node in the current function context that referred to the // tracked symbol and the memory location that value was stored to. Note, the // value is only reported if the allocation occurred in the same function as // the leak. static std::pair<const ExplodedNode*,const MemRegion*> GetAllocationSite(ProgramStateManager& StateMgr, const ExplodedNode *N, SymbolRef Sym) { const ExplodedNode *Last = N; const MemRegion* FirstBinding = 0; const LocationContext *LeakContext = N->getLocationContext(); while (N) { ProgramStateRef St = N->getState(); RefBindings B = St->get<RefBindings>(); if (!B.lookup(Sym)) break; StoreManager::FindUniqueBinding FB(Sym); StateMgr.iterBindings(St, FB); if (FB) FirstBinding = FB.getRegion(); // Allocation node, is the last node in the current context in which the // symbol was tracked. if (N->getLocationContext() == LeakContext) Last = N; N = N->pred_empty() ? NULL : *(N->pred_begin()); } // If allocation happened in a function different from the leak node context, // do not report the binding. if (N->getLocationContext() != LeakContext) { FirstBinding = 0; } return std::make_pair(Last, FirstBinding); } PathDiagnosticPiece* CFRefReportVisitor::getEndPath(BugReporterContext &BRC, const ExplodedNode *EndN, BugReport &BR) { BR.markInteresting(Sym); return BugReporterVisitor::getDefaultEndPath(BRC, EndN, BR); } PathDiagnosticPiece* CFRefLeakReportVisitor::getEndPath(BugReporterContext &BRC, const ExplodedNode *EndN, BugReport &BR) { // Tell the BugReporterContext to report cases when the tracked symbol is // assigned to different variables, etc. BR.markInteresting(Sym); // We are reporting a leak. Walk up the graph to get to the first node where // the symbol appeared, and also get the first VarDecl that tracked object // is stored to. const ExplodedNode *AllocNode = 0; const MemRegion* FirstBinding = 0; llvm::tie(AllocNode, FirstBinding) = GetAllocationSite(BRC.getStateManager(), EndN, Sym); SourceManager& SM = BRC.getSourceManager(); // Compute an actual location for the leak. Sometimes a leak doesn't // occur at an actual statement (e.g., transition between blocks; end // of function) so we need to walk the graph and compute a real location. const ExplodedNode *LeakN = EndN; PathDiagnosticLocation L = PathDiagnosticLocation::createEndOfPath(LeakN, SM); std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Object leaked: "; if (FirstBinding) { os << "object allocated and stored into '" << FirstBinding->getString() << '\''; } else os << "allocated object"; // Get the retain count. const RefVal* RV = EndN->getState()->get<RefBindings>(Sym); if (RV->getKind() == RefVal::ErrorLeakReturned) { // FIXME: Per comments in rdar://6320065, "create" only applies to CF // objects. Only "copy", "alloc", "retain" and "new" transfer ownership // to the caller for NS objects. const Decl *D = &EndN->getCodeDecl(); if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { os << " is returned from a method whose name ('" << MD->getSelector().getAsString() << "') does not start with 'copy', 'mutableCopy', 'alloc' or 'new'." " This violates the naming convention rules" " given in the Memory Management Guide for Cocoa"; } else { const FunctionDecl *FD = cast<FunctionDecl>(D); os << " is returned from a function whose name ('" << *FD << "') does not contain 'Copy' or 'Create'. This violates the naming" " convention rules given in the Memory Management Guide for Core" " Foundation"; } } else if (RV->getKind() == RefVal::ErrorGCLeakReturned) { ObjCMethodDecl &MD = cast<ObjCMethodDecl>(EndN->getCodeDecl()); os << " and returned from method '" << MD.getSelector().getAsString() << "' is potentially leaked when using garbage collection. Callers " "of this method do not expect a returned object with a +1 retain " "count since they expect the object to be managed by the garbage " "collector"; } else os << " is not referenced later in this execution path and has a retain " "count of +" << RV->getCount(); return new PathDiagnosticEventPiece(L, os.str()); } CFRefLeakReport::CFRefLeakReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, CheckerContext &Ctx) : CFRefReport(D, LOpts, GCEnabled, Log, n, sym, false) { // Most bug reports are cached at the location where they occurred. // With leaks, we want to unique them by the location where they were // allocated, and only report a single path. To do this, we need to find // the allocation site of a piece of tracked memory, which we do via a // call to GetAllocationSite. This will walk the ExplodedGraph backwards. // Note that this is *not* the trimmed graph; we are guaranteed, however, // that all ancestor nodes that represent the allocation site have the // same SourceLocation. const ExplodedNode *AllocNode = 0; const SourceManager& SMgr = Ctx.getSourceManager(); llvm::tie(AllocNode, AllocBinding) = // Set AllocBinding. GetAllocationSite(Ctx.getStateManager(), getErrorNode(), sym); // Get the SourceLocation for the allocation site. ProgramPoint P = AllocNode->getLocation(); const Stmt *AllocStmt = cast<PostStmt>(P).getStmt(); Location = PathDiagnosticLocation::createBegin(AllocStmt, SMgr, n->getLocationContext()); // Fill in the description of the bug. Description.clear(); llvm::raw_string_ostream os(Description); os << "Potential leak "; if (GCEnabled) os << "(when using garbage collection) "; os << "of an object"; // FIXME: AllocBinding doesn't get populated for RegionStore yet. if (AllocBinding) os << " stored into '" << AllocBinding->getString() << '\''; addVisitor(new CFRefLeakReportVisitor(sym, GCEnabled, Log)); } //===----------------------------------------------------------------------===// // Main checker logic. //===----------------------------------------------------------------------===// namespace { class RetainCountChecker : public Checker< check::Bind, check::DeadSymbols, check::EndAnalysis, check::EndPath, check::PostStmt<BlockExpr>, check::PostStmt<CastExpr>, check::PostStmt<CallExpr>, check::PostStmt<CXXConstructExpr>, check::PostStmt<ObjCArrayLiteral>, check::PostStmt<ObjCDictionaryLiteral>, check::PostObjCMessage, check::PreStmt<ReturnStmt>, check::RegionChanges, eval::Assume, eval::Call > { mutable OwningPtr<CFRefBug> useAfterRelease, releaseNotOwned; mutable OwningPtr<CFRefBug> deallocGC, deallocNotOwned; mutable OwningPtr<CFRefBug> overAutorelease, returnNotOwnedForOwned; mutable OwningPtr<CFRefBug> leakWithinFunction, leakAtReturn; mutable OwningPtr<CFRefBug> leakWithinFunctionGC, leakAtReturnGC; typedef llvm::DenseMap<SymbolRef, const SimpleProgramPointTag *> SymbolTagMap; // This map is only used to ensure proper deletion of any allocated tags. mutable SymbolTagMap DeadSymbolTags; mutable OwningPtr<RetainSummaryManager> Summaries; mutable OwningPtr<RetainSummaryManager> SummariesGC; mutable ARCounts::Factory ARCountFactory; mutable SummaryLogTy SummaryLog; mutable bool ShouldResetSummaryLog; public: RetainCountChecker() : ShouldResetSummaryLog(false) {} virtual ~RetainCountChecker() { DeleteContainerSeconds(DeadSymbolTags); } void checkEndAnalysis(ExplodedGraph &G, BugReporter &BR, ExprEngine &Eng) const { // FIXME: This is a hack to make sure the summary log gets cleared between // analyses of different code bodies. // // Why is this necessary? Because a checker's lifetime is tied to a // translation unit, but an ExplodedGraph's lifetime is just a code body. // Once in a blue moon, a new ExplodedNode will have the same address as an // old one with an associated summary, and the bug report visitor gets very // confused. (To make things worse, the summary lifetime is currently also // tied to a code body, so we get a crash instead of incorrect results.) // // Why is this a bad solution? Because if the lifetime of the ExplodedGraph // changes, things will start going wrong again. Really the lifetime of this // log needs to be tied to either the specific nodes in it or the entire // ExplodedGraph, not to a specific part of the code being analyzed. // // (Also, having stateful local data means that the same checker can't be // used from multiple threads, but a lot of checkers have incorrect // assumptions about that anyway. So that wasn't a priority at the time of // this fix.) // // This happens at the end of analysis, but bug reports are emitted /after/ // this point. So we can't just clear the summary log now. Instead, we mark // that the next time we access the summary log, it should be cleared. // If we never reset the summary log during /this/ code body analysis, // there were no new summaries. There might still have been summaries from // the /last/ analysis, so clear them out to make sure the bug report // visitors don't get confused. if (ShouldResetSummaryLog) SummaryLog.clear(); ShouldResetSummaryLog = !SummaryLog.empty(); } CFRefBug *getLeakWithinFunctionBug(const LangOptions &LOpts, bool GCEnabled) const { if (GCEnabled) { if (!leakWithinFunctionGC) leakWithinFunctionGC.reset(new LeakWithinFunction("Leak of object when " "using garbage " "collection")); return leakWithinFunctionGC.get(); } else { if (!leakWithinFunction) { if (LOpts.getGC() == LangOptions::HybridGC) { leakWithinFunction.reset(new LeakWithinFunction("Leak of object when " "not using garbage " "collection (GC) in " "dual GC/non-GC " "code")); } else { leakWithinFunction.reset(new LeakWithinFunction("Leak")); } } return leakWithinFunction.get(); } } CFRefBug *getLeakAtReturnBug(const LangOptions &LOpts, bool GCEnabled) const { if (GCEnabled) { if (!leakAtReturnGC) leakAtReturnGC.reset(new LeakAtReturn("Leak of returned object when " "using garbage collection")); return leakAtReturnGC.get(); } else { if (!leakAtReturn) { if (LOpts.getGC() == LangOptions::HybridGC) { leakAtReturn.reset(new LeakAtReturn("Leak of returned object when " "not using garbage collection " "(GC) in dual GC/non-GC code")); } else { leakAtReturn.reset(new LeakAtReturn("Leak of returned object")); } } return leakAtReturn.get(); } } RetainSummaryManager &getSummaryManager(ASTContext &Ctx, bool GCEnabled) const { // FIXME: We don't support ARC being turned on and off during one analysis. // (nor, for that matter, do we support changing ASTContexts) bool ARCEnabled = (bool)Ctx.getLangOpts().ObjCAutoRefCount; if (GCEnabled) { if (!SummariesGC) SummariesGC.reset(new RetainSummaryManager(Ctx, true, ARCEnabled)); else assert(SummariesGC->isARCEnabled() == ARCEnabled); return *SummariesGC; } else { if (!Summaries) Summaries.reset(new RetainSummaryManager(Ctx, false, ARCEnabled)); else assert(Summaries->isARCEnabled() == ARCEnabled); return *Summaries; } } RetainSummaryManager &getSummaryManager(CheckerContext &C) const { return getSummaryManager(C.getASTContext(), C.isObjCGCEnabled()); } void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const; void checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const; void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; void checkPostStmt(const CastExpr *CE, CheckerContext &C) const; void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; void checkPostStmt(const CXXConstructExpr *CE, CheckerContext &C) const; void checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const; void checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const; void checkPostObjCMessage(const ObjCMessage &Msg, CheckerContext &C) const; void checkSummary(const RetainSummary &Summ, const CallOrObjCMessage &Call, CheckerContext &C) const; bool evalCall(const CallExpr *CE, CheckerContext &C) const; ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, bool Assumption) const; ProgramStateRef checkRegionChanges(ProgramStateRef state, const StoreManager::InvalidatedSymbols *invalidated, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallOrObjCMessage *Call) const; bool wantsRegionChangeUpdate(ProgramStateRef state) const { return true; } void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; void checkReturnWithRetEffect(const ReturnStmt *S, CheckerContext &C, ExplodedNode *Pred, RetEffect RE, RefVal X, SymbolRef Sym, ProgramStateRef state) const; void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; void checkEndPath(CheckerContext &C) const; ProgramStateRef updateSymbol(ProgramStateRef state, SymbolRef sym, RefVal V, ArgEffect E, RefVal::Kind &hasErr, CheckerContext &C) const; void processNonLeakError(ProgramStateRef St, SourceRange ErrorRange, RefVal::Kind ErrorKind, SymbolRef Sym, CheckerContext &C) const; void processObjCLiterals(CheckerContext &C, const Expr *Ex) const; const ProgramPointTag *getDeadSymbolTag(SymbolRef sym) const; ProgramStateRef handleSymbolDeath(ProgramStateRef state, SymbolRef sid, RefVal V, SmallVectorImpl<SymbolRef> &Leaked) const; std::pair<ExplodedNode *, ProgramStateRef > handleAutoreleaseCounts(ProgramStateRef state, GenericNodeBuilderRefCount Bd, ExplodedNode *Pred, CheckerContext &Ctx, SymbolRef Sym, RefVal V) const; ExplodedNode *processLeaks(ProgramStateRef state, SmallVectorImpl<SymbolRef> &Leaked, GenericNodeBuilderRefCount &Builder, CheckerContext &Ctx, ExplodedNode *Pred = 0) const; }; } // end anonymous namespace namespace { class StopTrackingCallback : public SymbolVisitor { ProgramStateRef state; public: StopTrackingCallback(ProgramStateRef st) : state(st) {} ProgramStateRef getState() const { return state; } bool VisitSymbol(SymbolRef sym) { state = state->remove<RefBindings>(sym); return true; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Handle statements that may have an effect on refcounts. //===----------------------------------------------------------------------===// void RetainCountChecker::checkPostStmt(const BlockExpr *BE, CheckerContext &C) const { // Scan the BlockDecRefExprs for any object the retain count checker // may be tracking. if (!BE->getBlockDecl()->hasCaptures()) return; ProgramStateRef state = C.getState(); const BlockDataRegion *R = cast<BlockDataRegion>(state->getSVal(BE, C.getLocationContext()).getAsRegion()); BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), E = R->referenced_vars_end(); if (I == E) return; // FIXME: For now we invalidate the tracking of all symbols passed to blocks // via captured variables, even though captured variables result in a copy // and in implicit increment/decrement of a retain count. SmallVector<const MemRegion*, 10> Regions; const LocationContext *LC = C.getLocationContext(); MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); for ( ; I != E; ++I) { const VarRegion *VR = *I; if (VR->getSuperRegion() == R) { VR = MemMgr.getVarRegion(VR->getDecl(), LC); } Regions.push_back(VR); } state = state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), Regions.data() + Regions.size()).getState(); C.addTransition(state); } void RetainCountChecker::checkPostStmt(const CastExpr *CE, CheckerContext &C) const { const ObjCBridgedCastExpr *BE = dyn_cast<ObjCBridgedCastExpr>(CE); if (!BE) return; ArgEffect AE = IncRef; switch (BE->getBridgeKind()) { case clang::OBC_Bridge: // Do nothing. return; case clang::OBC_BridgeRetained: AE = IncRef; break; case clang::OBC_BridgeTransfer: AE = DecRefBridgedTransfered; break; } ProgramStateRef state = C.getState(); SymbolRef Sym = state->getSVal(CE, C.getLocationContext()).getAsLocSymbol(); if (!Sym) return; const RefVal* T = state->get<RefBindings>(Sym); if (!T) return; RefVal::Kind hasErr = (RefVal::Kind) 0; state = updateSymbol(state, Sym, *T, AE, hasErr, C); if (hasErr) { // FIXME: If we get an error during a bridge cast, should we report it? // Should we assert that there is no error? return; } C.addTransition(state); } void RetainCountChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { if (C.wasInlined) return; // Get the callee. ProgramStateRef state = C.getState(); const Expr *Callee = CE->getCallee(); SVal L = state->getSVal(Callee, C.getLocationContext()); RetainSummaryManager &Summaries = getSummaryManager(C); const RetainSummary *Summ = 0; // FIXME: Better support for blocks. For now we stop tracking anything // that is passed to blocks. // FIXME: Need to handle variables that are "captured" by the block. if (dyn_cast_or_null<BlockDataRegion>(L.getAsRegion())) { Summ = Summaries.getPersistentStopSummary(); } else if (const FunctionDecl *FD = L.getAsFunctionDecl()) { Summ = Summaries.getSummary(FD); } else if (const CXXMemberCallExpr *me = dyn_cast<CXXMemberCallExpr>(CE)) { if (const CXXMethodDecl *MD = me->getMethodDecl()) Summ = Summaries.getSummary(MD); } if (!Summ) Summ = Summaries.getDefaultSummary(); checkSummary(*Summ, CallOrObjCMessage(CE, state, C.getLocationContext()), C); } void RetainCountChecker::checkPostStmt(const CXXConstructExpr *CE, CheckerContext &C) const { const CXXConstructorDecl *Ctor = CE->getConstructor(); if (!Ctor) return; RetainSummaryManager &Summaries = getSummaryManager(C); const RetainSummary *Summ = Summaries.getSummary(Ctor); // If we didn't get a summary, this constructor doesn't affect retain counts. if (!Summ) return; ProgramStateRef state = C.getState(); checkSummary(*Summ, CallOrObjCMessage(CE, state, C.getLocationContext()), C); } void RetainCountChecker::processObjCLiterals(CheckerContext &C, const Expr *Ex) const { ProgramStateRef state = C.getState(); const ExplodedNode *pred = C.getPredecessor(); for (Stmt::const_child_iterator it = Ex->child_begin(), et = Ex->child_end() ; it != et ; ++it) { const Stmt *child = *it; SVal V = state->getSVal(child, pred->getLocationContext()); if (SymbolRef sym = V.getAsSymbol()) if (const RefVal* T = state->get<RefBindings>(sym)) { RefVal::Kind hasErr = (RefVal::Kind) 0; state = updateSymbol(state, sym, *T, MayEscape, hasErr, C); if (hasErr) { processNonLeakError(state, child->getSourceRange(), hasErr, sym, C); return; } } } // Return the object as autoreleased. // RetEffect RE = RetEffect::MakeNotOwned(RetEffect::ObjC); if (SymbolRef sym = state->getSVal(Ex, pred->getLocationContext()).getAsSymbol()) { QualType ResultTy = Ex->getType(); state = state->set<RefBindings>(sym, RefVal::makeNotOwned(RetEffect::ObjC, ResultTy)); } C.addTransition(state); } void RetainCountChecker::checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const { // Apply the 'MayEscape' to all values. processObjCLiterals(C, AL); } void RetainCountChecker::checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const { // Apply the 'MayEscape' to all keys and values. processObjCLiterals(C, DL); } void RetainCountChecker::checkPostObjCMessage(const ObjCMessage &Msg, CheckerContext &C) const { ProgramStateRef state = C.getState(); RetainSummaryManager &Summaries = getSummaryManager(C); const RetainSummary *Summ; if (Msg.isInstanceMessage()) { const LocationContext *LC = C.getLocationContext(); Summ = Summaries.getInstanceMethodSummary(Msg, state, LC); } else { Summ = Summaries.getClassMethodSummary(Msg); } // If we didn't get a summary, this message doesn't affect retain counts. if (!Summ) return; checkSummary(*Summ, CallOrObjCMessage(Msg, state, C.getLocationContext()), C); } /// GetReturnType - Used to get the return type of a message expression or /// function call with the intention of affixing that type to a tracked symbol. /// While the the return type can be queried directly from RetEx, when /// invoking class methods we augment to the return type to be that of /// a pointer to the class (as opposed it just being id). // FIXME: We may be able to do this with related result types instead. // This function is probably overestimating. static QualType GetReturnType(const Expr *RetE, ASTContext &Ctx) { QualType RetTy = RetE->getType(); // If RetE is not a message expression just return its type. // If RetE is a message expression, return its types if it is something /// more specific than id. if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RetE)) if (const ObjCObjectPointerType *PT = RetTy->getAs<ObjCObjectPointerType>()) if (PT->isObjCQualifiedIdType() || PT->isObjCIdType() || PT->isObjCClassType()) { // At this point we know the return type of the message expression is // id, id<...>, or Class. If we have an ObjCInterfaceDecl, we know this // is a call to a class method whose type we can resolve. In such // cases, promote the return type to XXX* (where XXX is the class). const ObjCInterfaceDecl *D = ME->getReceiverInterface(); return !D ? RetTy : Ctx.getObjCObjectPointerType(Ctx.getObjCInterfaceType(D)); } return RetTy; } void RetainCountChecker::checkSummary(const RetainSummary &Summ, const CallOrObjCMessage &CallOrMsg, CheckerContext &C) const { ProgramStateRef state = C.getState(); // Evaluate the effect of the arguments. RefVal::Kind hasErr = (RefVal::Kind) 0; SourceRange ErrorRange; SymbolRef ErrorSym = 0; for (unsigned idx = 0, e = CallOrMsg.getNumArgs(); idx != e; ++idx) { SVal V = CallOrMsg.getArgSVal(idx); if (SymbolRef Sym = V.getAsLocSymbol()) { if (RefBindings::data_type *T = state->get<RefBindings>(Sym)) { state = updateSymbol(state, Sym, *T, Summ.getArg(idx), hasErr, C); if (hasErr) { ErrorRange = CallOrMsg.getArgSourceRange(idx); ErrorSym = Sym; break; } } } } // Evaluate the effect on the message receiver. bool ReceiverIsTracked = false; if (!hasErr && CallOrMsg.isObjCMessage()) { const LocationContext *LC = C.getLocationContext(); SVal Receiver = CallOrMsg.getInstanceMessageReceiver(LC); if (SymbolRef Sym = Receiver.getAsLocSymbol()) { if (const RefVal *T = state->get<RefBindings>(Sym)) { ReceiverIsTracked = true; state = updateSymbol(state, Sym, *T, Summ.getReceiverEffect(), hasErr, C); if (hasErr) { ErrorRange = CallOrMsg.getReceiverSourceRange(); ErrorSym = Sym; } } } } // Process any errors. if (hasErr) { processNonLeakError(state, ErrorRange, hasErr, ErrorSym, C); return; } // Consult the summary for the return value. RetEffect RE = Summ.getRetEffect(); if (RE.getKind() == RetEffect::OwnedWhenTrackedReceiver) { if (ReceiverIsTracked) RE = getSummaryManager(C).getObjAllocRetEffect(); else RE = RetEffect::MakeNoRet(); } switch (RE.getKind()) { default: llvm_unreachable("Unhandled RetEffect."); case RetEffect::NoRet: // No work necessary. break; case RetEffect::OwnedAllocatedSymbol: case RetEffect::OwnedSymbol: { SymbolRef Sym = state->getSVal(CallOrMsg.getOriginExpr(), C.getLocationContext()).getAsSymbol(); if (!Sym) break; // Use the result type from callOrMsg as it automatically adjusts // for methods/functions that return references. QualType ResultTy = CallOrMsg.getResultType(C.getASTContext()); state = state->set<RefBindings>(Sym, RefVal::makeOwned(RE.getObjKind(), ResultTy)); // FIXME: Add a flag to the checker where allocations are assumed to // *not* fail. (The code below is out-of-date, though.) #if 0 if (RE.getKind() == RetEffect::OwnedAllocatedSymbol) { bool isFeasible; state = state.assume(loc::SymbolVal(Sym), true, isFeasible); assert(isFeasible && "Cannot assume fresh symbol is non-null."); } #endif break; } case RetEffect::GCNotOwnedSymbol: case RetEffect::ARCNotOwnedSymbol: case RetEffect::NotOwnedSymbol: { const Expr *Ex = CallOrMsg.getOriginExpr(); SymbolRef Sym = state->getSVal(Ex, C.getLocationContext()).getAsSymbol(); if (!Sym) break; // Use GetReturnType in order to give [NSFoo alloc] the type NSFoo *. QualType ResultTy = GetReturnType(Ex, C.getASTContext()); state = state->set<RefBindings>(Sym, RefVal::makeNotOwned(RE.getObjKind(), ResultTy)); break; } } // This check is actually necessary; otherwise the statement builder thinks // we've hit a previously-found path. // Normally addTransition takes care of this, but we want the node pointer. ExplodedNode *NewNode; if (state == C.getState()) { NewNode = C.getPredecessor(); } else { NewNode = C.addTransition(state); } // Annotate the node with summary we used. if (NewNode) { // FIXME: This is ugly. See checkEndAnalysis for why it's necessary. if (ShouldResetSummaryLog) { SummaryLog.clear(); ShouldResetSummaryLog = false; } SummaryLog[NewNode] = &Summ; } } ProgramStateRef RetainCountChecker::updateSymbol(ProgramStateRef state, SymbolRef sym, RefVal V, ArgEffect E, RefVal::Kind &hasErr, CheckerContext &C) const { // In GC mode [... release] and [... retain] do nothing. // In ARC mode they shouldn't exist at all, but we just ignore them. bool IgnoreRetainMsg = C.isObjCGCEnabled(); if (!IgnoreRetainMsg) IgnoreRetainMsg = (bool)C.getASTContext().getLangOpts().ObjCAutoRefCount; switch (E) { default: break; case IncRefMsg: E = IgnoreRetainMsg ? DoNothing : IncRef; break; case DecRefMsg: E = IgnoreRetainMsg ? DoNothing : DecRef; break; case MakeCollectable: E = C.isObjCGCEnabled() ? DecRef : DoNothing; break; case NewAutoreleasePool: E = C.isObjCGCEnabled() ? DoNothing : NewAutoreleasePool; break; } // Handle all use-after-releases. if (!C.isObjCGCEnabled() && V.getKind() == RefVal::Released) { V = V ^ RefVal::ErrorUseAfterRelease; hasErr = V.getKind(); return state->set<RefBindings>(sym, V); } switch (E) { case DecRefMsg: case IncRefMsg: case MakeCollectable: llvm_unreachable("DecRefMsg/IncRefMsg/MakeCollectable already converted"); case Dealloc: // Any use of -dealloc in GC is *bad*. if (C.isObjCGCEnabled()) { V = V ^ RefVal::ErrorDeallocGC; hasErr = V.getKind(); break; } switch (V.getKind()) { default: llvm_unreachable("Invalid RefVal state for an explicit dealloc."); case RefVal::Owned: // The object immediately transitions to the released state. V = V ^ RefVal::Released; V.clearCounts(); return state->set<RefBindings>(sym, V); case RefVal::NotOwned: V = V ^ RefVal::ErrorDeallocNotOwned; hasErr = V.getKind(); break; } break; case NewAutoreleasePool: assert(!C.isObjCGCEnabled()); return state->add<AutoreleaseStack>(sym); case MayEscape: if (V.getKind() == RefVal::Owned) { V = V ^ RefVal::NotOwned; break; } // Fall-through. case DoNothing: return state; case Autorelease: if (C.isObjCGCEnabled()) return state; // Update the autorelease counts. state = SendAutorelease(state, ARCountFactory, sym); V = V.autorelease(); break; case StopTracking: return state->remove<RefBindings>(sym); case IncRef: switch (V.getKind()) { default: llvm_unreachable("Invalid RefVal state for a retain."); case RefVal::Owned: case RefVal::NotOwned: V = V + 1; break; case RefVal::Released: // Non-GC cases are handled above. assert(C.isObjCGCEnabled()); V = (V ^ RefVal::Owned) + 1; break; } break; case SelfOwn: V = V ^ RefVal::NotOwned; // Fall-through. case DecRef: case DecRefBridgedTransfered: switch (V.getKind()) { default: // case 'RefVal::Released' handled above. llvm_unreachable("Invalid RefVal state for a release."); case RefVal::Owned: assert(V.getCount() > 0); if (V.getCount() == 1) V = V ^ (E == DecRefBridgedTransfered ? RefVal::NotOwned : RefVal::Released); V = V - 1; break; case RefVal::NotOwned: if (V.getCount() > 0) V = V - 1; else { V = V ^ RefVal::ErrorReleaseNotOwned; hasErr = V.getKind(); } break; case RefVal::Released: // Non-GC cases are handled above. assert(C.isObjCGCEnabled()); V = V ^ RefVal::ErrorUseAfterRelease; hasErr = V.getKind(); break; } break; } return state->set<RefBindings>(sym, V); } void RetainCountChecker::processNonLeakError(ProgramStateRef St, SourceRange ErrorRange, RefVal::Kind ErrorKind, SymbolRef Sym, CheckerContext &C) const { ExplodedNode *N = C.generateSink(St); if (!N) return; CFRefBug *BT; switch (ErrorKind) { default: llvm_unreachable("Unhandled error."); case RefVal::ErrorUseAfterRelease: if (!useAfterRelease) useAfterRelease.reset(new UseAfterRelease()); BT = &*useAfterRelease; break; case RefVal::ErrorReleaseNotOwned: if (!releaseNotOwned) releaseNotOwned.reset(new BadRelease()); BT = &*releaseNotOwned; break; case RefVal::ErrorDeallocGC: if (!deallocGC) deallocGC.reset(new DeallocGC()); BT = &*deallocGC; break; case RefVal::ErrorDeallocNotOwned: if (!deallocNotOwned) deallocNotOwned.reset(new DeallocNotOwned()); BT = &*deallocNotOwned; break; } assert(BT); CFRefReport *report = new CFRefReport(*BT, C.getASTContext().getLangOpts(), C.isObjCGCEnabled(), SummaryLog, N, Sym); report->addRange(ErrorRange); C.EmitReport(report); } //===----------------------------------------------------------------------===// // Handle the return values of retain-count-related functions. //===----------------------------------------------------------------------===// bool RetainCountChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { // Get the callee. We're only interested in simple C functions. ProgramStateRef state = C.getState(); const FunctionDecl *FD = C.getCalleeDecl(CE); if (!FD) return false; IdentifierInfo *II = FD->getIdentifier(); if (!II) return false; // For now, we're only handling the functions that return aliases of their // arguments: CFRetain and CFMakeCollectable (and their families). // Eventually we should add other functions we can model entirely, // such as CFRelease, which don't invalidate their arguments or globals. if (CE->getNumArgs() != 1) return false; // Get the name of the function. StringRef FName = II->getName(); FName = FName.substr(FName.find_first_not_of('_')); // See if it's one of the specific functions we know how to eval. bool canEval = false; QualType ResultTy = CE->getCallReturnType(); if (ResultTy->isObjCIdType()) { // Handle: id NSMakeCollectable(CFTypeRef) canEval = II->isStr("NSMakeCollectable"); } else if (ResultTy->isPointerType()) { // Handle: (CF|CG)Retain // CFMakeCollectable // It's okay to be a little sloppy here (CGMakeCollectable doesn't exist). if (cocoa::isRefType(ResultTy, "CF", FName) || cocoa::isRefType(ResultTy, "CG", FName)) { canEval = isRetain(FD, FName) || isMakeCollectable(FD, FName); } } if (!canEval) return false; // Bind the return value. const LocationContext *LCtx = C.getLocationContext(); SVal RetVal = state->getSVal(CE->getArg(0), LCtx); if (RetVal.isUnknown()) { // If the receiver is unknown, conjure a return value. SValBuilder &SVB = C.getSValBuilder(); unsigned Count = C.getCurrentBlockCount(); SVal RetVal = SVB.getConjuredSymbolVal(0, CE, LCtx, ResultTy, Count); } state = state->BindExpr(CE, LCtx, RetVal, false); // FIXME: This should not be necessary, but otherwise the argument seems to be // considered alive during the next statement. if (const MemRegion *ArgRegion = RetVal.getAsRegion()) { // Save the refcount status of the argument. SymbolRef Sym = RetVal.getAsLocSymbol(); RefBindings::data_type *Binding = 0; if (Sym) Binding = state->get<RefBindings>(Sym); // Invalidate the argument region. unsigned Count = C.getCurrentBlockCount(); state = state->invalidateRegions(ArgRegion, CE, Count, LCtx); // Restore the refcount status of the argument. if (Binding) state = state->set<RefBindings>(Sym, *Binding); } C.addTransition(state); return true; } //===----------------------------------------------------------------------===// // Handle return statements. //===----------------------------------------------------------------------===// // Return true if the current LocationContext has no caller context. static bool inTopFrame(CheckerContext &C) { const LocationContext *LC = C.getLocationContext(); return LC->getParent() == 0; } void RetainCountChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { // Only adjust the reference count if this is the top-level call frame, // and not the result of inlining. In the future, we should do // better checking even for inlined calls, and see if they match // with their expected semantics (e.g., the method should return a retained // object, etc.). if (!inTopFrame(C)) return; const Expr *RetE = S->getRetValue(); if (!RetE) return; ProgramStateRef state = C.getState(); SymbolRef Sym = state->getSValAsScalarOrLoc(RetE, C.getLocationContext()).getAsLocSymbol(); if (!Sym) return; // Get the reference count binding (if any). const RefVal *T = state->get<RefBindings>(Sym); if (!T) return; // Change the reference count. RefVal X = *T; switch (X.getKind()) { case RefVal::Owned: { unsigned cnt = X.getCount(); assert(cnt > 0); X.setCount(cnt - 1); X = X ^ RefVal::ReturnedOwned; break; } case RefVal::NotOwned: { unsigned cnt = X.getCount(); if (cnt) { X.setCount(cnt - 1); X = X ^ RefVal::ReturnedOwned; } else { X = X ^ RefVal::ReturnedNotOwned; } break; } default: return; } // Update the binding. state = state->set<RefBindings>(Sym, X); ExplodedNode *Pred = C.addTransition(state); // At this point we have updated the state properly. // Everything after this is merely checking to see if the return value has // been over- or under-retained. // Did we cache out? if (!Pred) return; // Update the autorelease counts. static SimpleProgramPointTag AutoreleaseTag("RetainCountChecker : Autorelease"); GenericNodeBuilderRefCount Bd(C, &AutoreleaseTag); llvm::tie(Pred, state) = handleAutoreleaseCounts(state, Bd, Pred, C, Sym, X); // Did we cache out? if (!Pred) return; // Get the updated binding. T = state->get<RefBindings>(Sym); assert(T); X = *T; // Consult the summary of the enclosing method. RetainSummaryManager &Summaries = getSummaryManager(C); const Decl *CD = &Pred->getCodeDecl(); if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CD)) { // Unlike regular functions, /all/ ObjC methods are assumed to always // follow Cocoa retain-count conventions, not just those with special // names or attributes. const RetainSummary *Summ = Summaries.getMethodSummary(MD); RetEffect RE = Summ ? Summ->getRetEffect() : RetEffect::MakeNoRet(); checkReturnWithRetEffect(S, C, Pred, RE, X, Sym, state); } if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) { if (!isa<CXXMethodDecl>(FD)) if (const RetainSummary *Summ = Summaries.getSummary(FD)) checkReturnWithRetEffect(S, C, Pred, Summ->getRetEffect(), X, Sym, state); } } void RetainCountChecker::checkReturnWithRetEffect(const ReturnStmt *S, CheckerContext &C, ExplodedNode *Pred, RetEffect RE, RefVal X, SymbolRef Sym, ProgramStateRef state) const { // Any leaks or other errors? if (X.isReturnedOwned() && X.getCount() == 0) { if (RE.getKind() != RetEffect::NoRet) { bool hasError = false; if (C.isObjCGCEnabled() && RE.getObjKind() == RetEffect::ObjC) { // Things are more complicated with garbage collection. If the // returned object is suppose to be an Objective-C object, we have // a leak (as the caller expects a GC'ed object) because no // method should return ownership unless it returns a CF object. hasError = true; X = X ^ RefVal::ErrorGCLeakReturned; } else if (!RE.isOwned()) { // Either we are using GC and the returned object is a CF type // or we aren't using GC. In either case, we expect that the // enclosing method is expected to return ownership. hasError = true; X = X ^ RefVal::ErrorLeakReturned; } if (hasError) { // Generate an error node. state = state->set<RefBindings>(Sym, X); static SimpleProgramPointTag ReturnOwnLeakTag("RetainCountChecker : ReturnsOwnLeak"); ExplodedNode *N = C.addTransition(state, Pred, &ReturnOwnLeakTag); if (N) { const LangOptions &LOpts = C.getASTContext().getLangOpts(); bool GCEnabled = C.isObjCGCEnabled(); CFRefReport *report = new CFRefLeakReport(*getLeakAtReturnBug(LOpts, GCEnabled), LOpts, GCEnabled, SummaryLog, N, Sym, C); C.EmitReport(report); } } } } else if (X.isReturnedNotOwned()) { if (RE.isOwned()) { // Trying to return a not owned object to a caller expecting an // owned object. state = state->set<RefBindings>(Sym, X ^ RefVal::ErrorReturnedNotOwned); static SimpleProgramPointTag ReturnNotOwnedTag("RetainCountChecker : ReturnNotOwnedForOwned"); ExplodedNode *N = C.addTransition(state, Pred, &ReturnNotOwnedTag); if (N) { if (!returnNotOwnedForOwned) returnNotOwnedForOwned.reset(new ReturnedNotOwnedForOwned()); CFRefReport *report = new CFRefReport(*returnNotOwnedForOwned, C.getASTContext().getLangOpts(), C.isObjCGCEnabled(), SummaryLog, N, Sym); C.EmitReport(report); } } } } //===----------------------------------------------------------------------===// // Check various ways a symbol can be invalidated. //===----------------------------------------------------------------------===// void RetainCountChecker::checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const { // Are we storing to something that causes the value to "escape"? bool escapes = true; // A value escapes in three possible cases (this may change): // // (1) we are binding to something that is not a memory region. // (2) we are binding to a memregion that does not have stack storage // (3) we are binding to a memregion with stack storage that the store // does not understand. ProgramStateRef state = C.getState(); if (loc::MemRegionVal *regionLoc = dyn_cast<loc::MemRegionVal>(&loc)) { escapes = !regionLoc->getRegion()->hasStackStorage(); if (!escapes) { // To test (3), generate a new state with the binding added. If it is // the same state, then it escapes (since the store cannot represent // the binding). escapes = (state == (state->bindLoc(*regionLoc, val))); } if (!escapes) { // Case 4: We do not currently model what happens when a symbol is // assigned to a struct field, so be conservative here and let the symbol // go. TODO: This could definitely be improved upon. escapes = !isa<VarRegion>(regionLoc->getRegion()); } } // If our store can represent the binding and we aren't storing to something // that doesn't have local storage then just return and have the simulation // state continue as is. if (!escapes) return; // Otherwise, find all symbols referenced by 'val' that we are tracking // and stop tracking them. state = state->scanReachableSymbols<StopTrackingCallback>(val).getState(); C.addTransition(state); } ProgramStateRef RetainCountChecker::evalAssume(ProgramStateRef state, SVal Cond, bool Assumption) const { // FIXME: We may add to the interface of evalAssume the list of symbols // whose assumptions have changed. For now we just iterate through the // bindings and check if any of the tracked symbols are NULL. This isn't // too bad since the number of symbols we will track in practice are // probably small and evalAssume is only called at branches and a few // other places. RefBindings B = state->get<RefBindings>(); if (B.isEmpty()) return state; bool changed = false; RefBindings::Factory &RefBFactory = state->get_context<RefBindings>(); for (RefBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { // Check if the symbol is null (or equal to any constant). // If this is the case, stop tracking the symbol. if (state->getSymVal(I.getKey())) { changed = true; B = RefBFactory.remove(B, I.getKey()); } } if (changed) state = state->set<RefBindings>(B); return state; } ProgramStateRef RetainCountChecker::checkRegionChanges(ProgramStateRef state, const StoreManager::InvalidatedSymbols *invalidated, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallOrObjCMessage *Call) const { if (!invalidated) return state; llvm::SmallPtrSet<SymbolRef, 8> WhitelistedSymbols; for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(), E = ExplicitRegions.end(); I != E; ++I) { if (const SymbolicRegion *SR = (*I)->StripCasts()->getAs<SymbolicRegion>()) WhitelistedSymbols.insert(SR->getSymbol()); } for (StoreManager::InvalidatedSymbols::const_iterator I=invalidated->begin(), E = invalidated->end(); I!=E; ++I) { SymbolRef sym = *I; if (WhitelistedSymbols.count(sym)) continue; // Remove any existing reference-count binding. state = state->remove<RefBindings>(sym); } return state; } //===----------------------------------------------------------------------===// // Handle dead symbols and end-of-path. //===----------------------------------------------------------------------===// std::pair<ExplodedNode *, ProgramStateRef > RetainCountChecker::handleAutoreleaseCounts(ProgramStateRef state, GenericNodeBuilderRefCount Bd, ExplodedNode *Pred, CheckerContext &Ctx, SymbolRef Sym, RefVal V) const { unsigned ACnt = V.getAutoreleaseCount(); // No autorelease counts? Nothing to be done. if (!ACnt) return std::make_pair(Pred, state); assert(!Ctx.isObjCGCEnabled() && "Autorelease counts in GC mode?"); unsigned Cnt = V.getCount(); // FIXME: Handle sending 'autorelease' to already released object. if (V.getKind() == RefVal::ReturnedOwned) ++Cnt; if (ACnt <= Cnt) { if (ACnt == Cnt) { V.clearCounts(); if (V.getKind() == RefVal::ReturnedOwned) V = V ^ RefVal::ReturnedNotOwned; else V = V ^ RefVal::NotOwned; } else { V.setCount(Cnt - ACnt); V.setAutoreleaseCount(0); } state = state->set<RefBindings>(Sym, V); ExplodedNode *N = Bd.MakeNode(state, Pred); if (N == 0) state = 0; return std::make_pair(N, state); } // Woah! More autorelease counts then retain counts left. // Emit hard error. V = V ^ RefVal::ErrorOverAutorelease; state = state->set<RefBindings>(Sym, V); if (ExplodedNode *N = Bd.MakeNode(state, Pred, true)) { SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); os << "Object over-autoreleased: object was sent -autorelease "; if (V.getAutoreleaseCount() > 1) os << V.getAutoreleaseCount() << " times "; os << "but the object has a +" << V.getCount() << " retain count"; if (!overAutorelease) overAutorelease.reset(new OverAutorelease()); const LangOptions &LOpts = Ctx.getASTContext().getLangOpts(); CFRefReport *report = new CFRefReport(*overAutorelease, LOpts, /* GCEnabled = */ false, SummaryLog, N, Sym, os.str()); Ctx.EmitReport(report); } return std::make_pair((ExplodedNode *)0, (ProgramStateRef )0); } ProgramStateRef RetainCountChecker::handleSymbolDeath(ProgramStateRef state, SymbolRef sid, RefVal V, SmallVectorImpl<SymbolRef> &Leaked) const { bool hasLeak = false; if (V.isOwned()) hasLeak = true; else if (V.isNotOwned() || V.isReturnedOwned()) hasLeak = (V.getCount() > 0); if (!hasLeak) return state->remove<RefBindings>(sid); Leaked.push_back(sid); return state->set<RefBindings>(sid, V ^ RefVal::ErrorLeak); } ExplodedNode * RetainCountChecker::processLeaks(ProgramStateRef state, SmallVectorImpl<SymbolRef> &Leaked, GenericNodeBuilderRefCount &Builder, CheckerContext &Ctx, ExplodedNode *Pred) const { if (Leaked.empty()) return Pred; // Generate an intermediate node representing the leak point. ExplodedNode *N = Builder.MakeNode(state, Pred); if (N) { for (SmallVectorImpl<SymbolRef>::iterator I = Leaked.begin(), E = Leaked.end(); I != E; ++I) { const LangOptions &LOpts = Ctx.getASTContext().getLangOpts(); bool GCEnabled = Ctx.isObjCGCEnabled(); CFRefBug *BT = Pred ? getLeakWithinFunctionBug(LOpts, GCEnabled) : getLeakAtReturnBug(LOpts, GCEnabled); assert(BT && "BugType not initialized."); CFRefLeakReport *report = new CFRefLeakReport(*BT, LOpts, GCEnabled, SummaryLog, N, *I, Ctx); Ctx.EmitReport(report); } } return N; } void RetainCountChecker::checkEndPath(CheckerContext &Ctx) const { ProgramStateRef state = Ctx.getState(); GenericNodeBuilderRefCount Bd(Ctx); RefBindings B = state->get<RefBindings>(); ExplodedNode *Pred = Ctx.getPredecessor(); for (RefBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { llvm::tie(Pred, state) = handleAutoreleaseCounts(state, Bd, Pred, Ctx, I->first, I->second); if (!state) return; } // If the current LocationContext has a parent, don't check for leaks. // We will do that later. // FIXME: we should instead check for imblances of the retain/releases, // and suggest annotations. if (Ctx.getLocationContext()->getParent()) return; B = state->get<RefBindings>(); SmallVector<SymbolRef, 10> Leaked; for (RefBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) state = handleSymbolDeath(state, I->first, I->second, Leaked); processLeaks(state, Leaked, Bd, Ctx, Pred); } const ProgramPointTag * RetainCountChecker::getDeadSymbolTag(SymbolRef sym) const { const SimpleProgramPointTag *&tag = DeadSymbolTags[sym]; if (!tag) { SmallString<64> buf; llvm::raw_svector_ostream out(buf); out << "RetainCountChecker : Dead Symbol : "; sym->dumpToStream(out); tag = new SimpleProgramPointTag(out.str()); } return tag; } void RetainCountChecker::checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const { ExplodedNode *Pred = C.getPredecessor(); ProgramStateRef state = C.getState(); RefBindings B = state->get<RefBindings>(); // Update counts from autorelease pools for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I != E; ++I) { SymbolRef Sym = *I; if (const RefVal *T = B.lookup(Sym)){ // Use the symbol as the tag. // FIXME: This might not be as unique as we would like. GenericNodeBuilderRefCount Bd(C, getDeadSymbolTag(Sym)); llvm::tie(Pred, state) = handleAutoreleaseCounts(state, Bd, Pred, C, Sym, *T); if (!state) return; } } B = state->get<RefBindings>(); SmallVector<SymbolRef, 10> Leaked; for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I != E; ++I) { if (const RefVal *T = B.lookup(*I)) state = handleSymbolDeath(state, *I, *T, Leaked); } { GenericNodeBuilderRefCount Bd(C, this); Pred = processLeaks(state, Leaked, Bd, C, Pred); } // Did we cache out? if (!Pred) return; // Now generate a new node that nukes the old bindings. RefBindings::Factory &F = state->get_context<RefBindings>(); for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I != E; ++I) B = F.remove(B, *I); state = state->set<RefBindings>(B); C.addTransition(state, Pred); } //===----------------------------------------------------------------------===// // Debug printing of refcount bindings and autorelease pools. //===----------------------------------------------------------------------===// static void PrintPool(raw_ostream &Out, SymbolRef Sym, ProgramStateRef State) { Out << ' '; if (Sym) Sym->dumpToStream(Out); else Out << "<pool>"; Out << ":{"; // Get the contents of the pool. if (const ARCounts *Cnts = State->get<AutoreleasePoolContents>(Sym)) for (ARCounts::iterator I = Cnts->begin(), E = Cnts->end(); I != E; ++I) Out << '(' << I.getKey() << ',' << I.getData() << ')'; Out << '}'; } static bool UsesAutorelease(ProgramStateRef state) { // A state uses autorelease if it allocated an autorelease pool or if it has // objects in the caller's autorelease pool. return !state->get<AutoreleaseStack>().isEmpty() || state->get<AutoreleasePoolContents>(SymbolRef()); } void RetainCountChecker::printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const { RefBindings B = State->get<RefBindings>(); if (!B.isEmpty()) Out << Sep << NL; for (RefBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { Out << I->first << " : "; I->second.print(Out); Out << NL; } // Print the autorelease stack. if (UsesAutorelease(State)) { Out << Sep << NL << "AR pool stack:"; ARStack Stack = State->get<AutoreleaseStack>(); PrintPool(Out, SymbolRef(), State); // Print the caller's pool. for (ARStack::iterator I = Stack.begin(), E = Stack.end(); I != E; ++I) PrintPool(Out, *I, State); Out << NL; } } //===----------------------------------------------------------------------===// // Checker registration. //===----------------------------------------------------------------------===// void ento::registerRetainCountChecker(CheckerManager &Mgr) { Mgr.registerChecker<RetainCountChecker>(); }