Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp |
//=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines BasicValueFactory, a class that manages the lifetime // of APSInt objects and symbolic constraints used by ExprEngine // and related classes. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" using namespace clang; using namespace ento; void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T, llvm::ImmutableList<SVal> L) { T.Profile(ID); ID.AddPointer(L.getInternalPointer()); } void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID, const StoreRef &store, const TypedValueRegion *region) { ID.AddPointer(store.getStore()); ID.AddPointer(region); } typedef std::pair<SVal, uintptr_t> SValData; typedef std::pair<SVal, SVal> SValPair; namespace llvm { template<> struct FoldingSetTrait<SValData> { static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) { X.first.Profile(ID); ID.AddPointer( (void*) X.second); } }; template<> struct FoldingSetTrait<SValPair> { static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) { X.first.Profile(ID); X.second.Profile(ID); } }; } typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> > PersistentSValsTy; typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> > PersistentSValPairsTy; BasicValueFactory::~BasicValueFactory() { // Note that the dstor for the contents of APSIntSet will never be called, // so we iterate over the set and invoke the dstor for each APSInt. This // frees an aux. memory allocated to represent very large constants. for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I) I->getValue().~APSInt(); delete (PersistentSValsTy*) PersistentSVals; delete (PersistentSValPairsTy*) PersistentSValPairs; } const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) { llvm::FoldingSetNodeID ID; void *InsertPos; typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy; X.Profile(ID); FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos); if (!P) { P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); new (P) FoldNodeTy(X); APSIntSet.InsertNode(P, InsertPos); } return *P; } const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X, bool isUnsigned) { llvm::APSInt V(X, isUnsigned); return getValue(V); } const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth, bool isUnsigned) { llvm::APSInt V(BitWidth, isUnsigned); V = X; return getValue(V); } const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) { unsigned bits = Ctx.getTypeSize(T); llvm::APSInt V(bits, T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T)); V = X; return getValue(V); } const CompoundValData* BasicValueFactory::getCompoundValData(QualType T, llvm::ImmutableList<SVal> Vals) { llvm::FoldingSetNodeID ID; CompoundValData::Profile(ID, T, Vals); void *InsertPos; CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); if (!D) { D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>(); new (D) CompoundValData(T, Vals); CompoundValDataSet.InsertNode(D, InsertPos); } return D; } const LazyCompoundValData* BasicValueFactory::getLazyCompoundValData(const StoreRef &store, const TypedValueRegion *region) { llvm::FoldingSetNodeID ID; LazyCompoundValData::Profile(ID, store, region); void *InsertPos; LazyCompoundValData *D = LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); if (!D) { D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>(); new (D) LazyCompoundValData(store, region); LazyCompoundValDataSet.InsertNode(D, InsertPos); } return D; } const llvm::APSInt* BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op, const llvm::APSInt& V1, const llvm::APSInt& V2) { switch (Op) { default: assert (false && "Invalid Opcode."); case BO_Mul: return &getValue( V1 * V2 ); case BO_Div: return &getValue( V1 / V2 ); case BO_Rem: return &getValue( V1 % V2 ); case BO_Add: return &getValue( V1 + V2 ); case BO_Sub: return &getValue( V1 - V2 ); case BO_Shl: { // FIXME: This logic should probably go higher up, where we can // test these conditions symbolically. // FIXME: Expand these checks to include all undefined behavior. if (V2.isSigned() && V2.isNegative()) return NULL; uint64_t Amt = V2.getZExtValue(); if (Amt > V1.getBitWidth()) return NULL; return &getValue( V1.operator<<( (unsigned) Amt )); } case BO_Shr: { // FIXME: This logic should probably go higher up, where we can // test these conditions symbolically. // FIXME: Expand these checks to include all undefined behavior. if (V2.isSigned() && V2.isNegative()) return NULL; uint64_t Amt = V2.getZExtValue(); if (Amt > V1.getBitWidth()) return NULL; return &getValue( V1.operator>>( (unsigned) Amt )); } case BO_LT: return &getTruthValue( V1 < V2 ); case BO_GT: return &getTruthValue( V1 > V2 ); case BO_LE: return &getTruthValue( V1 <= V2 ); case BO_GE: return &getTruthValue( V1 >= V2 ); case BO_EQ: return &getTruthValue( V1 == V2 ); case BO_NE: return &getTruthValue( V1 != V2 ); // Note: LAnd, LOr, Comma are handled specially by higher-level logic. case BO_And: return &getValue( V1 & V2 ); case BO_Or: return &getValue( V1 | V2 ); case BO_Xor: return &getValue( V1 ^ V2 ); } } const std::pair<SVal, uintptr_t>& BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) { // Lazily create the folding set. if (!PersistentSVals) PersistentSVals = new PersistentSValsTy(); llvm::FoldingSetNodeID ID; void *InsertPos; V.Profile(ID); ID.AddPointer((void*) Data); PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals); typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy; FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); if (!P) { P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); new (P) FoldNodeTy(std::make_pair(V, Data)); Map.InsertNode(P, InsertPos); } return P->getValue(); } const std::pair<SVal, SVal>& BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) { // Lazily create the folding set. if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy(); llvm::FoldingSetNodeID ID; void *InsertPos; V1.Profile(ID); V2.Profile(ID); PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs); typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy; FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); if (!P) { P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); new (P) FoldNodeTy(std::make_pair(V1, V2)); Map.InsertNode(P, InsertPos); } return P->getValue(); } const SVal* BasicValueFactory::getPersistentSVal(SVal X) { return &getPersistentSValWithData(X, 0).first; }