Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp |
//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the template classes ExplodedNode and ExplodedGraph, // which represent a path-sensitive, intra-procedural "exploded graph." // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/AST/Stmt.h" #include "clang/AST/ParentMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include <vector> using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Node auditing. //===----------------------------------------------------------------------===// // An out of line virtual method to provide a home for the class vtable. ExplodedNode::Auditor::~Auditor() {} #ifndef NDEBUG static ExplodedNode::Auditor* NodeAuditor = 0; #endif void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { #ifndef NDEBUG NodeAuditor = A; #endif } //===----------------------------------------------------------------------===// // Cleanup. //===----------------------------------------------------------------------===// static const unsigned CounterTop = 1000; ExplodedGraph::ExplodedGraph() : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {} ExplodedGraph::~ExplodedGraph() {} //===----------------------------------------------------------------------===// // Node reclamation. //===----------------------------------------------------------------------===// bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { // Reclaimn all nodes that match *all* the following criteria: // // (1) 1 predecessor (that has one successor) // (2) 1 successor (that has one predecessor) // (3) The ProgramPoint is for a PostStmt. // (4) There is no 'tag' for the ProgramPoint. // (5) The 'store' is the same as the predecessor. // (6) The 'GDM' is the same as the predecessor. // (7) The LocationContext is the same as the predecessor. // (8) The PostStmt is for a non-consumed Stmt or Expr. // Conditions 1 and 2. if (node->pred_size() != 1 || node->succ_size() != 1) return false; const ExplodedNode *pred = *(node->pred_begin()); if (pred->succ_size() != 1) return false; const ExplodedNode *succ = *(node->succ_begin()); if (succ->pred_size() != 1) return false; // Condition 3. ProgramPoint progPoint = node->getLocation(); if (!isa<PostStmt>(progPoint) || (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint))) return false; // Condition 4. PostStmt ps = cast<PostStmt>(progPoint); if (ps.getTag()) return false; if (isa<BinaryOperator>(ps.getStmt())) return false; // Conditions 5, 6, and 7. ProgramStateRef state = node->getState(); ProgramStateRef pred_state = pred->getState(); if (state->store != pred_state->store || state->GDM != pred_state->GDM || progPoint.getLocationContext() != pred->getLocationContext()) return false; // Condition 8. if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) { ParentMap &PM = progPoint.getLocationContext()->getParentMap(); if (!PM.isConsumedExpr(Ex)) return false; } return true; } void ExplodedGraph::collectNode(ExplodedNode *node) { // Removing a node means: // (a) changing the predecessors successor to the successor of this node // (b) changing the successors predecessor to the predecessor of this node // (c) Putting 'node' onto freeNodes. assert(node->pred_size() == 1 || node->succ_size() == 1); ExplodedNode *pred = *(node->pred_begin()); ExplodedNode *succ = *(node->succ_begin()); pred->replaceSuccessor(succ); succ->replacePredecessor(pred); FreeNodes.push_back(node); Nodes.RemoveNode(node); --NumNodes; node->~ExplodedNode(); } void ExplodedGraph::reclaimRecentlyAllocatedNodes() { if (ChangedNodes.empty()) return; // Only periodically relcaim nodes so that we can build up a set of // nodes that meet the reclamation criteria. Freshly created nodes // by definition have no successor, and thus cannot be reclaimed (see below). assert(reclaimCounter > 0); if (--reclaimCounter != 0) return; reclaimCounter = CounterTop; for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end(); it != et; ++it) { ExplodedNode *node = *it; if (shouldCollect(node)) collectNode(node); } ChangedNodes.clear(); } //===----------------------------------------------------------------------===// // ExplodedNode. //===----------------------------------------------------------------------===// static inline BumpVector<ExplodedNode*>& getVector(void *P) { return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P); } void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { assert (!V->isSink()); Preds.addNode(V, G); V->Succs.addNode(this, G); #ifndef NDEBUG if (NodeAuditor) NodeAuditor->AddEdge(V, this); #endif } void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { assert(getKind() == Size1); P = reinterpret_cast<uintptr_t>(node); assert(getKind() == Size1); } void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0); assert(!getFlag()); if (getKind() == Size1) { if (ExplodedNode *NOld = getNode()) { BumpVectorContext &Ctx = G.getNodeAllocator(); BumpVector<ExplodedNode*> *V = G.getAllocator().Allocate<BumpVector<ExplodedNode*> >(); new (V) BumpVector<ExplodedNode*>(Ctx, 4); assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0); V->push_back(NOld, Ctx); V->push_back(N, Ctx); P = reinterpret_cast<uintptr_t>(V) | SizeOther; assert(getPtr() == (void*) V); assert(getKind() == SizeOther); } else { P = reinterpret_cast<uintptr_t>(N); assert(getKind() == Size1); } } else { assert(getKind() == SizeOther); getVector(getPtr()).push_back(N, G.getNodeAllocator()); } } unsigned ExplodedNode::NodeGroup::size() const { if (getFlag()) return 0; if (getKind() == Size1) return getNode() ? 1 : 0; else return getVector(getPtr()).size(); } ExplodedNode **ExplodedNode::NodeGroup::begin() const { if (getFlag()) return NULL; if (getKind() == Size1) return (ExplodedNode**) (getPtr() ? &P : NULL); else return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin())); } ExplodedNode** ExplodedNode::NodeGroup::end() const { if (getFlag()) return NULL; if (getKind() == Size1) return (ExplodedNode**) (getPtr() ? &P+1 : NULL); else { // Dereferencing end() is undefined behaviour. The vector is not empty, so // we can dereference the last elem and then add 1 to the result. return const_cast<ExplodedNode**>(getVector(getPtr()).end()); } } ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, ProgramStateRef State, bool IsSink, bool* IsNew) { // Profile 'State' to determine if we already have an existing node. llvm::FoldingSetNodeID profile; void *InsertPos = 0; NodeTy::Profile(profile, L, State, IsSink); NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); if (!V) { if (!FreeNodes.empty()) { V = FreeNodes.back(); FreeNodes.pop_back(); } else { // Allocate a new node. V = (NodeTy*) getAllocator().Allocate<NodeTy>(); } new (V) NodeTy(L, State, IsSink); if (reclaimNodes) ChangedNodes.push_back(V); // Insert the node into the node set and return it. Nodes.InsertNode(V, InsertPos); ++NumNodes; if (IsNew) *IsNew = true; } else if (IsNew) *IsNew = false; return V; } std::pair<ExplodedGraph*, InterExplodedGraphMap*> ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, llvm::DenseMap<const void*, const void*> *InverseMap) const { if (NBeg == NEnd) return std::make_pair((ExplodedGraph*) 0, (InterExplodedGraphMap*) 0); assert (NBeg < NEnd); OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); } ExplodedGraph* ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, const ExplodedNode* const* EndSources, InterExplodedGraphMap* M, llvm::DenseMap<const void*, const void*> *InverseMap) const { typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; Pass1Ty Pass1; typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; Pass2Ty& Pass2 = M->M; SmallVector<const ExplodedNode*, 10> WL1, WL2; // ===- Pass 1 (reverse DFS) -=== for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { assert(*I); WL1.push_back(*I); } // Process the first worklist until it is empty. Because it is a std::list // it acts like a FIFO queue. while (!WL1.empty()) { const ExplodedNode *N = WL1.back(); WL1.pop_back(); // Have we already visited this node? If so, continue to the next one. if (Pass1.count(N)) continue; // Otherwise, mark this node as visited. Pass1.insert(N); // If this is a root enqueue it to the second worklist. if (N->Preds.empty()) { WL2.push_back(N); continue; } // Visit our predecessors and enqueue them. for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) WL1.push_back(*I); } // We didn't hit a root? Return with a null pointer for the new graph. if (WL2.empty()) return 0; // Create an empty graph. ExplodedGraph* G = MakeEmptyGraph(); // ===- Pass 2 (forward DFS to construct the new graph) -=== while (!WL2.empty()) { const ExplodedNode *N = WL2.back(); WL2.pop_back(); // Skip this node if we have already processed it. if (Pass2.find(N) != Pass2.end()) continue; // Create the corresponding node in the new graph and record the mapping // from the old node to the new node. ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0); Pass2[N] = NewN; // Also record the reverse mapping from the new node to the old node. if (InverseMap) (*InverseMap)[NewN] = N; // If this node is a root, designate it as such in the graph. if (N->Preds.empty()) G->addRoot(NewN); // In the case that some of the intended predecessors of NewN have already // been created, we should hook them up as predecessors. // Walk through the predecessors of 'N' and hook up their corresponding // nodes in the new graph (if any) to the freshly created node. for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI == Pass2.end()) continue; NewN->addPredecessor(PI->second, *G); } // In the case that some of the intended successors of NewN have already // been created, we should hook them up as successors. Otherwise, enqueue // the new nodes from the original graph that should have nodes created // in the new graph. for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI != Pass2.end()) { PI->second->addPredecessor(NewN, *G); continue; } // Enqueue nodes to the worklist that were marked during pass 1. if (Pass1.count(*I)) WL2.push_back(*I); } } return G; } void InterExplodedGraphMap::anchor() { } ExplodedNode* InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const { llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = M.find(N); return I == M.end() ? 0 : I->second; }