Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RegionStore.cpp |
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/AST/CharUnits.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Basic/TargetInfo.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; using llvm::Optional; //===----------------------------------------------------------------------===// // Representation of binding keys. //===----------------------------------------------------------------------===// namespace { class BindingKey { public: enum Kind { Direct = 0x0, Default = 0x1 }; private: llvm ::PointerIntPair<const MemRegion*, 1> P; uint64_t Offset; explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) : P(r, (unsigned) k), Offset(offset) {} public: bool isDirect() const { return P.getInt() == Direct; } const MemRegion *getRegion() const { return P.getPointer(); } uint64_t getOffset() const { return Offset; } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddPointer(P.getOpaqueValue()); ID.AddInteger(Offset); } static BindingKey Make(const MemRegion *R, Kind k); bool operator<(const BindingKey &X) const { if (P.getOpaqueValue() < X.P.getOpaqueValue()) return true; if (P.getOpaqueValue() > X.P.getOpaqueValue()) return false; return Offset < X.Offset; } bool operator==(const BindingKey &X) const { return P.getOpaqueValue() == X.P.getOpaqueValue() && Offset == X.Offset; } bool isValid() const { return getRegion() != NULL; } }; } // end anonymous namespace BindingKey BindingKey::Make(const MemRegion *R, Kind k) { if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { const RegionRawOffset &O = ER->getAsArrayOffset(); // FIXME: There are some ElementRegions for which we cannot compute // raw offsets yet, including regions with symbolic offsets. These will be // ignored by the store. return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k); } return BindingKey(R, 0, k); } namespace llvm { static inline raw_ostream &operator<<(raw_ostream &os, BindingKey K) { os << '(' << K.getRegion() << ',' << K.getOffset() << ',' << (K.isDirect() ? "direct" : "default") << ')'; return os; } } // end llvm namespace //===----------------------------------------------------------------------===// // Actual Store type. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings; //===----------------------------------------------------------------------===// // Fine-grained control of RegionStoreManager. //===----------------------------------------------------------------------===// namespace { struct minimal_features_tag {}; struct maximal_features_tag {}; class RegionStoreFeatures { bool SupportsFields; public: RegionStoreFeatures(minimal_features_tag) : SupportsFields(false) {} RegionStoreFeatures(maximal_features_tag) : SupportsFields(true) {} void enableFields(bool t) { SupportsFields = t; } bool supportsFields() const { return SupportsFields; } }; } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class RegionStoreSubRegionMap : public SubRegionMap { public: typedef llvm::ImmutableSet<const MemRegion*> Set; typedef llvm::DenseMap<const MemRegion*, Set> Map; private: Set::Factory F; Map M; public: bool add(const MemRegion* Parent, const MemRegion* SubRegion) { Map::iterator I = M.find(Parent); if (I == M.end()) { M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion))); return true; } I->second = F.add(I->second, SubRegion); return false; } void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R); ~RegionStoreSubRegionMap() {} const Set *getSubRegions(const MemRegion *Parent) const { Map::const_iterator I = M.find(Parent); return I == M.end() ? NULL : &I->second; } bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { Map::const_iterator I = M.find(Parent); if (I == M.end()) return true; Set S = I->second; for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) { if (!V.Visit(Parent, *SI)) return false; } return true; } }; void RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R) { const MemRegion *superR = R->getSuperRegion(); if (add(superR, R)) if (const SubRegion *sr = dyn_cast<SubRegion>(superR)) WL.push_back(sr); } class RegionStoreManager : public StoreManager { const RegionStoreFeatures Features; RegionBindings::Factory RBFactory; public: RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f) : StoreManager(mgr), Features(f), RBFactory(mgr.getAllocator()) {} SubRegionMap *getSubRegionMap(Store store) { return getRegionStoreSubRegionMap(store); } RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store); Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R); /// getDefaultBinding - Returns an SVal* representing an optional default /// binding associated with a region and its subregions. Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R); /// setImplicitDefaultValue - Set the default binding for the provided /// MemRegion to the value implicitly defined for compound literals when /// the value is not specified. StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array); /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it. virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType); /// \brief Evaluates C++ dynamic_cast cast. /// The callback may result in the following 3 scenarios: /// - Successful cast (ex: derived is subclass of base). /// - Failed cast (ex: derived is definitely not a subclass of base). /// - We don't know (base is a symbolic region and we don't have /// enough info to determine if the cast will succeed at run time). /// The function returns an SVal representing the derived class; it's /// valid only if Failed flag is set to false. virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed); StoreRef getInitialStore(const LocationContext *InitLoc) { return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this); } //===-------------------------------------------------------------------===// // Binding values to regions. //===-------------------------------------------------------------------===// RegionBindings invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindings B, InvalidatedRegions *Invalidated); StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions, const Expr *E, unsigned Count, const LocationContext *LCtx, InvalidatedSymbols &IS, const CallOrObjCMessage *Call, InvalidatedRegions *Invalidated); public: // Made public for helper classes. void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, RegionStoreSubRegionMap &M); RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V); RegionBindings addBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k, SVal V); const SVal *lookup(RegionBindings B, BindingKey K); const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k); RegionBindings removeBinding(RegionBindings B, BindingKey K); RegionBindings removeBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k); RegionBindings removeBinding(RegionBindings B, const MemRegion *R) { return removeBinding(removeBinding(B, R, BindingKey::Direct), R, BindingKey::Default); } public: // Part of public interface to class. StoreRef Bind(Store store, Loc LV, SVal V); // BindDefault is only used to initialize a region with a default value. StoreRef BindDefault(Store store, const MemRegion *R, SVal V) { RegionBindings B = GetRegionBindings(store); assert(!lookup(B, R, BindingKey::Default)); assert(!lookup(B, R, BindingKey::Direct)); return StoreRef(addBinding(B, R, BindingKey::Default, V) .getRootWithoutRetain(), *this); } StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL, const LocationContext *LC, SVal V); StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal); StoreRef BindDeclWithNoInit(Store store, const VarRegion *) { return StoreRef(store, *this); } /// BindStruct - Bind a compound value to a structure. StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V); StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V); /// KillStruct - Set the entire struct to unknown. StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal); StoreRef Remove(Store store, Loc LV); void incrementReferenceCount(Store store) { GetRegionBindings(store).manualRetain(); } /// If the StoreManager supports it, decrement the reference count of /// the specified Store object. If the reference count hits 0, the memory /// associated with the object is recycled. void decrementReferenceCount(Store store) { GetRegionBindings(store).manualRelease(); } bool includedInBindings(Store store, const MemRegion *region) const; /// \brief Return the value bound to specified location in a given state. /// /// The high level logic for this method is this: /// getBinding (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal getBinding(Store store, Loc L, QualType T = QualType()); SVal getBindingForElement(Store store, const ElementRegion *R); SVal getBindingForField(Store store, const FieldRegion *R); SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R); SVal getBindingForVar(Store store, const VarRegion *R); SVal getBindingForLazySymbol(const TypedValueRegion *R); SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R, QualType Ty, const MemRegion *superR); SVal getLazyBinding(const MemRegion *lazyBindingRegion, Store lazyBindingStore); /// Get bindings for the values in a struct and return a CompoundVal, used /// when doing struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal getBindingForStruct(Store store, const TypedValueRegion* R); SVal getBindingForArray(Store store, const TypedValueRegion* R); /// Used to lazily generate derived symbols for bindings that are defined /// implicitly by default bindings in a super region. Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty); /// Get the state and region whose binding this region R corresponds to. std::pair<Store, const MemRegion*> GetLazyBinding(RegionBindings B, const MemRegion *R, const MemRegion *originalRegion); StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store, const TypedRegion *R); //===------------------------------------------------------------------===// // State pruning. //===------------------------------------------------------------------===// /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed. StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper); StoreRef enterStackFrame(ProgramStateRef state, const LocationContext *callerCtx, const StackFrameContext *calleeCtx); //===------------------------------------------------------------------===// // Region "extents". //===------------------------------------------------------------------===// // FIXME: This method will soon be eliminated; see the note in Store.h. DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state, const MemRegion* R, QualType EleTy); //===------------------------------------------------------------------===// // Utility methods. //===------------------------------------------------------------------===// static inline RegionBindings GetRegionBindings(Store store) { return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store)); } void print(Store store, raw_ostream &Out, const char* nl, const char *sep); void iterBindings(Store store, BindingsHandler& f) { RegionBindings B = GetRegionBindings(store); for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) { const BindingKey &K = I.getKey(); if (!K.isDirect()) continue; if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) { // FIXME: Possibly incorporate the offset? if (!f.HandleBinding(*this, store, R, I.getData())) return; } } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // RegionStore creation. //===----------------------------------------------------------------------===// StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) { RegionStoreFeatures F = maximal_features_tag(); return new RegionStoreManager(StMgr, F); } StoreManager * ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) { RegionStoreFeatures F = minimal_features_tag(); F.enableFields(true); return new RegionStoreManager(StMgr, F); } RegionStoreSubRegionMap* RegionStoreManager::getRegionStoreSubRegionMap(Store store) { RegionBindings B = GetRegionBindings(store); RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); SmallVector<const SubRegion*, 10> WL; for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) M->process(WL, R); // We also need to record in the subregion map "intermediate" regions that // don't have direct bindings but are super regions of those that do. while (!WL.empty()) { const SubRegion *R = WL.back(); WL.pop_back(); M->process(WL, R); } return M; } //===----------------------------------------------------------------------===// // Region Cluster analysis. //===----------------------------------------------------------------------===// namespace { template <typename DERIVED> class ClusterAnalysis { protected: typedef BumpVector<BindingKey> RegionCluster; typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap; llvm::DenseMap<const RegionCluster*, unsigned> Visited; typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10> WorkList; BumpVectorContext BVC; ClusterMap ClusterM; WorkList WL; RegionStoreManager &RM; ASTContext &Ctx; SValBuilder &svalBuilder; RegionBindings B; const bool includeGlobals; public: ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, RegionBindings b, const bool includeGlobals) : RM(rm), Ctx(StateMgr.getContext()), svalBuilder(StateMgr.getSValBuilder()), B(b), includeGlobals(includeGlobals) {} RegionBindings getRegionBindings() const { return B; } RegionCluster &AddToCluster(BindingKey K) { const MemRegion *R = K.getRegion(); const MemRegion *baseR = R->getBaseRegion(); RegionCluster &C = getCluster(baseR); C.push_back(K, BVC); static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C); return C; } bool isVisited(const MemRegion *R) { return (bool) Visited[&getCluster(R->getBaseRegion())]; } RegionCluster& getCluster(const MemRegion *R) { RegionCluster *&CRef = ClusterM[R]; if (!CRef) { void *Mem = BVC.getAllocator().template Allocate<RegionCluster>(); CRef = new (Mem) RegionCluster(BVC, 10); } return *CRef; } void GenerateClusters() { // Scan the entire set of bindings and make the region clusters. for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ RegionCluster &C = AddToCluster(RI.getKey()); if (const MemRegion *R = RI.getData().getAsRegion()) { // Generate a cluster, but don't add the region to the cluster // if there aren't any bindings. getCluster(R->getBaseRegion()); } if (includeGlobals) { const MemRegion *R = RI.getKey().getRegion(); if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace())) AddToWorkList(R, C); } } } bool AddToWorkList(const MemRegion *R, RegionCluster &C) { if (unsigned &visited = Visited[&C]) return false; else visited = 1; WL.push_back(std::make_pair(R, &C)); return true; } bool AddToWorkList(BindingKey K) { return AddToWorkList(K.getRegion()); } bool AddToWorkList(const MemRegion *R) { const MemRegion *baseR = R->getBaseRegion(); return AddToWorkList(baseR, getCluster(baseR)); } void RunWorkList() { while (!WL.empty()) { const MemRegion *baseR; RegionCluster *C; llvm::tie(baseR, C) = WL.back(); WL.pop_back(); // First visit the cluster. static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end()); // Next, visit the base region. static_cast<DERIVED*>(this)->VisitBaseRegion(baseR); } } public: void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {} void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {} void VisitBaseRegion(const MemRegion *baseR) {} }; } //===----------------------------------------------------------------------===// // Binding invalidation. //===----------------------------------------------------------------------===// void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, RegionStoreSubRegionMap &M) { if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R)) for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end(); I != E; ++I) RemoveSubRegionBindings(B, *I, M); B = removeBinding(B, R); } namespace { class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker> { const Expr *Ex; unsigned Count; const LocationContext *LCtx; StoreManager::InvalidatedSymbols &IS; StoreManager::InvalidatedRegions *Regions; public: invalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindings b, const Expr *ex, unsigned count, const LocationContext *lctx, StoreManager::InvalidatedSymbols &is, StoreManager::InvalidatedRegions *r, bool includeGlobals) : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals), Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {} void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); void VisitBaseRegion(const MemRegion *baseR); private: void VisitBinding(SVal V); }; } void invalidateRegionsWorker::VisitBinding(SVal V) { // A symbol? Mark it touched by the invalidation. if (SymbolRef Sym = V.getAsSymbol()) IS.insert(Sym); if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); return; } // Is it a LazyCompoundVal? All references get invalidated as well. if (const nonloc::LazyCompoundVal *LCS = dyn_cast<nonloc::LazyCompoundVal>(&V)) { const MemRegion *LazyR = LCS->getRegion(); RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion()); if (baseR && baseR->isSubRegionOf(LazyR)) VisitBinding(RI.getData()); } return; } } void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) { for ( ; I != E; ++I) { // Get the old binding. Is it a region? If so, add it to the worklist. const BindingKey &K = *I; if (const SVal *V = RM.lookup(B, K)) VisitBinding(*V); B = RM.removeBinding(B, K); } } void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) { // Symbolic region? Mark that symbol touched by the invalidation. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) IS.insert(SR->getSymbol()); // BlockDataRegion? If so, invalidate captured variables that are passed // by reference. if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { for (BlockDataRegion::referenced_vars_iterator BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; BI != BE; ++BI) { const VarRegion *VR = *BI; const VarDecl *VD = VR->getDecl(); if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) AddToWorkList(VR); } return; } // Otherwise, we have a normal data region. Record that we touched the region. if (Regions) Regions->push_back(baseR); if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = RM.addBinding(B, baseR, BindingKey::Default, V); return; } if (!baseR->isBoundable()) return; const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); QualType T = TR->getValueType(); // Invalidate the binding. if (T->isStructureOrClassType()) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = RM.addBinding(B, baseR, BindingKey::Default, V); return; } if (const ArrayType *AT = Ctx.getAsArrayType(T)) { // Set the default value of the array to conjured symbol. DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, AT->getElementType(), Count); B = RM.addBinding(B, baseR, BindingKey::Default, V); return; } if (includeGlobals && isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) { // If the region is a global and we are invalidating all globals, // just erase the entry. This causes all globals to be lazily // symbolicated from the same base symbol. B = RM.removeBinding(B, baseR); return; } DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, T,Count); assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); B = RM.addBinding(B, baseR, BindingKey::Direct, V); } RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindings B, InvalidatedRegions *Invalidated) { // Bind the globals memory space to a new symbol that we will use to derive // the bindings for all globals. const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); SVal V = svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx, /* symbol type, doesn't matter */ Ctx.IntTy, Count); B = removeBinding(B, GS); B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V); // Even if there are no bindings in the global scope, we still need to // record that we touched it. if (Invalidated) Invalidated->push_back(GS); return B; } StoreRef RegionStoreManager::invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions, const Expr *Ex, unsigned Count, const LocationContext *LCtx, InvalidatedSymbols &IS, const CallOrObjCMessage *Call, InvalidatedRegions *Invalidated) { invalidateRegionsWorker W(*this, StateMgr, RegionStoreManager::GetRegionBindings(store), Ex, Count, LCtx, IS, Invalidated, false); // Scan the bindings and generate the clusters. W.GenerateClusters(); // Add the regions to the worklist. for (ArrayRef<const MemRegion *>::iterator I = Regions.begin(), E = Regions.end(); I != E; ++I) W.AddToWorkList(*I); W.RunWorkList(); // Return the new bindings. RegionBindings B = W.getRegionBindings(); // For all globals which are not static nor immutable: determine which global // regions should be invalidated and invalidate them. // TODO: This could possibly be more precise with modules. // // System calls invalidate only system globals. if (Call && Call->isInSystemHeader()) { B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); // Internal calls might invalidate both system and internal globals. } else { B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); } return StoreRef(B.getRootWithoutRetain(), *this); } //===----------------------------------------------------------------------===// // Extents for regions. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(ProgramStateRef state, const MemRegion *R, QualType EleTy) { SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder); const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); if (!SizeInt) return UnknownVal(); CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); if (Ctx.getAsVariableArrayType(EleTy)) { // FIXME: We need to track extra state to properly record the size // of VLAs. Returning UnknownVal here, however, is a stop-gap so that // we don't have a divide-by-zero below. return UnknownVal(); } CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); // If a variable is reinterpreted as a type that doesn't fit into a larger // type evenly, round it down. // This is a signed value, since it's used in arithmetic with signed indices. return svalBuilder.makeIntVal(RegionSize / EleSize, false); } //===----------------------------------------------------------------------===// // Location and region casting. //===----------------------------------------------------------------------===// /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array) { if (!isa<loc::MemRegionVal>(Array)) return UnknownVal(); const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion(); const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R); if (!ArrayR) return UnknownVal(); // Strip off typedefs from the ArrayRegion's ValueType. QualType T = ArrayR->getValueType().getDesugaredType(Ctx); const ArrayType *AT = cast<ArrayType>(T); T = AT->getElementType(); NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx)); } SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) { const CXXRecordDecl *baseDecl; if (baseType->isPointerType()) baseDecl = baseType->getCXXRecordDeclForPointerType(); else baseDecl = baseType->getAsCXXRecordDecl(); assert(baseDecl && "not a CXXRecordDecl?"); loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived); if (!derivedRegVal) return derived; const MemRegion *baseReg = MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion()); return loc::MemRegionVal(baseReg); } SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType, bool &Failed) { Failed = false; loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base); if (!baseRegVal) return UnknownVal(); const MemRegion *BaseRegion = baseRegVal->stripCasts(); // Assume the derived class is a pointer or a reference to a CXX record. derivedType = derivedType->getPointeeType(); assert(!derivedType.isNull()); const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl(); if (!DerivedDecl && !derivedType->isVoidType()) return UnknownVal(); // Drill down the CXXBaseObject chains, which represent upcasts (casts from // derived to base). const MemRegion *SR = BaseRegion; while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) { QualType BaseType = TSR->getLocationType()->getPointeeType(); assert(!BaseType.isNull()); const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl(); if (!SRDecl) return UnknownVal(); // If found the derived class, the cast succeeds. if (SRDecl == DerivedDecl) return loc::MemRegionVal(TSR); // If the region type is a subclass of the derived type. if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) { // This occurs in two cases. // 1) We are processing an upcast. // 2) We are processing a downcast but we jumped directly from the // ancestor to a child of the cast value, so conjure the // appropriate region to represent value (the intermediate node). return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl, BaseRegion)); } // If super region is not a parent of derived class, the cast definitely // fails. if (!derivedType->isVoidType() && DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) { Failed = true; return UnknownVal(); } if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR)) // Drill down the chain to get the derived classes. SR = R->getSuperRegion(); else { // We reached the bottom of the hierarchy. // If this is a cast to void*, return the region. if (derivedType->isVoidType()) return loc::MemRegionVal(TSR); // We did not find the derived class. We we must be casting the base to // derived, so the cast should fail. Failed = true; return UnknownVal(); } } return UnknownVal(); } //===----------------------------------------------------------------------===// // Loading values from regions. //===----------------------------------------------------------------------===// Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B, const MemRegion *R) { if (const SVal *V = lookup(B, R, BindingKey::Direct)) return *V; return Optional<SVal>(); } Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B, const MemRegion *R) { if (R->isBoundable()) if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) if (TR->getValueType()->isUnionType()) return UnknownVal(); if (const SVal *V = lookup(B, R, BindingKey::Default)) return *V; return Optional<SVal>(); } SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) { assert(!isa<UnknownVal>(L) && "location unknown"); assert(!isa<UndefinedVal>(L) && "location undefined"); // For access to concrete addresses, return UnknownVal. Checks // for null dereferences (and similar errors) are done by checkers, not // the Store. // FIXME: We can consider lazily symbolicating such memory, but we really // should defer this when we can reason easily about symbolicating arrays // of bytes. if (isa<loc::ConcreteInt>(L)) { return UnknownVal(); } if (!isa<loc::MemRegionVal>(L)) { return UnknownVal(); } const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion(); if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR) || isa<CodeTextRegion>(MR)) { if (T.isNull()) { if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR)) T = TR->getLocationType(); else { const SymbolicRegion *SR = cast<SymbolicRegion>(MR); T = SR->getSymbol()->getType(Ctx); } } MR = GetElementZeroRegion(MR, T); } // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedValueRegion *R = cast<TypedValueRegion>(MR); QualType RTy = R->getValueType(); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. if (RTy->isStructureOrClassType()) return getBindingForStruct(store, R); // FIXME: Handle unions. if (RTy->isUnionType()) return UnknownVal(); if (RTy->isArrayType()) return getBindingForArray(store, R); // FIXME: handle Vector types. if (RTy->isVectorType()) return UnknownVal(); if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) return CastRetrievedVal(getBindingForField(store, FR), FR, T, false); if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the element type. Eventually we want to compose these values // more intelligently. For example, an 'element' can encompass multiple // bound regions (e.g., several bound bytes), or could be a subset of // a larger value. return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false); } if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the ivar type. What we should model is stores to ivars // that blow past the extent of the ivar. If the address of the ivar is // reinterpretted, it is possible we stored a different value that could // fit within the ivar. Either we need to cast these when storing them // or reinterpret them lazily (as we do here). return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false); } if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the variable type. What we should model is stores to variables // that blow past the extent of the variable. If the address of the // variable is reinterpretted, it is possible we stored a different value // that could fit within the variable. Either we need to cast these when // storing them or reinterpret them lazily (as we do here). return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false); } RegionBindings B = GetRegionBindings(store); const SVal *V = lookup(B, R, BindingKey::Direct); // Check if the region has a binding. if (V) return *V; // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. if (R->hasStackNonParametersStorage()) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } std::pair<Store, const MemRegion *> RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R, const MemRegion *originalRegion) { if (originalRegion != R) { if (Optional<SVal> OV = getDefaultBinding(B, R)) { if (const nonloc::LazyCompoundVal *V = dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer())) return std::make_pair(V->getStore(), V->getRegion()); } } if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { const std::pair<Store, const MemRegion *> &X = GetLazyBinding(B, ER->getSuperRegion(), originalRegion); if (X.second) return std::make_pair(X.first, MRMgr.getElementRegionWithSuper(ER, X.second)); } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { const std::pair<Store, const MemRegion *> &X = GetLazyBinding(B, FR->getSuperRegion(), originalRegion); if (X.second) return std::make_pair(X.first, MRMgr.getFieldRegionWithSuper(FR, X.second)); } // C++ base object region is another kind of region that we should blast // through to look for lazy compound value. It is like a field region. else if (const CXXBaseObjectRegion *baseReg = dyn_cast<CXXBaseObjectRegion>(R)) { const std::pair<Store, const MemRegion *> &X = GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion); if (X.second) return std::make_pair(X.first, MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second)); } // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is // possible for a valid lazy binding. return std::make_pair((Store) 0, (const MemRegion *) 0); } SVal RegionStoreManager::getBindingForElement(Store store, const ElementRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional<SVal> &V = getDirectBinding(B, R)) return *V; const MemRegion* superR = R->getSuperRegion(); // Check if the region is an element region of a string literal. if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) { // FIXME: Handle loads from strings where the literal is treated as // an integer, e.g., *((unsigned int*)"hello") QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); if (T != Ctx.getCanonicalType(R->getElementType())) return UnknownVal(); const StringLiteral *Str = StrR->getStringLiteral(); SVal Idx = R->getIndex(); if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) { int64_t i = CI->getValue().getSExtValue(); // Abort on string underrun. This can be possible by arbitrary // clients of getBindingForElement(). if (i < 0) return UndefinedVal(); int64_t length = Str->getLength(); // Technically, only i == length is guaranteed to be null. // However, such overflows should be caught before reaching this point; // the only time such an access would be made is if a string literal was // used to initialize a larger array. char c = (i >= length) ? '\0' : Str->getCodeUnit(i); return svalBuilder.makeIntVal(c, T); } } // Check for loads from a code text region. For such loads, just give up. if (isa<CodeTextRegion>(superR)) return UnknownVal(); // Handle the case where we are indexing into a larger scalar object. // For example, this handles: // int x = ... // char *y = &x; // return *y; // FIXME: This is a hack, and doesn't do anything really intelligent yet. const RegionRawOffset &O = R->getAsArrayOffset(); // If we cannot reason about the offset, return an unknown value. if (!O.getRegion()) return UnknownVal(); if (const TypedValueRegion *baseR = dyn_cast_or_null<TypedValueRegion>(O.getRegion())) { QualType baseT = baseR->getValueType(); if (baseT->isScalarType()) { QualType elemT = R->getElementType(); if (elemT->isScalarType()) { if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { if (const Optional<SVal> &V = getDirectBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (V->isUnknownOrUndef()) return *V; // Other cases: give up. We are indexing into a larger object // that has some value, but we don't know how to handle that yet. return UnknownVal(); } } } } } return getBindingForFieldOrElementCommon(store, R, R->getElementType(), superR); } SVal RegionStoreManager::getBindingForField(Store store, const FieldRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional<SVal> &V = getDirectBinding(B, R)) return *V; QualType Ty = R->getValueType(); return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion()); } Optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty) { if (const Optional<SVal> &D = getDefaultBinding(B, superR)) { const SVal &val = D.getValue(); if (SymbolRef parentSym = val.getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (val.isZeroConstant()) return svalBuilder.makeZeroVal(Ty); if (val.isUnknownOrUndef()) return val; // Lazy bindings are handled later. if (isa<nonloc::LazyCompoundVal>(val)) return Optional<SVal>(); llvm_unreachable("Unknown default value"); } return Optional<SVal>(); } SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion, Store lazyBindingStore) { if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion)) return getBindingForElement(lazyBindingStore, ER); return getBindingForField(lazyBindingStore, cast<FieldRegion>(lazyBindingRegion)); } SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R, QualType Ty, const MemRegion *superR) { // At this point we have already checked in either getBindingForElement or // getBindingForField if 'R' has a direct binding. RegionBindings B = GetRegionBindings(store); // Record whether or not we see a symbolic index. That can completely // be out of scope of our lookup. bool hasSymbolicIndex = false; while (superR) { if (const Optional<SVal> &D = getBindingForDerivedDefaultValue(B, superR, R, Ty)) return *D; if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) { NonLoc index = ER->getIndex(); if (!index.isConstant()) hasSymbolicIndex = true; } // If our super region is a field or element itself, walk up the region // hierarchy to see if there is a default value installed in an ancestor. if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) { superR = SR->getSuperRegion(); continue; } break; } // Lazy binding? Store lazyBindingStore = NULL; const MemRegion *lazyBindingRegion = NULL; llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R); if (lazyBindingRegion) return getLazyBinding(lazyBindingRegion, lazyBindingStore); if (R->hasStackNonParametersStorage()) { if (isa<ElementRegion>(R)) { // Currently we don't reason specially about Clang-style vectors. Check // if superR is a vector and if so return Unknown. if (const TypedValueRegion *typedSuperR = dyn_cast<TypedValueRegion>(superR)) { if (typedSuperR->getValueType()->isVectorType()) return UnknownVal(); } } // FIXME: We also need to take ElementRegions with symbolic indexes into // account. This case handles both directly accessing an ElementRegion // with a symbolic offset, but also fields within an element with // a symbolic offset. if (hasSymbolicIndex) return UnknownVal(); return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } SVal RegionStoreManager::getBindingForObjCIvar(Store store, const ObjCIvarRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional<SVal> &V = getDirectBinding(B, R)) return *V; const MemRegion *superR = R->getSuperRegion(); // Check if the super region has a default binding. if (const Optional<SVal> &V = getDefaultBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); // Other cases: give up. return UnknownVal(); } return getBindingForLazySymbol(R); } SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional<SVal> &V = getDirectBinding(B, R)) return *V; // Lazily derive a value for the VarRegion. const VarDecl *VD = R->getDecl(); QualType T = VD->getType(); const MemSpaceRegion *MS = R->getMemorySpace(); if (isa<UnknownSpaceRegion>(MS) || isa<StackArgumentsSpaceRegion>(MS)) return svalBuilder.getRegionValueSymbolVal(R); if (isa<GlobalsSpaceRegion>(MS)) { if (isa<NonStaticGlobalSpaceRegion>(MS)) { // Is 'VD' declared constant? If so, retrieve the constant value. QualType CT = Ctx.getCanonicalType(T); if (CT.isConstQualified()) { const Expr *Init = VD->getInit(); // Do the null check first, as we want to call 'IgnoreParenCasts'. if (Init) if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) { const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL); return svalBuilder.evalCast(V, Init->getType(), IL->getType()); } } if (const Optional<SVal> &V = getBindingForDerivedDefaultValue(B, MS, R, CT)) return V.getValue(); return svalBuilder.getRegionValueSymbolVal(R); } if (T->isIntegerType()) return svalBuilder.makeIntVal(0, T); if (T->isPointerType()) return svalBuilder.makeNull(); return UnknownVal(); } return UndefinedVal(); } SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } SVal RegionStoreManager::getBindingForStruct(Store store, const TypedValueRegion* R) { assert(R->getValueType()->isStructureOrClassType()); return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R); } SVal RegionStoreManager::getBindingForArray(Store store, const TypedValueRegion * R) { assert(Ctx.getAsConstantArrayType(R->getValueType())); return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R); } bool RegionStoreManager::includedInBindings(Store store, const MemRegion *region) const { RegionBindings B = GetRegionBindings(store); region = region->getBaseRegion(); for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) { const BindingKey &K = it.getKey(); if (region == K.getRegion()) return true; const SVal &D = it.getData(); if (const MemRegion *r = D.getAsRegion()) if (r == region) return true; } return false; } //===----------------------------------------------------------------------===// // Binding values to regions. //===----------------------------------------------------------------------===// StoreRef RegionStoreManager::Remove(Store store, Loc L) { if (isa<loc::MemRegionVal>(L)) if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion()) return StoreRef(removeBinding(GetRegionBindings(store), R).getRootWithoutRetain(), *this); return StoreRef(store, *this); } StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) { if (isa<loc::ConcreteInt>(L)) return StoreRef(store, *this); // If we get here, the location should be a region. const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion(); // Check if the region is a struct region. if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) if (TR->getValueType()->isStructureOrClassType()) return BindStruct(store, TR, V); if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { if (ER->getIndex().isZeroConstant()) { if (const TypedValueRegion *superR = dyn_cast<TypedValueRegion>(ER->getSuperRegion())) { QualType superTy = superR->getValueType(); // For now, just invalidate the fields of the struct/union/class. // This is for test rdar_test_7185607 in misc-ps-region-store.m. // FIXME: Precisely handle the fields of the record. if (superTy->isStructureOrClassType()) return KillStruct(store, superR, UnknownVal()); } } } else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { // Binding directly to a symbolic region should be treated as binding // to element 0. QualType T = SR->getSymbol()->getType(Ctx); // FIXME: Is this the right way to handle symbols that are references? if (const PointerType *PT = T->getAs<PointerType>()) T = PT->getPointeeType(); else T = T->getAs<ReferenceType>()->getPointeeType(); R = GetElementZeroRegion(SR, T); } // Perform the binding. RegionBindings B = GetRegionBindings(store); return StoreRef(addBinding(B, R, BindingKey::Direct, V).getRootWithoutRetain(), *this); } StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR, SVal InitVal) { QualType T = VR->getDecl()->getType(); if (T->isArrayType()) return BindArray(store, VR, InitVal); if (T->isStructureOrClassType()) return BindStruct(store, VR, InitVal); return Bind(store, svalBuilder.makeLoc(VR), InitVal); } // FIXME: this method should be merged into Bind(). StoreRef RegionStoreManager::BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL, const LocationContext *LC, SVal V) { return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V); } StoreRef RegionStoreManager::setImplicitDefaultValue(Store store, const MemRegion *R, QualType T) { RegionBindings B = GetRegionBindings(store); SVal V; if (Loc::isLocType(T)) V = svalBuilder.makeNull(); else if (T->isIntegerType()) V = svalBuilder.makeZeroVal(T); else if (T->isStructureOrClassType() || T->isArrayType()) { // Set the default value to a zero constant when it is a structure // or array. The type doesn't really matter. V = svalBuilder.makeZeroVal(Ctx.IntTy); } else { // We can't represent values of this type, but we still need to set a value // to record that the region has been initialized. // If this assertion ever fires, a new case should be added above -- we // should know how to default-initialize any value we can symbolicate. assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); V = UnknownVal(); } return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this); } StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R, SVal Init) { const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); QualType ElementTy = AT->getElementType(); Optional<uint64_t> Size; if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) Size = CAT->getSize().getZExtValue(); // Check if the init expr is a string literal. if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) { const StringRegion *S = cast<StringRegion>(MRV->getRegion()); // Treat the string as a lazy compound value. nonloc::LazyCompoundVal LCV = cast<nonloc::LazyCompoundVal>(svalBuilder. makeLazyCompoundVal(StoreRef(store, *this), S)); return CopyLazyBindings(LCV, store, R); } // Handle lazy compound values. if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init)) return CopyLazyBindings(*LCV, store, R); // Remaining case: explicit compound values. if (Init.isUnknown()) return setImplicitDefaultValue(store, R, ElementTy); nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); uint64_t i = 0; StoreRef newStore(store, *this); for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { // The init list might be shorter than the array length. if (VI == VE) break; const NonLoc &Idx = svalBuilder.makeArrayIndex(i); const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); if (ElementTy->isStructureOrClassType()) newStore = BindStruct(newStore.getStore(), ER, *VI); else if (ElementTy->isArrayType()) newStore = BindArray(newStore.getStore(), ER, *VI); else newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI); } // If the init list is shorter than the array length, set the // array default value. if (Size.hasValue() && i < Size.getValue()) newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy); return newStore; } StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R, SVal V) { if (!Features.supportsFields()) return StoreRef(store, *this); QualType T = R->getValueType(); assert(T->isStructureOrClassType()); const RecordType* RT = T->getAs<RecordType>(); RecordDecl *RD = RT->getDecl(); if (!RD->isCompleteDefinition()) return StoreRef(store, *this); // Handle lazy compound values. if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V)) return CopyLazyBindings(*LCV, store, R); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) { SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal(); return KillStruct(store, R, SV); } nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI, FE; StoreRef newStore(store, *this); for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { if (VI == VE) break; // Skip any unnamed bitfields to stay in sync with the initializers. if ((*FI)->isUnnamedBitfield()) continue; QualType FTy = (*FI)->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (FTy->isArrayType()) newStore = BindArray(newStore.getStore(), FR, *VI); else if (FTy->isStructureOrClassType()) newStore = BindStruct(newStore.getStore(), FR, *VI); else newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI); ++VI; } // There may be fewer values in the initialize list than the fields of struct. if (FI != FE) { RegionBindings B = GetRegionBindings(newStore.getStore()); B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false)); newStore = StoreRef(B.getRootWithoutRetain(), *this); } return newStore; } StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R, SVal DefaultVal) { BindingKey key = BindingKey::Make(R, BindingKey::Default); // The BindingKey may be "invalid" if we cannot handle the region binding // explicitly. One example is something like array[index], where index // is a symbolic value. In such cases, we want to invalidate the entire // array, as the index assignment could have been to any element. In // the case of nested symbolic indices, we need to march up the region // hierarchy untile we reach a region whose binding we can reason about. const SubRegion *subReg = R; while (!key.isValid()) { if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) { subReg = tmp; key = BindingKey::Make(tmp, BindingKey::Default); } else break; } // Remove the old bindings, using 'subReg' as the root of all regions // we will invalidate. RegionBindings B = GetRegionBindings(store); OwningPtr<RegionStoreSubRegionMap> SubRegions(getRegionStoreSubRegionMap(store)); RemoveSubRegionBindings(B, subReg, *SubRegions); // Set the default value of the struct region to "unknown". if (!key.isValid()) return StoreRef(B.getRootWithoutRetain(), *this); return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this); } StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V, Store store, const TypedRegion *R) { // Nuke the old bindings stemming from R. RegionBindings B = GetRegionBindings(store); OwningPtr<RegionStoreSubRegionMap> SubRegions(getRegionStoreSubRegionMap(store)); // B and DVM are updated after the call to RemoveSubRegionBindings. RemoveSubRegionBindings(B, R, *SubRegions.get()); // Now copy the bindings. This amounts to just binding 'V' to 'R'. This // results in a zero-copy algorithm. return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this); } //===----------------------------------------------------------------------===// // "Raw" retrievals and bindings. //===----------------------------------------------------------------------===// RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K, SVal V) { if (!K.isValid()) return B; return RBFactory.add(B, K, V); } RegionBindings RegionStoreManager::addBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k, SVal V) { return addBinding(B, BindingKey::Make(R, k), V); } const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) { if (!K.isValid()) return NULL; return B.lookup(K); } const SVal *RegionStoreManager::lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k) { return lookup(B, BindingKey::Make(R, k)); } RegionBindings RegionStoreManager::removeBinding(RegionBindings B, BindingKey K) { if (!K.isValid()) return B; return RBFactory.remove(B, K); } RegionBindings RegionStoreManager::removeBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k){ return removeBinding(B, BindingKey::Make(R, k)); } //===----------------------------------------------------------------------===// // State pruning. //===----------------------------------------------------------------------===// namespace { class removeDeadBindingsWorker : public ClusterAnalysis<removeDeadBindingsWorker> { SmallVector<const SymbolicRegion*, 12> Postponed; SymbolReaper &SymReaper; const StackFrameContext *CurrentLCtx; public: removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindings b, SymbolReaper &symReaper, const StackFrameContext *LCtx) : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, /* includeGlobals = */ false), SymReaper(symReaper), CurrentLCtx(LCtx) {} // Called by ClusterAnalysis. void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C); void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); void VisitBindingKey(BindingKey K); bool UpdatePostponed(); void VisitBinding(SVal V); }; } void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) { if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { if (SymReaper.isLive(VR)) AddToWorkList(baseR, C); return; } if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { if (SymReaper.isLive(SR->getSymbol())) AddToWorkList(SR, C); else Postponed.push_back(SR); return; } if (isa<NonStaticGlobalSpaceRegion>(baseR)) { AddToWorkList(baseR, C); return; } // CXXThisRegion in the current or parent location context is live. if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { const StackArgumentsSpaceRegion *StackReg = cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); const StackFrameContext *RegCtx = StackReg->getStackFrame(); if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)) AddToWorkList(TR, C); } } void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) { for ( ; I != E; ++I) VisitBindingKey(*I); } void removeDeadBindingsWorker::VisitBinding(SVal V) { // Is it a LazyCompoundVal? All referenced regions are live as well. if (const nonloc::LazyCompoundVal *LCS = dyn_cast<nonloc::LazyCompoundVal>(&V)) { const MemRegion *LazyR = LCS->getRegion(); RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion()); if (baseR && baseR->isSubRegionOf(LazyR)) VisitBinding(RI.getData()); } return; } // If V is a region, then add it to the worklist. if (const MemRegion *R = V.getAsRegion()) AddToWorkList(R); // Update the set of live symbols. for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI) SymReaper.markLive(*SI); } void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) { const MemRegion *R = K.getRegion(); // Mark this region "live" by adding it to the worklist. This will cause // use to visit all regions in the cluster (if we haven't visited them // already). if (AddToWorkList(R)) { // Mark the symbol for any live SymbolicRegion as "live". This means we // should continue to track that symbol. if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R)) SymReaper.markLive(SymR->getSymbol()); // For BlockDataRegions, enqueue the VarRegions for variables marked // with __block (passed-by-reference). // via BlockDeclRefExprs. if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) { for (BlockDataRegion::referenced_vars_iterator RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end(); RI != RE; ++RI) { if ((*RI)->getDecl()->getAttr<BlocksAttr>()) AddToWorkList(*RI); } // No possible data bindings on a BlockDataRegion. return; } } // Visit the data binding for K. if (const SVal *V = RM.lookup(B, K)) VisitBinding(*V); } bool removeDeadBindingsWorker::UpdatePostponed() { // See if any postponed SymbolicRegions are actually live now, after // having done a scan. bool changed = false; for (SmallVectorImpl<const SymbolicRegion*>::iterator I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) { if (SymReaper.isLive(SR->getSymbol())) { changed |= AddToWorkList(SR); *I = NULL; } } } return changed; } StoreRef RegionStoreManager::removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper) { RegionBindings B = GetRegionBindings(store); removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); W.GenerateClusters(); // Enqueue the region roots onto the worklist. for (SymbolReaper::region_iterator I = SymReaper.region_begin(), E = SymReaper.region_end(); I != E; ++I) { W.AddToWorkList(*I); } do W.RunWorkList(); while (W.UpdatePostponed()); // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const BindingKey &K = I.getKey(); // If the cluster has been visited, we know the region has been marked. if (W.isVisited(K.getRegion())) continue; // Remove the dead entry. B = removeBinding(B, K); // Mark all non-live symbols that this binding references as dead. if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion())) SymReaper.maybeDead(SymR->getSymbol()); SVal X = I.getData(); SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); } return StoreRef(B.getRootWithoutRetain(), *this); } StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state, const LocationContext *callerCtx, const StackFrameContext *calleeCtx) { FunctionDecl const *FD = cast<FunctionDecl>(calleeCtx->getDecl()); FunctionDecl::param_const_iterator PI = FD->param_begin(), PE = FD->param_end(); StoreRef store = StoreRef(state->getStore(), *this); if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) { CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); // Copy the arg expression value to the arg variables. We check that // PI != PE because the actual number of arguments may be different than // the function declaration. for (; AI != AE && PI != PE; ++AI, ++PI) { SVal ArgVal = state->getSVal(*AI, callerCtx); store = Bind(store.getStore(), svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)), ArgVal); } } else if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) { CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); // Copy the arg expression value to the arg variables. for (; AI != AE; ++AI, ++PI) { SVal ArgVal = state->getSVal(*AI, callerCtx); store = Bind(store.getStore(), svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)), ArgVal); } } else assert(isa<CXXDestructorDecl>(calleeCtx->getDecl())); return store; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void RegionStoreManager::print(Store store, raw_ostream &OS, const char* nl, const char *sep) { RegionBindings B = GetRegionBindings(store); OS << "Store (direct and default bindings):" << nl; for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) OS << ' ' << I.getKey() << " : " << I.getData() << nl; }