Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SVals.cpp |
//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SVal, Loc, and NonLoc, classes that represent // abstract r-values for use with path-sensitive value tracking. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/AST/ExprObjC.h" #include "clang/Basic/IdentifierTable.h" using namespace clang; using namespace ento; using llvm::APSInt; //===----------------------------------------------------------------------===// // Symbol iteration within an SVal. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// bool SVal::hasConjuredSymbol() const { if (const nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(this)) { SymbolRef sym = SV->getSymbol(); if (isa<SymbolConjured>(sym)) return true; } if (const loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(this)) { const MemRegion *R = RV->getRegion(); if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { SymbolRef sym = SR->getSymbol(); if (isa<SymbolConjured>(sym)) return true; } } return false; } const FunctionDecl *SVal::getAsFunctionDecl() const { if (const loc::MemRegionVal* X = dyn_cast<loc::MemRegionVal>(this)) { const MemRegion* R = X->getRegion(); if (const FunctionTextRegion *CTR = R->getAs<FunctionTextRegion>()) return CTR->getDecl(); } return 0; } /// \brief If this SVal is a location (subclasses Loc) and wraps a symbol, /// return that SymbolRef. Otherwise return 0. /// /// Implicit casts (ex: void* -> char*) can turn Symbolic region into Element /// region. If that is the case, gets the underlining region. SymbolRef SVal::getAsLocSymbol() const { // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? if (const nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(this)) return X->getLoc().getAsLocSymbol(); if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this)) { const MemRegion *R = X->stripCasts(); if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R)) return SymR->getSymbol(); } return 0; } /// Get the symbol in the SVal or its base region. SymbolRef SVal::getLocSymbolInBase() const { const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this); if (!X) return 0; const MemRegion *R = X->getRegion(); while (const SubRegion *SR = dyn_cast<SubRegion>(R)) { if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR)) return SymR->getSymbol(); else R = SR->getSuperRegion(); } return 0; } // TODO: The next 3 functions have to be simplified. /// \brief If this SVal wraps a symbol return that SymbolRef. /// Otherwise return 0. SymbolRef SVal::getAsSymbol() const { // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this)) return X->getSymbol(); return getAsLocSymbol(); } /// getAsSymbolicExpression - If this Sval wraps a symbolic expression then /// return that expression. Otherwise return NULL. const SymExpr *SVal::getAsSymbolicExpression() const { if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this)) return X->getSymbol(); return getAsSymbol(); } const SymExpr* SVal::getAsSymExpr() const { const SymExpr* Sym = getAsSymbol(); if (!Sym) Sym = getAsSymbolicExpression(); return Sym; } const MemRegion *SVal::getAsRegion() const { if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this)) return X->getRegion(); if (const nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(this)) { return X->getLoc().getAsRegion(); } return 0; } const MemRegion *loc::MemRegionVal::stripCasts() const { const MemRegion *R = getRegion(); return R ? R->StripCasts() : NULL; } const void *nonloc::LazyCompoundVal::getStore() const { return static_cast<const LazyCompoundValData*>(Data)->getStore(); } const TypedRegion *nonloc::LazyCompoundVal::getRegion() const { return static_cast<const LazyCompoundValData*>(Data)->getRegion(); } //===----------------------------------------------------------------------===// // Other Iterators. //===----------------------------------------------------------------------===// nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const { return getValue()->begin(); } nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const { return getValue()->end(); } //===----------------------------------------------------------------------===// // Useful predicates. //===----------------------------------------------------------------------===// bool SVal::isConstant() const { return isa<nonloc::ConcreteInt>(this) || isa<loc::ConcreteInt>(this); } bool SVal::isConstant(int I) const { if (isa<loc::ConcreteInt>(*this)) return cast<loc::ConcreteInt>(*this).getValue() == I; else if (isa<nonloc::ConcreteInt>(*this)) return cast<nonloc::ConcreteInt>(*this).getValue() == I; else return false; } bool SVal::isZeroConstant() const { return isConstant(0); } //===----------------------------------------------------------------------===// // Transfer function dispatch for Non-Locs. //===----------------------------------------------------------------------===// SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder, BinaryOperator::Opcode Op, const nonloc::ConcreteInt& R) const { const llvm::APSInt* X = svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue()); if (X) return nonloc::ConcreteInt(*X); else return UndefinedVal(); } nonloc::ConcreteInt nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const { return svalBuilder.makeIntVal(~getValue()); } nonloc::ConcreteInt nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const { return svalBuilder.makeIntVal(-getValue()); } //===----------------------------------------------------------------------===// // Transfer function dispatch for Locs. //===----------------------------------------------------------------------===// SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op, const loc::ConcreteInt& R) const { assert (Op == BO_Add || Op == BO_Sub || (Op >= BO_LT && Op <= BO_NE)); const llvm::APSInt* X = BasicVals.evalAPSInt(Op, getValue(), R.getValue()); if (X) return loc::ConcreteInt(*X); else return UndefinedVal(); } //===----------------------------------------------------------------------===// // Pretty-Printing. //===----------------------------------------------------------------------===// void SVal::dump() const { dumpToStream(llvm::errs()); } void SVal::dumpToStream(raw_ostream &os) const { switch (getBaseKind()) { case UnknownKind: os << "Unknown"; break; case NonLocKind: cast<NonLoc>(this)->dumpToStream(os); break; case LocKind: cast<Loc>(this)->dumpToStream(os); break; case UndefinedKind: os << "Undefined"; break; } } void NonLoc::dumpToStream(raw_ostream &os) const { switch (getSubKind()) { case nonloc::ConcreteIntKind: { const nonloc::ConcreteInt& C = *cast<nonloc::ConcreteInt>(this); if (C.getValue().isUnsigned()) os << C.getValue().getZExtValue(); else os << C.getValue().getSExtValue(); os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S') << C.getValue().getBitWidth() << 'b'; break; } case nonloc::SymbolValKind: { os << cast<nonloc::SymbolVal>(this)->getSymbol(); break; } case nonloc::LocAsIntegerKind: { const nonloc::LocAsInteger& C = *cast<nonloc::LocAsInteger>(this); os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]"; break; } case nonloc::CompoundValKind: { const nonloc::CompoundVal& C = *cast<nonloc::CompoundVal>(this); os << "compoundVal{"; bool first = true; for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) { if (first) { os << ' '; first = false; } else os << ", "; (*I).dumpToStream(os); } os << "}"; break; } case nonloc::LazyCompoundValKind: { const nonloc::LazyCompoundVal &C = *cast<nonloc::LazyCompoundVal>(this); os << "lazyCompoundVal{" << const_cast<void *>(C.getStore()) << ',' << C.getRegion() << '}'; break; } default: assert (false && "Pretty-printed not implemented for this NonLoc."); break; } } void Loc::dumpToStream(raw_ostream &os) const { switch (getSubKind()) { case loc::ConcreteIntKind: os << cast<loc::ConcreteInt>(this)->getValue().getZExtValue() << " (Loc)"; break; case loc::GotoLabelKind: os << "&&" << cast<loc::GotoLabel>(this)->getLabel()->getName(); break; case loc::MemRegionKind: os << '&' << cast<loc::MemRegionVal>(this)->getRegion()->getString(); break; case loc::ObjCPropRefKind: { const ObjCPropertyRefExpr *E = cast<loc::ObjCPropRef>(this)->getPropRefExpr(); os << "objc-prop{"; if (E->isSuperReceiver()) os << "super."; else if (E->getBase()) os << "<base>."; if (E->isImplicitProperty()) os << E->getImplicitPropertyGetter()->getSelector().getAsString(); else os << E->getExplicitProperty()->getName(); os << "}"; break; } default: llvm_unreachable("Pretty-printing not implemented for this Loc."); } }