Current Path : /compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/68247/root/usr/src/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp |
//== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SymbolManager, a class that manages symbolic values // created for use by ExprEngine and related classes. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; void SymExpr::anchor() { } void SymExpr::dump() const { dumpToStream(llvm::errs()); } static void print(raw_ostream &os, BinaryOperator::Opcode Op) { switch (Op) { default: llvm_unreachable("operator printing not implemented"); case BO_Mul: os << '*' ; break; case BO_Div: os << '/' ; break; case BO_Rem: os << '%' ; break; case BO_Add: os << '+' ; break; case BO_Sub: os << '-' ; break; case BO_Shl: os << "<<" ; break; case BO_Shr: os << ">>" ; break; case BO_LT: os << "<" ; break; case BO_GT: os << '>' ; break; case BO_LE: os << "<=" ; break; case BO_GE: os << ">=" ; break; case BO_EQ: os << "==" ; break; case BO_NE: os << "!=" ; break; case BO_And: os << '&' ; break; case BO_Xor: os << '^' ; break; case BO_Or: os << '|' ; break; } } void SymIntExpr::dumpToStream(raw_ostream &os) const { os << '('; getLHS()->dumpToStream(os); os << ") "; print(os, getOpcode()); os << ' ' << getRHS().getZExtValue(); if (getRHS().isUnsigned()) os << 'U'; } void IntSymExpr::dumpToStream(raw_ostream &os) const { os << ' ' << getLHS().getZExtValue(); if (getLHS().isUnsigned()) os << 'U'; print(os, getOpcode()); os << '('; getRHS()->dumpToStream(os); os << ") "; } void SymSymExpr::dumpToStream(raw_ostream &os) const { os << '('; getLHS()->dumpToStream(os); os << ") "; os << '('; getRHS()->dumpToStream(os); os << ')'; } void SymbolCast::dumpToStream(raw_ostream &os) const { os << '(' << ToTy.getAsString() << ") ("; Operand->dumpToStream(os); os << ')'; } void SymbolConjured::dumpToStream(raw_ostream &os) const { os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}'; } void SymbolDerived::dumpToStream(raw_ostream &os) const { os << "derived_$" << getSymbolID() << '{' << getParentSymbol() << ',' << getRegion() << '}'; } void SymbolExtent::dumpToStream(raw_ostream &os) const { os << "extent_$" << getSymbolID() << '{' << getRegion() << '}'; } void SymbolMetadata::dumpToStream(raw_ostream &os) const { os << "meta_$" << getSymbolID() << '{' << getRegion() << ',' << T.getAsString() << '}'; } void SymbolData::anchor() { } void SymbolRegionValue::dumpToStream(raw_ostream &os) const { os << "reg_$" << getSymbolID() << "<" << R << ">"; } bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const { return itr == X.itr; } bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const { return itr != X.itr; } SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) { itr.push_back(SE); while (!isa<SymbolData>(itr.back())) expand(); } SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() { assert(!itr.empty() && "attempting to iterate on an 'end' iterator"); assert(isa<SymbolData>(itr.back())); itr.pop_back(); if (!itr.empty()) while (!isa<SymbolData>(itr.back())) expand(); return *this; } SymbolRef SymExpr::symbol_iterator::operator*() { assert(!itr.empty() && "attempting to dereference an 'end' iterator"); return cast<SymbolData>(itr.back()); } void SymExpr::symbol_iterator::expand() { const SymExpr *SE = itr.back(); itr.pop_back(); switch (SE->getKind()) { case SymExpr::RegionValueKind: case SymExpr::ConjuredKind: case SymExpr::DerivedKind: case SymExpr::ExtentKind: case SymExpr::MetadataKind: return; case SymExpr::CastSymbolKind: itr.push_back(cast<SymbolCast>(SE)->getOperand()); return; case SymExpr::SymIntKind: itr.push_back(cast<SymIntExpr>(SE)->getLHS()); return; case SymExpr::IntSymKind: itr.push_back(cast<IntSymExpr>(SE)->getRHS()); return; case SymExpr::SymSymKind: { const SymSymExpr *x = cast<SymSymExpr>(SE); itr.push_back(x->getLHS()); itr.push_back(x->getRHS()); return; } } llvm_unreachable("unhandled expansion case"); } const SymbolRegionValue* SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) { llvm::FoldingSetNodeID profile; SymbolRegionValue::Profile(profile, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>(); new (SD) SymbolRegionValue(SymbolCounter, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolRegionValue>(SD); } const SymbolConjured* SymbolManager::getConjuredSymbol(const Stmt *E, const LocationContext *LCtx, QualType T, unsigned Count, const void *SymbolTag) { llvm::FoldingSetNodeID profile; SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>(); new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolConjured>(SD); } const SymbolDerived* SymbolManager::getDerivedSymbol(SymbolRef parentSymbol, const TypedValueRegion *R) { llvm::FoldingSetNodeID profile; SymbolDerived::Profile(profile, parentSymbol, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>(); new (SD) SymbolDerived(SymbolCounter, parentSymbol, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolDerived>(SD); } const SymbolExtent* SymbolManager::getExtentSymbol(const SubRegion *R) { llvm::FoldingSetNodeID profile; SymbolExtent::Profile(profile, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>(); new (SD) SymbolExtent(SymbolCounter, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolExtent>(SD); } const SymbolMetadata* SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T, unsigned Count, const void *SymbolTag) { llvm::FoldingSetNodeID profile; SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>(); new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast<SymbolMetadata>(SD); } const SymbolCast* SymbolManager::getCastSymbol(const SymExpr *Op, QualType From, QualType To) { llvm::FoldingSetNodeID ID; SymbolCast::Profile(ID, Op, From, To); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>(); new (data) SymbolCast(Op, From, To); DataSet.InsertNode(data, InsertPos); } return cast<SymbolCast>(data); } const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt& v, QualType t) { llvm::FoldingSetNodeID ID; SymIntExpr::Profile(ID, lhs, op, v, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>(); new (data) SymIntExpr(lhs, op, v, t); DataSet.InsertNode(data, InsertPos); } return cast<SymIntExpr>(data); } const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType t) { llvm::FoldingSetNodeID ID; IntSymExpr::Profile(ID, lhs, op, rhs, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>(); new (data) IntSymExpr(lhs, op, rhs, t); DataSet.InsertNode(data, InsertPos); } return cast<IntSymExpr>(data); } const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType t) { llvm::FoldingSetNodeID ID; SymSymExpr::Profile(ID, lhs, op, rhs, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>(); new (data) SymSymExpr(lhs, op, rhs, t); DataSet.InsertNode(data, InsertPos); } return cast<SymSymExpr>(data); } QualType SymbolConjured::getType(ASTContext&) const { return T; } QualType SymbolDerived::getType(ASTContext &Ctx) const { return R->getValueType(); } QualType SymbolExtent::getType(ASTContext &Ctx) const { return Ctx.getSizeType(); } QualType SymbolMetadata::getType(ASTContext&) const { return T; } QualType SymbolRegionValue::getType(ASTContext &C) const { return R->getValueType(); } SymbolManager::~SymbolManager() { for (SymbolDependTy::const_iterator I = SymbolDependencies.begin(), E = SymbolDependencies.end(); I != E; ++I) { delete I->second; } } bool SymbolManager::canSymbolicate(QualType T) { T = T.getCanonicalType(); if (Loc::isLocType(T)) return true; if (T->isIntegerType()) return T->isScalarType(); if (T->isRecordType() && !T->isUnionType()) return true; return false; } void SymbolManager::addSymbolDependency(const SymbolRef Primary, const SymbolRef Dependent) { SymbolDependTy::iterator I = SymbolDependencies.find(Primary); SymbolRefSmallVectorTy *dependencies = 0; if (I == SymbolDependencies.end()) { dependencies = new SymbolRefSmallVectorTy(); SymbolDependencies[Primary] = dependencies; } else { dependencies = I->second; } dependencies->push_back(Dependent); } const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols( const SymbolRef Primary) { SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary); if (I == SymbolDependencies.end()) return 0; return I->second; } void SymbolReaper::markDependentsLive(SymbolRef sym) { // Do not mark dependents more then once. SymbolMapTy::iterator LI = TheLiving.find(sym); assert(LI != TheLiving.end() && "The primary symbol is not live."); if (LI->second == HaveMarkedDependents) return; LI->second = HaveMarkedDependents; if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) { for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(), E = Deps->end(); I != E; ++I) { if (TheLiving.find(*I) != TheLiving.end()) continue; markLive(*I); } } } void SymbolReaper::markLive(SymbolRef sym) { TheLiving[sym] = NotProcessed; TheDead.erase(sym); markDependentsLive(sym); } void SymbolReaper::markLive(const MemRegion *region) { RegionRoots.insert(region); } void SymbolReaper::markInUse(SymbolRef sym) { if (isa<SymbolMetadata>(sym)) MetadataInUse.insert(sym); } bool SymbolReaper::maybeDead(SymbolRef sym) { if (isLive(sym)) return false; TheDead.insert(sym); return true; } bool SymbolReaper::isLiveRegion(const MemRegion *MR) { if (RegionRoots.count(MR)) return true; MR = MR->getBaseRegion(); if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) return isLive(SR->getSymbol()); if (const VarRegion *VR = dyn_cast<VarRegion>(MR)) return isLive(VR, true); // FIXME: This is a gross over-approximation. What we really need is a way to // tell if anything still refers to this region. Unlike SymbolicRegions, // AllocaRegions don't have associated symbols, though, so we don't actually // have a way to track their liveness. if (isa<AllocaRegion>(MR)) return true; if (isa<CXXThisRegion>(MR)) return true; if (isa<MemSpaceRegion>(MR)) return true; return false; } bool SymbolReaper::isLive(SymbolRef sym) { if (TheLiving.count(sym)) { markDependentsLive(sym); return true; } if (const SymbolDerived *derived = dyn_cast<SymbolDerived>(sym)) { if (isLive(derived->getParentSymbol())) { markLive(sym); return true; } return false; } if (const SymbolExtent *extent = dyn_cast<SymbolExtent>(sym)) { if (isLiveRegion(extent->getRegion())) { markLive(sym); return true; } return false; } if (const SymbolMetadata *metadata = dyn_cast<SymbolMetadata>(sym)) { if (MetadataInUse.count(sym)) { if (isLiveRegion(metadata->getRegion())) { markLive(sym); MetadataInUse.erase(sym); return true; } } return false; } // Interogate the symbol. It may derive from an input value to // the analyzed function/method. return isa<SymbolRegionValue>(sym); } bool SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const { if (LCtx != ELCtx) { // If the reaper's location context is a parent of the expression's // location context, then the expression value is now "out of scope". if (LCtx->isParentOf(ELCtx)) return false; return true; } return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal); } bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{ const StackFrameContext *VarContext = VR->getStackFrame(); const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame(); if (VarContext == CurrentContext) { if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl())) return true; if (!includeStoreBindings) return false; unsigned &cachedQuery = const_cast<SymbolReaper*>(this)->includedRegionCache[VR]; if (cachedQuery) { return cachedQuery == 1; } // Query the store to see if the region occurs in any live bindings. if (Store store = reapedStore.getStore()) { bool hasRegion = reapedStore.getStoreManager().includedInBindings(store, VR); cachedQuery = hasRegion ? 1 : 2; return hasRegion; } return false; } return VarContext->isParentOf(CurrentContext); } SymbolVisitor::~SymbolVisitor() {}