Current Path : /compat/linux/proc/self/root/sys/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/sys/contrib/octeon-sdk/cvmx-nand.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * * Interface to the NAND flash controller. * See cvmx-nand.h for usage documentation and notes. * * <hr>$Revision: 35726 $<hr> */ #ifdef CVMX_BUILD_FOR_LINUX_KERNEL #include <linux/module.h> #include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx-clock.h> #include <asm/octeon/cvmx-nand.h> #include <asm/octeon/cvmx-ndf-defs.h> #include <asm/octeon/cvmx-swap.h> #include <asm/octeon/cvmx-bootmem.h> #else #include "cvmx.h" #include "cvmx-nand.h" #include "cvmx-swap.h" #include "cvmx-bootmem.h" #endif #define NAND_COMMAND_READ_ID 0x90 #define NAND_COMMAND_READ_PARAM_PAGE 0xec #define NAND_COMMAND_RESET 0xff #define NAND_COMMAND_STATUS 0x70 #define NAND_COMMAND_READ 0x00 #define NAND_COMMAND_READ_FIN 0x30 #define NAND_COMMAND_ERASE 0x60 #define NAND_COMMAND_ERASE_FIN 0xd0 #define NAND_COMMAND_PROGRAM 0x80 #define NAND_COMMAND_PROGRAM_FIN 0x10 #define NAND_TIMEOUT_USECS 1000000 #define CVMX_NAND_ROUNDUP(_Dividend, _Divisor) (((_Dividend)+(_Divisor-1))/(_Divisor)) #undef min #define min(X, Y) \ ({ typeof (X) __x = (X), __y = (Y); \ (__x < __y) ? __x : __y; }) #undef max #define max(X, Y) \ ({ typeof (X) __x = (X), __y = (Y); \ (__x > __y) ? __x : __y; }) /* Structure to store the parameters that we care about that ** describe the ONFI speed modes. This is used to configure ** the flash timing to match what is reported in the ** parameter page of the ONFI flash chip. */ typedef struct { int twp; int twh; int twc; int tclh; int tals; } onfi_speed_mode_desc_t; static const onfi_speed_mode_desc_t onfi_speed_modes[] = { {50,30,100,20,50}, /* Mode 0 */ {25,15, 45,10,25}, /* Mode 1 */ {17,15, 35,10,15}, /* Mode 2 */ {15,10, 30, 5,10}, /* Mode 3 */ {12,10, 25, 5,10}, /* Mode 4, requires EDO timings */ {10, 7, 20, 5,10}, /* Mode 5, requries EDO timings */ }; typedef enum { CVMX_NAND_STATE_16BIT = 1<<0, } cvmx_nand_state_flags_t; /** * Structure used to store data about the NAND devices hooked * to the bootbus. */ typedef struct { int page_size; int oob_size; int pages_per_block; int blocks; int tim_mult; int tim_par[8]; int clen[4]; int alen[4]; int rdn[4]; int wrn[2]; int onfi_timing; cvmx_nand_state_flags_t flags; } cvmx_nand_state_t; /** * Array indexed by bootbus chip select with information * about NAND devices. */ #if defined(CVMX_BUILD_FOR_UBOOT) && CONFIG_OCTEON_NAND_STAGE2 /* For u-boot nand boot we need to play some tricks to be able ** to use this early in boot. We put them in a special section that is merged ** with the text segment. (Using the text segment directly results in an assembler warning.) */ #define USE_DATA_IN_TEXT #endif #ifdef USE_DATA_IN_TEXT static uint8_t cvmx_nand_buffer[CVMX_NAND_MAX_PAGE_AND_OOB_SIZE] __attribute__((aligned(8))) __attribute__ ((section (".data_in_text"))); static cvmx_nand_state_t cvmx_nand_state[8] __attribute__ ((section (".data_in_text"))); static cvmx_nand_state_t cvmx_nand_default __attribute__ ((section (".data_in_text"))); static cvmx_nand_initialize_flags_t cvmx_nand_flags __attribute__ ((section (".data_in_text"))); static int debug_indent __attribute__ ((section (".data_in_text"))); #else static CVMX_SHARED cvmx_nand_state_t cvmx_nand_state[8]; static CVMX_SHARED cvmx_nand_state_t cvmx_nand_default; static CVMX_SHARED cvmx_nand_initialize_flags_t cvmx_nand_flags; static CVMX_SHARED uint8_t *cvmx_nand_buffer = NULL; static int debug_indent = 0; #endif static CVMX_SHARED const char *cvmx_nand_opcode_labels[] = { "NOP", /* 0 */ "Timing", /* 1 */ "Wait", /* 2 */ "Chip Enable / Disable", /* 3 */ "CLE", /* 4 */ "ALE", /* 5 */ "6 - Unknown", /* 6 */ "7 - Unknown", /* 7 */ "Write", /* 8 */ "Read", /* 9 */ "Read EDO", /* 10 */ "Wait Status", /* 11 */ "12 - Unknown", /* 12 */ "13 - Unknown", /* 13 */ "14 - Unknown", /* 14 */ "Bus Aquire / Release" /* 15 */ }; #define ULL unsigned long long /* This macro logs out whenever a function is called if debugging is on */ #define CVMX_NAND_LOG_CALLED() \ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \ cvmx_dprintf("%*s%s: called\n", 2*debug_indent++, "", __FUNCTION__); /* This macro logs out each function parameter if debugging is on */ #define CVMX_NAND_LOG_PARAM(format, param) \ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \ cvmx_dprintf("%*s%s: param %s = " format "\n", 2*debug_indent, "", __FUNCTION__, #param, param); /* This macro logs out when a function returns a value */ #define CVMX_NAND_RETURN(v) \ do { \ typeof(v) r = v; \ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \ cvmx_dprintf("%*s%s: returned %s(%d)\n", 2*--debug_indent, "", __FUNCTION__, #v, r); \ return r; \ } while (0); /* This macro logs out when a function doesn't return a value */ #define CVMX_NAND_RETURN_NOTHING() \ do { \ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \ cvmx_dprintf("%*s%s: returned\n", 2*--debug_indent, "", __FUNCTION__); \ return; \ } while (0); /* Compute the CRC for the ONFI parameter page. Adapted from sample code ** in the specification. */ static uint16_t __onfi_parameter_crc_compute(uint8_t *data) { const int order = 16; // Order of the CRC-16 unsigned long i, j, c, bit; unsigned long crc = 0x4F4E; // Initialize the shift register with 0x4F4E unsigned long crcmask = ((((unsigned long)1<<(order-1))-1)<<1)|1; unsigned long crchighbit = (unsigned long)1<<(order-1); for (i = 0; i < 254; i++) { c = (unsigned long)data[i]; for (j = 0x80; j; j >>= 1) { bit = crc & crchighbit; crc <<= 1; if (c & j) bit ^= crchighbit; if (bit) crc ^= 0x8005; } crc &= crcmask; } return(crc); } /** * Validate the ONFI parameter page and return a pointer to * the config values. * * @param param_page Pointer to the raw NAND data returned after a parameter page read. It will * contain at least 4 copies of the parameter structure. * * @return Pointer to a validated paramter page, or NULL if one couldn't be found. */ static cvmx_nand_onfi_param_page_t *__cvmx_nand_onfi_process(cvmx_nand_onfi_param_page_t param_page[4]) { int index; for (index=0; index<4; index++) { uint16_t crc = __onfi_parameter_crc_compute((void *)¶m_page[index]); if (crc == cvmx_le16_to_cpu(param_page[index].crc)) break; if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Paramter page %d is corrupt. (Expected CRC: 0x%04x, computed: 0x%04x)\n", __FUNCTION__, index, cvmx_le16_to_cpu(param_page[index].crc), crc); } if (index == 4) { if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: All parameter pages fail CRC check. Checking to see if any look sane.\n", __FUNCTION__); if (!memcmp(param_page, param_page + 1, 256)) { /* First and second copies match, now check some values */ if (param_page[0].pages_per_block != 0 && param_page[0].pages_per_block != 0xFFFFFFFF && param_page[0].page_data_bytes != 0 && param_page[0].page_data_bytes != 0xFFFFFFFF && param_page[0].page_spare_bytes != 0 && param_page[0].page_spare_bytes != 0xFFFF && param_page[0].blocks_per_lun != 0 && param_page[0].blocks_per_lun != 0xFFFFFFFF && param_page[0].timing_mode != 0 && param_page[0].timing_mode != 0xFFFF) { /* Looks like we have enough values to use */ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Page 0 looks sane, using even though CRC fails.\n", __FUNCTION__); index = 0; } } } if (index == 4) { cvmx_dprintf("%s: WARNING: ONFI part but no valid ONFI parameter pages found.\n", __FUNCTION__); return NULL; } if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) { cvmx_dprintf("%*sONFI Information (from copy %d in param page)\n", 2*debug_indent, "", index); debug_indent++; cvmx_dprintf("%*sonfi = %c%c%c%c\n", 2*debug_indent, "", param_page[index].onfi[0], param_page[index].onfi[1], param_page[index].onfi[2], param_page[index].onfi[3]); cvmx_dprintf("%*srevision_number = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].revision_number)); cvmx_dprintf("%*sfeatures = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].features)); cvmx_dprintf("%*soptional_commands = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].optional_commands)); cvmx_dprintf("%*smanufacturer = %12.12s\n", 2*debug_indent, "", param_page[index].manufacturer); cvmx_dprintf("%*smodel = %20.20s\n", 2*debug_indent, "", param_page[index].model); cvmx_dprintf("%*sjedec_id = 0x%x\n", 2*debug_indent, "", param_page[index].jedec_id); cvmx_dprintf("%*sdate_code = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].date_code)); cvmx_dprintf("%*spage_data_bytes = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].page_data_bytes)); cvmx_dprintf("%*spage_spare_bytes = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].page_spare_bytes)); cvmx_dprintf("%*spartial_page_data_bytes = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].partial_page_data_bytes)); cvmx_dprintf("%*spartial_page_spare_bytes = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].partial_page_spare_bytes)); cvmx_dprintf("%*spages_per_block = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].pages_per_block)); cvmx_dprintf("%*sblocks_per_lun = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].blocks_per_lun)); cvmx_dprintf("%*snumber_lun = %u\n", 2*debug_indent, "", param_page[index].number_lun); cvmx_dprintf("%*saddress_cycles = 0x%x\n", 2*debug_indent, "", param_page[index].address_cycles); cvmx_dprintf("%*sbits_per_cell = %u\n", 2*debug_indent, "", param_page[index].bits_per_cell); cvmx_dprintf("%*sbad_block_per_lun = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].bad_block_per_lun)); cvmx_dprintf("%*sblock_endurance = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].block_endurance)); cvmx_dprintf("%*sgood_blocks = %u\n", 2*debug_indent, "", param_page[index].good_blocks); cvmx_dprintf("%*sgood_block_endurance = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].good_block_endurance)); cvmx_dprintf("%*sprograms_per_page = %u\n", 2*debug_indent, "", param_page[index].programs_per_page); cvmx_dprintf("%*spartial_program_attrib = 0x%x\n", 2*debug_indent, "", param_page[index].partial_program_attrib); cvmx_dprintf("%*sbits_ecc = %u\n", 2*debug_indent, "", param_page[index].bits_ecc); cvmx_dprintf("%*sinterleaved_address_bits = 0x%x\n", 2*debug_indent, "", param_page[index].interleaved_address_bits); cvmx_dprintf("%*sinterleaved_attrib = 0x%x\n", 2*debug_indent, "", param_page[index].interleaved_attrib); cvmx_dprintf("%*spin_capacitance = %u\n", 2*debug_indent, "", param_page[index].pin_capacitance); cvmx_dprintf("%*stiming_mode = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].timing_mode)); cvmx_dprintf("%*scache_timing_mode = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].cache_timing_mode)); cvmx_dprintf("%*st_prog = %d us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_prog)); cvmx_dprintf("%*st_bers = %u us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_bers)); cvmx_dprintf("%*st_r = %u us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_r)); cvmx_dprintf("%*st_ccs = %u ns\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_ccs)); cvmx_dprintf("%*svendor_revision = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].vendor_revision)); //uint8_t vendor_specific[88]; /**< Byte 166-253: Vendor specific */ cvmx_dprintf("%*scrc = 0x%x\n", 2*debug_indent, "", param_page[index].crc); debug_indent--; } return param_page + index; } void __set_onfi_timing_mode(int *tim_par, int clocks_us, int mode) { const onfi_speed_mode_desc_t *mp = &onfi_speed_modes[mode]; /* use shorter name to fill in timing array */ int margin; int pulse_adjust; if (mode > 5) { cvmx_dprintf("%s: invalid ONFI timing mode: %d\n", __FUNCTION__, mode); return; } /* Adjust the read/write pulse duty cycle to make it more even. The cycle time ** requirement is longer than the sum of the high low times, so we exend both the high ** and low times to meet the cycle time requirement. */ pulse_adjust = ((mp->twc - mp->twh - mp->twp)/2 + 1) * clocks_us; /* Add a small margin to all timings. */ margin = 2 * clocks_us; /* Update timing parameters based on supported mode */ tim_par[1] = CVMX_NAND_ROUNDUP(mp->twp * clocks_us + margin + pulse_adjust, 1000); /* Twp, WE# pulse width */ tim_par[2] = CVMX_NAND_ROUNDUP(max(mp->twh, mp->twc - mp->twp) * clocks_us + margin + pulse_adjust, 1000); /* Tw, WE# pulse width high */ tim_par[3] = CVMX_NAND_ROUNDUP(mp->tclh * clocks_us + margin, 1000); /* Tclh, CLE hold time */ tim_par[4] = CVMX_NAND_ROUNDUP(mp->tals * clocks_us + margin, 1000); /* Tals, ALE setup time */ tim_par[5] = tim_par[3]; /* Talh, ALE hold time */ tim_par[6] = tim_par[1]; /* Trp, RE# pulse width*/ tim_par[7] = tim_par[2]; /* Treh, RE# high hold time */ } /* Internal helper function to set chip configuration to use default values */ static void __set_chip_defaults(int chip, int clocks_us) { if (!cvmx_nand_default.page_size) return; cvmx_nand_state[chip].page_size = cvmx_nand_default.page_size; /* NAND page size in bytes */ cvmx_nand_state[chip].oob_size = cvmx_nand_default.oob_size; /* NAND OOB (spare) size in bytes (per page) */ cvmx_nand_state[chip].pages_per_block = cvmx_nand_default.pages_per_block; cvmx_nand_state[chip].blocks = cvmx_nand_default.blocks; cvmx_nand_state[chip].onfi_timing = cvmx_nand_default.onfi_timing; __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing); if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) { cvmx_dprintf("%s: Using default NAND parameters.\n", __FUNCTION__); cvmx_dprintf("%s: Defaults: page size: %d, OOB size: %d, pages per block %d, blocks: %d, timing mode: %d\n", __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, cvmx_nand_state[chip].pages_per_block, cvmx_nand_state[chip].blocks, cvmx_nand_state[chip].onfi_timing); } } /* Do the proper wait for the ready/busy signal. First wait ** for busy to be valid, then wait for busy to de-assert. */ static int __wait_for_busy_done(int chip) { cvmx_nand_cmd_t cmd; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); memset(&cmd, 0, sizeof(cmd)); cmd.wait.two = 2; cmd.wait.r_b=0; cmd.wait.n = 2; /* Wait for RB to be valied (tWB). ** Use 5 * tWC as proxy. In some modes this is ** much longer than required, but does not affect performance ** since we will wait much longer for busy to de-assert. */ if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); cmd.wait.r_b=1; /* Now wait for busy to be de-asserted */ if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } /** * Called to initialize the NAND controller for use. Note that * you must be running out of L2 or memory and not NAND before * calling this function. * When probing for NAND chips, this function attempts to autoconfigure based on the NAND parts detected. * It currently supports autodetection for ONFI parts (with valid parameter pages), and some Samsung NAND * parts (decoding ID bits.) If autoconfiguration fails, the defaults set with __set_chip_defaults() * prior to calling cvmx_nand_initialize() are used. * If defaults are set and the CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE flag is provided, the defaults are used * for all chips in the active_chips mask. * * @param flags Optional initialization flags * If the CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE flag is passed, chips are not probed, * and the default parameters (if set with cvmx_nand_set_defaults) are used for all chips * in the active_chips mask. * @param active_chips * Each bit in this parameter represents a chip select that might * contain NAND flash. Any chip select present in this bitmask may * be connected to NAND. It is normally safe to pass 0xff here and * let the API probe all 8 chip selects. * * @return Zero on success, a negative cvmx_nand_status error code on failure */ cvmx_nand_status_t cvmx_nand_initialize(cvmx_nand_initialize_flags_t flags, int active_chips) { int chip; int start_chip; int stop_chip; uint64_t clocks_us; union cvmx_ndf_misc ndf_misc; uint8_t nand_id_buffer[16]; cvmx_nand_flags = flags; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("0x%x", flags); memset(&cvmx_nand_state, 0, sizeof(cvmx_nand_state)); #ifndef USE_DATA_IN_TEXT /* cvmx_nand_buffer is statically allocated in the TEXT_IN_DATA case */ if (!cvmx_nand_buffer) cvmx_nand_buffer = cvmx_bootmem_alloc(CVMX_NAND_MAX_PAGE_AND_OOB_SIZE, 128); if (!cvmx_nand_buffer) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); #endif /* Disable boot mode and reset the fifo */ ndf_misc.u64 = cvmx_read_csr(CVMX_NDF_MISC); ndf_misc.s.rd_cmd = 0; ndf_misc.s.bt_dma = 0; ndf_misc.s.bt_dis = 1; ndf_misc.s.ex_dis = 0; ndf_misc.s.rst_ff = 1; cvmx_write_csr(CVMX_NDF_MISC, ndf_misc.u64); cvmx_read_csr(CVMX_NDF_MISC); /* Bring the fifo out of reset */ cvmx_wait_usec(1); ndf_misc.s.rst_ff = 0; cvmx_write_csr(CVMX_NDF_MISC, ndf_misc.u64); cvmx_read_csr(CVMX_NDF_MISC); cvmx_wait_usec(1); /* Clear the ECC counter */ //cvmx_write_csr(CVMX_NDF_ECC_CNT, cvmx_read_csr(CVMX_NDF_ECC_CNT)); /* Clear the interrupt state */ cvmx_write_csr(CVMX_NDF_INT, cvmx_read_csr(CVMX_NDF_INT)); cvmx_write_csr(CVMX_NDF_INT_EN, 0); cvmx_write_csr(CVMX_MIO_NDF_DMA_INT, cvmx_read_csr(CVMX_MIO_NDF_DMA_INT)); cvmx_write_csr(CVMX_MIO_NDF_DMA_INT_EN, 0); /* The simulator crashes if you access non existant devices. Assume only chip select 1 is connected to NAND */ if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM) { start_chip = 1; stop_chip = 2; } else { start_chip = 0; stop_chip = 8; } /* Figure out how many clocks are in one microsecond, rounding up */ clocks_us = CVMX_NAND_ROUNDUP(cvmx_clock_get_rate(CVMX_CLOCK_SCLK), 1000000); /* If the CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE flag is set, then ** use the supplied default values to configured the chips in the ** active_chips mask */ if (cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE) { if (cvmx_nand_default.page_size) { for (chip=start_chip; chip<stop_chip; chip++) { /* Skip chip selects that the caller didn't supply in the active chip bits */ if (((1<<chip) & active_chips) == 0) continue; __set_chip_defaults(chip, clocks_us); } } CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } /* Probe and see what NAND flash we can find */ for (chip=start_chip; chip<stop_chip; chip++) { union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; cvmx_nand_onfi_param_page_t *onfi_param_page; int probe_failed; int width_16; /* Skip chip selects that the caller didn't supply in the active chip bits */ if (((1<<chip) & active_chips) == 0) continue; mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(chip)); /* Enabled regions can't be connected to NAND flash */ if (mio_boot_reg_cfg.s.en) continue; /* Start out with some sane, but slow, defaults */ cvmx_nand_state[chip].page_size = 0; cvmx_nand_state[chip].oob_size = 64; cvmx_nand_state[chip].pages_per_block = 64; cvmx_nand_state[chip].blocks = 100; /* Set timing mode to ONFI mode 0 for initial accesses */ __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, 0); /* Put the index of which timing parameter to use. The indexes are into the tim_par ** which match the indexes of the 8 timing parameters that the hardware supports. ** Index 0 is not software controlled, and is fixed by hardware. */ cvmx_nand_state[chip].clen[0] = 0; /* Command doesn't need to be held before WE */ cvmx_nand_state[chip].clen[1] = 1; /* Twp, WE# pulse width */ cvmx_nand_state[chip].clen[2] = 3; /* Tclh, CLE hold time */ cvmx_nand_state[chip].clen[3] = 1; cvmx_nand_state[chip].alen[0] = 4; /* Tals, ALE setup time */ cvmx_nand_state[chip].alen[1] = 1; /* Twp, WE# pulse width */ cvmx_nand_state[chip].alen[2] = 2; /* Twh, WE# pulse width high */ cvmx_nand_state[chip].alen[3] = 5; /* Talh, ALE hold time */ cvmx_nand_state[chip].rdn[0] = 0; cvmx_nand_state[chip].rdn[1] = 6; /* Trp, RE# pulse width*/ cvmx_nand_state[chip].rdn[2] = 7; /* Treh, RE# high hold time */ cvmx_nand_state[chip].rdn[3] = 0; cvmx_nand_state[chip].wrn[0] = 1; /* Twp, WE# pulse width */ cvmx_nand_state[chip].wrn[1] = 2; /* Twh, WE# pulse width high */ /* Probe and see if we get an answer. Read more than required, as in ** 16 bit mode only every other byte is valid. ** Here we probe twice, once in 8 bit mode, and once in 16 bit mode to autodetect ** the width. */ probe_failed = 1; for (width_16 = 0; width_16 <= 1 && probe_failed; width_16++) { probe_failed = 0; if (width_16) cvmx_nand_state[chip].flags |= CVMX_NAND_STATE_16BIT; memset(cvmx_nand_buffer, 0xff, 16); if (cvmx_nand_read_id(chip, 0x0, cvmx_ptr_to_phys(cvmx_nand_buffer), 16) < 16) { if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Failed to probe chip %d\n", __FUNCTION__, chip); probe_failed = 1; } if (*(uint32_t*)cvmx_nand_buffer == 0xffffffff || *(uint32_t*)cvmx_nand_buffer == 0x0) { if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Probe returned nothing for chip %d\n", __FUNCTION__, chip); probe_failed = 1; } } /* Neither 8 or 16 bit mode worked, so go on to next chip select */ if (probe_failed) continue; /* Save copy of ID for later use */ memcpy(nand_id_buffer, cvmx_nand_buffer, sizeof(nand_id_buffer)); if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: NAND chip %d has ID 0x%08llx\n", __FUNCTION__, chip, (unsigned long long int)*(uint64_t*)cvmx_nand_buffer); /* Read more than required, as in 16 bit mode only every other byte is valid. */ if (cvmx_nand_read_id(chip, 0x20, cvmx_ptr_to_phys(cvmx_nand_buffer), 8) < 8) { if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Failed to probe chip %d\n", __FUNCTION__, chip); continue; } if (((cvmx_nand_buffer[0] == 'O') && (cvmx_nand_buffer[1] == 'N') && (cvmx_nand_buffer[2] == 'F') && (cvmx_nand_buffer[3] == 'I'))) { /* We have an ONFI part, so read the parameter page */ cvmx_nand_read_param_page(chip, cvmx_ptr_to_phys(cvmx_nand_buffer), 2048); onfi_param_page = __cvmx_nand_onfi_process((cvmx_nand_onfi_param_page_t *)cvmx_nand_buffer); if (onfi_param_page) { /* ONFI NAND parts are described by a parameter page. Here we extract the configuration values ** from the parameter page that we need to access the chip. */ cvmx_nand_state[chip].page_size = cvmx_le32_to_cpu(onfi_param_page->page_data_bytes); cvmx_nand_state[chip].oob_size = cvmx_le16_to_cpu(onfi_param_page->page_spare_bytes); cvmx_nand_state[chip].pages_per_block = cvmx_le32_to_cpu(onfi_param_page->pages_per_block); cvmx_nand_state[chip].blocks = cvmx_le32_to_cpu(onfi_param_page->blocks_per_lun) * onfi_param_page->number_lun; if (cvmx_le16_to_cpu(onfi_param_page->timing_mode) <= 0x3f) { int mode_mask = cvmx_le16_to_cpu(onfi_param_page->timing_mode); int mode = 0; int i; for (i = 0; i < 6;i++) { if (mode_mask & (1 << i)) mode = i; } cvmx_nand_state[chip].onfi_timing = mode; } else { cvmx_dprintf("%s: Invalid timing mode (%d) in ONFI parameter page, ignoring\n", __FUNCTION__, cvmx_nand_state[chip].onfi_timing); cvmx_nand_state[chip].onfi_timing = 0; } if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Using ONFI timing mode: %d\n", __FUNCTION__, cvmx_nand_state[chip].onfi_timing); __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing); if (cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size > CVMX_NAND_MAX_PAGE_AND_OOB_SIZE) { cvmx_dprintf("%s: ERROR: Page size (%d) + OOB size (%d) is greater than max size (%d)\n", __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, CVMX_NAND_MAX_PAGE_AND_OOB_SIZE); return(CVMX_NAND_ERROR); } /* We have completed setup for this ONFI chip, so go on to next chip. */ continue; } else { /* Parameter page is not valid */ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: ONFI paramater page missing or invalid.\n", __FUNCTION__); } } else { /* We have a non-ONFI part. */ if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Chip %d doesn't support ONFI.\n", __FUNCTION__, chip); if (nand_id_buffer[0] == 0xEC) { /* We have a Samsung part, so decode part info from ID bytes */ uint64_t nand_size_bits = (64*1024*1024ULL) << ((nand_id_buffer[4] & 0x70) >> 4); /* Plane size */ cvmx_nand_state[chip].page_size = 1024 << (nand_id_buffer[3] & 0x3); /* NAND page size in bytes */ cvmx_nand_state[chip].oob_size = 128; /* NAND OOB (spare) size in bytes (per page) */ cvmx_nand_state[chip].pages_per_block = (0x10000 << ((nand_id_buffer[3] & 0x30) >> 4))/cvmx_nand_state[chip].page_size; nand_size_bits *= 1 << ((nand_id_buffer[4] & 0xc) >> 2); cvmx_nand_state[chip].oob_size = cvmx_nand_state[chip].page_size/64; if (nand_id_buffer[3] & 0x4) cvmx_nand_state[chip].oob_size *= 2; cvmx_nand_state[chip].blocks = nand_size_bits/(8ULL*cvmx_nand_state[chip].page_size*cvmx_nand_state[chip].pages_per_block); cvmx_nand_state[chip].onfi_timing = 2; if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) { cvmx_dprintf("%s: Samsung NAND chip detected, using parameters decoded from ID bytes.\n", __FUNCTION__); cvmx_dprintf("%s: Defaults: page size: %d, OOB size: %d, pages per block %d, part size: %d MBytes, timing mode: %d\n", __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, cvmx_nand_state[chip].pages_per_block, (int)(nand_size_bits/(8*1024*1024)), cvmx_nand_state[chip].onfi_timing); } __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing); if (cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size > CVMX_NAND_MAX_PAGE_AND_OOB_SIZE) { cvmx_dprintf("%s: ERROR: Page size (%d) + OOB size (%d) is greater than max size (%d)\n", __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, CVMX_NAND_MAX_PAGE_AND_OOB_SIZE); return(CVMX_NAND_ERROR); } /* We have completed setup for this Samsung chip, so go on to next chip. */ continue; } } /* We were not able to automatically identify the NAND chip parameters. If default values were configured, ** use them. */ if (cvmx_nand_default.page_size) { __set_chip_defaults(chip, clocks_us); } else { if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Unable to determine NAND parameters, and no defaults supplied.\n", __FUNCTION__); } } CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_initialize); #endif /** * Call to shutdown the NAND controller after all transactions * are done. In most setups this will never be called. * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ cvmx_nand_status_t cvmx_nand_shutdown(void) { CVMX_NAND_LOG_CALLED(); memset(&cvmx_nand_state, 0, sizeof(cvmx_nand_state)); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } /** * Returns a bitmask representing the chip selects that are * connected to NAND chips. This can be called after the * initialize to determine the actual number of NAND chips * found. Each bit in the response coresponds to a chip select. * * @return Zero if no NAND chips were found. Otherwise a bit is set for * each chip select (1<<chip). */ int cvmx_nand_get_active_chips(void) { int chip; int result = 0; for (chip=0; chip<8; chip++) { if (cvmx_nand_state[chip].page_size) result |= 1<<chip; } return result; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_get_active_chips); #endif /** * Override the timing parameters for a NAND chip * * @param chip Chip select to override * @param tim_mult * @param tim_par * @param clen * @param alen * @param rdn * @param wrn * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ cvmx_nand_status_t cvmx_nand_set_timing(int chip, int tim_mult, int tim_par[8], int clen[4], int alen[4], int rdn[4], int wrn[2]) { int i; CVMX_NAND_LOG_CALLED(); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!cvmx_nand_state[chip].page_size) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); cvmx_nand_state[chip].tim_mult = tim_mult; for (i=0;i<8;i++) cvmx_nand_state[chip].tim_par[i] = tim_par[i]; for (i=0;i<4;i++) cvmx_nand_state[chip].clen[i] = clen[i]; for (i=0;i<4;i++) cvmx_nand_state[chip].alen[i] = alen[i]; for (i=0;i<4;i++) cvmx_nand_state[chip].rdn[i] = rdn[i]; for (i=0;i<2;i++) cvmx_nand_state[chip].wrn[i] = wrn[i]; CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } /** * @INTERNAL * Get the number of free bytes in the NAND command queue * * @return Number of bytes in queue */ static inline int __cvmx_nand_get_free_cmd_bytes(void) { union cvmx_ndf_misc ndf_misc; CVMX_NAND_LOG_CALLED(); ndf_misc.u64 = cvmx_read_csr(CVMX_NDF_MISC); CVMX_NAND_RETURN((int)ndf_misc.s.fr_byt); } /** * Submit a command to the NAND command queue. Generally this * will not be used directly. Instead most programs will use the other * higher level NAND functions. * * @param cmd Command to submit * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ cvmx_nand_status_t cvmx_nand_submit(cvmx_nand_cmd_t cmd) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)cmd.u64[0]); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)cmd.u64[1]); CVMX_NAND_LOG_PARAM("%s", cvmx_nand_opcode_labels[cmd.s.op_code]); switch (cmd.s.op_code) { /* All these commands fit in one 64bit word */ case 0: /* NOP */ case 1: /* Timing */ case 2: /* WAIT */ case 3: /* Chip Enable/Disable */ case 4: /* CLE */ case 8: /* Write */ case 9: /* Read */ case 10: /* Read EDO */ case 15: /* Bus Aquire/Release */ if (__cvmx_nand_get_free_cmd_bytes() < 8) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); case 5: /* ALE commands take either one or two 64bit words */ if (cmd.ale.adr_byte_num < 5) { if (__cvmx_nand_get_free_cmd_bytes() < 8) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } else { if (__cvmx_nand_get_free_cmd_bytes() < 16) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]); cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[0]); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } case 11: /* Wait status commands take two 64bit words */ if (__cvmx_nand_get_free_cmd_bytes() < 16) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]); cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[0]); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); default: CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); } } /** * @INTERNAL * Get the number of bits required to encode the column bits. This * does not include padding to align on a byte boundary. * * @param chip NAND chip to get data for * * @return Number of column bits */ static inline int __cvmx_nand_get_column_bits(int chip) { return cvmx_pop(cvmx_nand_state[chip].page_size - 1); } /** * @INTERNAL * Get the number of bits required to encode the row bits. This * does not include padding to align on a byte boundary. * * @param chip NAND chip to get data for * * @return Number of row bits */ static inline int __cvmx_nand_get_row_bits(int chip) { return cvmx_pop(cvmx_nand_state[chip].blocks-1) + cvmx_pop(cvmx_nand_state[chip].pages_per_block-1); } /** * @INTERNAL * Get the number of address cycles required for this NAND part. * This include column bits, padding, page bits, and block bits. * * @param chip NAND chip to get data for * * @return Number of address cycles on the bus */ static inline int __cvmx_nand_get_address_cycles(int chip) { int address_bits = ((__cvmx_nand_get_column_bits(chip) + 7) >> 3) << 3; address_bits += ((__cvmx_nand_get_row_bits(chip) + 7) >> 3) << 3; return (address_bits + 7) >> 3; } /** * @INTERNAL * Build the set of command common to most transactions * @param chip NAND chip to program * @param cmd_data NAND comamnd for CLE cycle 1 * @param num_address_cycles * Number of address cycles to put on the bus * @param nand_address * Data to be put on the bus. It is translated according to * the rules in the file information section. * * @param cmd_data2 If non zero, adds a second CLE cycle used by a number of NAND * transactions. * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ static inline cvmx_nand_status_t __cvmx_nand_build_pre_cmd(int chip, int cmd_data, int num_address_cycles, uint64_t nand_address, int cmd_data2) { cvmx_nand_status_t result; cvmx_nand_cmd_t cmd; CVMX_NAND_LOG_CALLED(); /* Send timing parameters */ memset(&cmd, 0, sizeof(cmd)); cmd.set_tm_par.one = 1; cmd.set_tm_par.tim_mult = cvmx_nand_state[chip].tim_mult; /* tim_par[0] unused */ cmd.set_tm_par.tim_par1 = cvmx_nand_state[chip].tim_par[1]; cmd.set_tm_par.tim_par2 = cvmx_nand_state[chip].tim_par[2]; cmd.set_tm_par.tim_par3 = cvmx_nand_state[chip].tim_par[3]; cmd.set_tm_par.tim_par4 = cvmx_nand_state[chip].tim_par[4]; cmd.set_tm_par.tim_par5 = cvmx_nand_state[chip].tim_par[5]; cmd.set_tm_par.tim_par6 = cvmx_nand_state[chip].tim_par[6]; cmd.set_tm_par.tim_par7 = cvmx_nand_state[chip].tim_par[7]; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); /* Send bus select */ memset(&cmd, 0, sizeof(cmd)); cmd.bus_acq.fifteen = 15; cmd.bus_acq.one = 1; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); /* Send chip select */ memset(&cmd, 0, sizeof(cmd)); cmd.chip_en.chip = chip; cmd.chip_en.one = 1; cmd.chip_en.three = 3; cmd.chip_en.width = (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT) ? 2 : 1; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); /* Send wait, fixed time ** This meets chip enable to command latch enable timing. ** This is tCS - tCLS from the ONFI spec. ** Use tWP as a proxy, as this is adequate for ** all ONFI 1.0 timing modes. */ memset(&cmd, 0, sizeof(cmd)); cmd.wait.two = 2; cmd.wait.n = 1; if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Send CLE */ memset(&cmd, 0, sizeof(cmd)); cmd.cle.cmd_data = cmd_data; cmd.cle.clen1 = cvmx_nand_state[chip].clen[0]; cmd.cle.clen2 = cvmx_nand_state[chip].clen[1]; cmd.cle.clen3 = cvmx_nand_state[chip].clen[2]; cmd.cle.four = 4; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); /* Send ALE */ if (num_address_cycles) { memset(&cmd, 0, sizeof(cmd)); cmd.ale.adr_byte_num = num_address_cycles; if (num_address_cycles < __cvmx_nand_get_address_cycles(chip)) { cmd.ale.adr_bytes_l = nand_address; cmd.ale.adr_bytes_h = nand_address >> 32; } else { int column_bits = __cvmx_nand_get_column_bits(chip); int column_shift = ((column_bits + 7) >> 3) << 3; int column = nand_address & (cvmx_nand_state[chip].page_size-1); int row = nand_address >> column_bits; cmd.ale.adr_bytes_l = column + (row << column_shift); cmd.ale.adr_bytes_h = row >> (32 - column_shift); } cmd.ale.alen1 = cvmx_nand_state[chip].alen[0]; cmd.ale.alen2 = cvmx_nand_state[chip].alen[1]; cmd.ale.alen3 = cvmx_nand_state[chip].alen[2]; cmd.ale.alen4 = cvmx_nand_state[chip].alen[3]; cmd.ale.five = 5; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); } /* Send CLE 2 */ if (cmd_data2) { memset(&cmd, 0, sizeof(cmd)); cmd.cle.cmd_data = cmd_data2; cmd.cle.clen1 = cvmx_nand_state[chip].clen[0]; cmd.cle.clen2 = cvmx_nand_state[chip].clen[1]; cmd.cle.clen3 = cvmx_nand_state[chip].clen[2]; cmd.cle.four = 4; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); } CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } /** * @INTERNAL * Build the set of command common to most transactions * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ static inline cvmx_nand_status_t __cvmx_nand_build_post_cmd(void) { cvmx_nand_status_t result; cvmx_nand_cmd_t cmd; CVMX_NAND_LOG_CALLED(); /* Send chip deselect */ memset(&cmd, 0, sizeof(cmd)); cmd.chip_dis.three = 3; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); /* Send bus release */ memset(&cmd, 0, sizeof(cmd)); cmd.bus_rel.fifteen = 15; result = cvmx_nand_submit(cmd); if (result) CVMX_NAND_RETURN(result); /* Ring the doorbell */ cvmx_write_csr(CVMX_NDF_DRBELL, 1); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } /** * @INTERNAL * Setup the NAND DMA engine for a transfer * * @param chip Chip select for NAND flash * @param is_write Non zero if this is a write * @param buffer_address * Physical memory address to DMA to/from * @param buffer_length * Length of the DMA in bytes */ static inline void __cvmx_nand_setup_dma(int chip, int is_write, uint64_t buffer_address, int buffer_length) { union cvmx_mio_ndf_dma_cfg ndf_dma_cfg; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("%d", is_write); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address); CVMX_NAND_LOG_PARAM("%d", buffer_length); ndf_dma_cfg.u64 = 0; ndf_dma_cfg.s.en = 1; ndf_dma_cfg.s.rw = is_write; /* One means DMA reads from memory and writes to flash */ ndf_dma_cfg.s.clr = 0; ndf_dma_cfg.s.size = ((buffer_length + 7) >> 3) - 1; ndf_dma_cfg.s.adr = buffer_address; CVMX_SYNCWS; cvmx_write_csr(CVMX_MIO_NDF_DMA_CFG, ndf_dma_cfg.u64); CVMX_NAND_RETURN_NOTHING(); } /** * Dump a buffer out in hex for debug * * @param buffer_address * Starting physical address * @param buffer_length * Number of bytes to display */ static void __cvmx_nand_hex_dump(uint64_t buffer_address, int buffer_length) { uint8_t *buffer = cvmx_phys_to_ptr(buffer_address); int offset = 0; while (offset < buffer_length) { int i; cvmx_dprintf("%*s%04x:", 2*debug_indent, "", offset); for (i=0; i<32; i++) { if ((i&3) == 0) cvmx_dprintf(" "); if (offset+i < buffer_length) cvmx_dprintf("%02x", 0xff & buffer[offset+i]); else cvmx_dprintf(" "); } cvmx_dprintf("\n"); offset += 32; } } /** * @INTERNAL * Perform a low level NAND read command * * @param chip Chip to read from * @param nand_command1 * First command cycle value * @param address_cycles * Number of address cycles after comand 1 * @param nand_address * NAND address to use for address cycles * @param nand_command2 * NAND comamnd cycle 2 if not zero * @param buffer_address * Physical address to DMA into * @param buffer_length * Length of the transfer in bytes * * @return Number of bytes transfered or a negative error code */ static inline int __cvmx_nand_low_level_read(int chip, int nand_command1, int address_cycles, uint64_t nand_address, int nand_command2, uint64_t buffer_address, int buffer_length) { cvmx_nand_cmd_t cmd; union cvmx_mio_ndf_dma_cfg ndf_dma_cfg; int bytes; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("0x%x", nand_command1); CVMX_NAND_LOG_PARAM("%d", address_cycles); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address); CVMX_NAND_LOG_PARAM("0x%x", nand_command2); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address); CVMX_NAND_LOG_PARAM("%d", buffer_length); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_address) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_address & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_length & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_length) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); /* Build the command and address cycles */ if (__cvmx_nand_build_pre_cmd(chip, nand_command1, address_cycles, nand_address, nand_command2)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Send WAIT. This waits for some time, then ** waits for busy to be de-asserted. */ if (__wait_for_busy_done(chip)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Wait for tRR after busy de-asserts. ** Use 2* tALS as proxy. This is overkill in ** the slow modes, but not bad in the faster ones. */ memset(&cmd, 0, sizeof(cmd)); cmd.wait.two = 2; cmd.wait.n=4; if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Send READ */ memset(&cmd, 0, sizeof(cmd)); cmd.rd.data_bytes = buffer_length; if (cvmx_nand_state[chip].onfi_timing >= 4) cmd.rd.nine = 10; /* READ_EDO command is required for ONFI timing modes 4 and 5 */ else cmd.rd.nine = 9; cmd.rd.rdn1 = cvmx_nand_state[chip].rdn[0]; cmd.rd.rdn2 = cvmx_nand_state[chip].rdn[1]; cmd.rd.rdn3 = cvmx_nand_state[chip].rdn[2]; cmd.rd.rdn4 = cvmx_nand_state[chip].rdn[3]; if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); __cvmx_nand_setup_dma(chip, 0, buffer_address, buffer_length); if (__cvmx_nand_build_post_cmd()) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Wait for the DMA to complete */ if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_NDF_DMA_CFG, cvmx_mio_ndf_dma_cfg_t, en, ==, 0, NAND_TIMEOUT_USECS)) CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT); /* Return the number of bytes transfered */ ndf_dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_NDF_DMA_CFG); bytes = ndf_dma_cfg.s.adr - buffer_address; if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) __cvmx_nand_hex_dump(buffer_address, bytes); CVMX_NAND_RETURN(bytes); } /** * Read a page from NAND. If the buffer has room, the out of band * data will be included. * * @param chip Chip select for NAND flash * @param nand_address * Location in NAND to read. See description in file comment * @param buffer_address * Physical address to store the result at * @param buffer_length * Number of bytes to read * * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_page_read(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length) { int bytes; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address); CVMX_NAND_LOG_PARAM("%d", buffer_length); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!cvmx_nand_state[chip].page_size) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_address) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_address & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_length & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_length) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); /* For 16 bit mode, addresses within a page are word address, rather than byte addresses */ if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT) nand_address = (nand_address & ~(cvmx_nand_state[chip].page_size - 1)) | ((nand_address & (cvmx_nand_state[chip].page_size - 1)) >> 1); bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ, __cvmx_nand_get_address_cycles(chip), nand_address, NAND_COMMAND_READ_FIN, buffer_address, buffer_length); CVMX_NAND_RETURN(bytes); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_page_read); #endif /** * Write a page to NAND. The buffer must contain the entire page * including the out of band data. * * @param chip Chip select for NAND flash * @param nand_address * Location in NAND to write. See description in file comment * @param buffer_address * Physical address to read the data from * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ cvmx_nand_status_t cvmx_nand_page_write(int chip, uint64_t nand_address, uint64_t buffer_address) { cvmx_nand_cmd_t cmd; int buffer_length; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!cvmx_nand_state[chip].page_size) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_address) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_address & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); /* For 16 bit mode, addresses within a page are word address, rather than byte addresses */ if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT) nand_address = (nand_address & ~(cvmx_nand_state[chip].page_size - 1)) | ((nand_address & (cvmx_nand_state[chip].page_size - 1)) >> 1); buffer_length = cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size; /* The NAND DMA engine always does transfers in 8 byte blocks, so round the buffer size down ** to a multiple of 8, otherwise we will transfer too much data to the NAND chip. ** Note this prevents the last few bytes of the OOB being written. If these bytes ** need to be written, then this check needs to be removed, but this will result in ** extra write cycles beyond the end of the OOB. */ buffer_length &= ~0x7; /* Build the command and address cycles */ if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_PROGRAM, __cvmx_nand_get_address_cycles(chip), nand_address, 0)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Send WRITE */ memset(&cmd, 0, sizeof(cmd)); cmd.wr.data_bytes = buffer_length; cmd.wr.eight = 8; cmd.wr.wrn1 = cvmx_nand_state[chip].wrn[0]; cmd.wr.wrn2 = cvmx_nand_state[chip].wrn[1]; if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Send WRITE command */ memset(&cmd, 0, sizeof(cmd)); cmd.cle.cmd_data = NAND_COMMAND_PROGRAM_FIN; cmd.cle.clen1 = cvmx_nand_state[chip].clen[0]; cmd.cle.clen2 = cvmx_nand_state[chip].clen[1]; cmd.cle.clen3 = cvmx_nand_state[chip].clen[2]; cmd.cle.four = 4; if (cvmx_nand_submit(cmd)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); __cvmx_nand_setup_dma(chip, 1, buffer_address, buffer_length); /* WAIT for R_B to signal program is complete */ if (__wait_for_busy_done(chip)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (__cvmx_nand_build_post_cmd()) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Wait for the DMA to complete */ if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_NDF_DMA_CFG, cvmx_mio_ndf_dma_cfg_t, en, ==, 0, NAND_TIMEOUT_USECS)) CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_page_write); #endif /** * Erase a NAND block. A single block contains multiple pages. * * @param chip Chip select for NAND flash * @param nand_address * Location in NAND to erase. See description in file comment * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ cvmx_nand_status_t cvmx_nand_block_erase(int chip, uint64_t nand_address) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!cvmx_nand_state[chip].page_size) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); /* Build the command and address cycles */ if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_ERASE, (__cvmx_nand_get_row_bits(chip)+7) >> 3, nand_address >> __cvmx_nand_get_column_bits(chip), NAND_COMMAND_ERASE_FIN)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* WAIT for R_B to signal erase is complete */ if (__wait_for_busy_done(chip)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (__cvmx_nand_build_post_cmd()) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* Wait for the command queue to be idle, which means the wait is done */ if (CVMX_WAIT_FOR_FIELD64(CVMX_NDF_ST_REG, cvmx_ndf_st_reg_t, exe_idle, ==, 1, NAND_TIMEOUT_USECS)) CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_block_erase); #endif /* Some reads (read ID, read parameter page) only use the low 8 bits of the bus ** in 16 bit mode. We remove the unused bytes so that the data we present to the ** caller is as expected (same as 8 bit mode.) */ static void __cvmx_nand_fixup_16bit_id_reads(uint8_t *buf, int buffer_length) { /* Decimate data, taking only every other byte. */ int i; for (i = 0; i < buffer_length/2; i++) buf[i] = buf[2*i + 1]; } /** * Read the NAND ID information * * @param chip Chip select for NAND flash * @param nand_address * NAND address to read ID from. Usually this is either 0x0 or 0x20. * @param buffer_address * Physical address to store data in * @param buffer_length * Length of the buffer. Usually this is 4-8 bytes. For 16 bit mode, this must be twice * as large as the actual expected data. * * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_read_id(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length) { int bytes; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address); CVMX_NAND_LOG_PARAM("%d", buffer_length); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_address) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_address & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_length) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ_ID, 1, nand_address, 0, buffer_address, buffer_length); if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT) __cvmx_nand_fixup_16bit_id_reads(cvmx_phys_to_ptr(buffer_address), buffer_length); CVMX_NAND_RETURN(bytes); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_read_id); #endif /** * Read the NAND parameter page * * @param chip Chip select for NAND flash * @param buffer_address * Physical address to store data in * @param buffer_length * Length of the buffer. Usually 1024 bytes for 8 bit, 2048 for 16 bit mode. * * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_read_param_page(int chip, uint64_t buffer_address, int buffer_length) { int bytes; CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address); CVMX_NAND_LOG_PARAM("%d", buffer_length); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_address) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_address & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (buffer_length & 7) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!buffer_length) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ_PARAM_PAGE, 1, 0x0, 0, buffer_address, buffer_length); if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT) __cvmx_nand_fixup_16bit_id_reads(cvmx_phys_to_ptr(buffer_address), buffer_length); CVMX_NAND_RETURN(bytes); } /** * Get the status of the NAND flash * * @param chip Chip select for NAND flash * * @return NAND status or a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_get_status(int chip) { int status; int offset = !!(cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT); /* Normalize flag to 0/1 */ CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); *((uint8_t*)cvmx_nand_buffer + offset) = 0xff; status = __cvmx_nand_low_level_read(chip, NAND_COMMAND_STATUS, 0, 0, 0, cvmx_ptr_to_phys(cvmx_nand_buffer), 8); if (status > 0) status = *((uint8_t*)cvmx_nand_buffer + offset); CVMX_NAND_RETURN(status); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_get_status); #endif /** * Get the page size, excluding out of band data. This function * will return zero for chip selects not connected to NAND. * * @param chip Chip select for NAND flash * * @return Page size in bytes or a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_get_page_size(int chip) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); CVMX_NAND_RETURN(cvmx_nand_state[chip].page_size); } /** * Get the OOB size. * * @param chip Chip select for NAND flash * * @return OOB in bytes or a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_get_oob_size(int chip) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); CVMX_NAND_RETURN(cvmx_nand_state[chip].oob_size); } /** * Get the number of pages per NAND block * * @param chip Chip select for NAND flash * * @return Number of pages in each block or a negative cvmx_nand_status_t error * code on failure */ int cvmx_nand_get_pages_per_block(int chip) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); CVMX_NAND_RETURN(cvmx_nand_state[chip].pages_per_block); } /** * Get the number of blocks in the NAND flash * * @param chip Chip select for NAND flash * * @return Number of blocks or a negative cvmx_nand_status_t error code on failure */ int cvmx_nand_get_blocks(int chip) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); CVMX_NAND_RETURN(cvmx_nand_state[chip].blocks); } /** * Reset the NAND flash * * @param chip Chip select for NAND flash * * @return Zero on success, a negative cvmx_nand_status_t error code on failure */ cvmx_nand_status_t cvmx_nand_reset(int chip) { CVMX_NAND_LOG_CALLED(); CVMX_NAND_LOG_PARAM("%d", chip); if ((chip < 0) || (chip > 7)) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (!cvmx_nand_state[chip].page_size) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_RESET, 0, 0, 0)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); /* WAIT for R_B to signal reset is complete */ if (__wait_for_busy_done(chip)) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); if (__cvmx_nand_build_post_cmd()) CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY); CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_nand_reset); #endif /** * This function computes the Octeon specific ECC data used by the NAND boot * feature. * * @param block pointer to 256 bytes of data * @param eccp pointer to where 8 bytes of ECC data will be stored */ void cvmx_nand_compute_boot_ecc(unsigned char *block, unsigned char *eccp) { unsigned char pd0, pd1, pd2; int i, j; pd0 = pd1 = pd2 = 0; for (i = 0; i < 256; i++) /* PD0<0> */ pd0 ^= (block[i] ^ (block[i] >> 2) ^ (block[i] >> 4) ^ (block[i] >> 6)) & 1; for (i = 0; i < 256; i++) /* PD0<1> */ pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 4) ^ (block[i] >> 5)) & 1) << 1; for (i = 0; i < 256; i++) /* PD0<2> */ pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3)) & 1) << 2; for (i = 0; i < 128; i++) /* PD0<3> */ pd0 ^= ((block[2*i] ^ (block[2*i] >> 1) ^ (block[2*i] >> 2) ^ (block[2*i] >> 3) ^ (block[2*i] >> 4) ^ (block[2*i] >> 5) ^ (block[2*i] >> 6) ^ (block[2*i] >> 7)) & 1) << 3; for (i = 0; i < 64; i++) /* PD0<4> */ for (j = 0; j < 2; j++) pd0 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^ (block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^ (block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 4; for (i = 0; i < 32; i++) /* PD0<5> */ for (j = 0; j < 4; j++) pd0 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^ (block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^ (block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 5; for (i = 0; i < 16; i++) /* PD0<6> */ for (j = 0; j < 8; j++) pd0 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^ (block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^ (block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 6; for (i = 0; i < 8; i++) /* PD0<7> */ for (j = 0; j < 16; j++) pd0 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^ (block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^ (block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 7; for (i = 0; i < 4; i++) /* PD1<0> */ for (j = 0; j < 32; j++) pd1 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^ (block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^ (block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 0; for (i = 0; i < 2; i++) /* PD1<1> */ for (j = 0; j < 64; j++) pd1 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^ (block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^ (block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 1; for (i = 0; i < 128; i++) /* PD1<2> */ pd1 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 2; /* PD1<3> */ /* PD1<4> */ for (i = 0; i < 256; i++) /* PD1<5> */ pd1 ^= (((block[i] >> 1) ^ (block[i] >> 3) ^ (block[i] >> 5) ^ (block[i] >> 7)) & 1) << 5; for (i = 0; i < 256; i++) /* PD1<6> */ pd1 ^= (((block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 6; for (i = 0; i < 256; i++) /* PD1<7> */ pd1 ^= (((block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7; for (i = 0; i < 128; i++) /* PD2<0> */ pd2 ^= ((block[2*i+1] ^ (block[2*i+1] >> 1) ^ (block[2*i+1] >> 2) ^ (block[2*i+1] >> 3) ^ (block[2*i+1] >> 4) ^ (block[2*i+1] >> 5) ^ (block[2*i+1] >> 6) ^ (block[2*i+1] >> 7)) & 1) << 0; for (i = 0; i < 64; i++) /* PD2<1> */ for (j = 2; j < 4; j++) pd2 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^ (block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^ (block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 1; for (i = 0; i < 32; i++) /* PD2<2> */ for (j = 4; j < 8; j++) pd2 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^ (block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^ (block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 2; for (i = 0; i < 16; i++) /* PD2<3> */ for (j = 8; j < 16; j++) pd2 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^ (block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^ (block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 3; for (i = 0; i < 8; i++) /* PD2<4> */ for (j = 16; j < 32; j++) pd2 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^ (block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^ (block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 4; for (i = 0; i < 4; i++) /* PD2<5> */ for (j = 32; j < 64; j++) pd2 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^ (block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^ (block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 5; for (i = 0; i < 2; i++) /* PD2<6> */ for (j = 64; j < 128; j++) pd2 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^ (block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^ (block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 6; for (i = 128; i < 256; i++) /* PD2<7> */ pd2 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7; eccp[0] = pd0; eccp[1] = pd1; eccp[2] = pd2; } /** * Check an Octeon ECC block, fixing errors if possible * * @param block Pointer to block to check * * @return Zero if block has no errors, one if errors were corrected, two * if the errors could not be corrected. */ int cvmx_nand_correct_boot_ecc(uint8_t *block) { unsigned char pd0, pd1, pd2; int i, j; unsigned char xorpd0, xorpd1, xorpd2; int xor_num; unsigned int check; asm volatile ("pref 0,0(%0);pref 0,128(%0);pref 0,256(%0)\n" :: "r" (block)); pd0 = pd1 = pd2 = 0; for (i = 0; i < 256; i++) /* PD0<0> */ pd0 ^= (block[i] ^ (block[i] >> 2) ^ (block[i] >> 4) ^ (block[i] >> 6)) & 1; for (i = 0; i < 256; i++) /* PD0<1> */ pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 4) ^ (block[i] >> 5)) & 1) << 1; for (i = 0; i < 256; i++) /* PD0<2> */ pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3)) & 1) << 2; for (i = 0; i < 128; i++) /* PD0<3> */ pd0 ^= ((block[2*i] ^ (block[2*i] >> 1) ^ (block[2*i] >> 2) ^ (block[2*i] >> 3) ^ (block[2*i] >> 4) ^ (block[2*i] >> 5) ^ (block[2*i] >> 6) ^ (block[2*i] >> 7)) & 1) << 3; for (i = 0; i < 64; i++) /* PD0<4> */ for (j = 0; j < 2; j++) pd0 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^ (block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^ (block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 4; for (i = 0; i < 32; i++) /* PD0<5> */ for (j = 0; j < 4; j++) pd0 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^ (block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^ (block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 5; for (i = 0; i < 16; i++) /* PD0<6> */ for (j = 0; j < 8; j++) pd0 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^ (block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^ (block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 6; for (i = 0; i < 8; i++) /* PD0<7> */ for (j = 0; j < 16; j++) pd0 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^ (block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^ (block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 7; for (i = 0; i < 4; i++) /* PD1<0> */ for (j = 0; j < 32; j++) pd1 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^ (block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^ (block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 0; for (i = 0; i < 2; i++) /* PD1<1> */ for (j = 0; j < 64; j++) pd1 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^ (block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^ (block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 1; for (i = 0; i < 128; i++) /* PD1<2> */ pd1 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 2; /* PD1<3> */ /* PD1<4> */ for (i = 0; i < 256; i++) /* PD1<5> */ pd1 ^= (((block[i] >> 1) ^ (block[i] >> 3) ^ (block[i] >> 5) ^ (block[i] >> 7)) & 1) << 5; for (i = 0; i < 256; i++) /* PD1<6> */ pd1 ^= (((block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 6; for (i = 0; i < 256; i++) /* PD1<7> */ pd1 ^= (((block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7; for (i = 0; i < 128; i++) /* PD2<0> */ pd2 ^= ((block[2*i+1] ^ (block[2*i+1] >> 1) ^ (block[2*i+1] >> 2) ^ (block[2*i+1] >> 3) ^ (block[2*i+1] >> 4) ^ (block[2*i+1] >> 5) ^ (block[2*i+1] >> 6) ^ (block[2*i+1] >> 7)) & 1) << 0; for (i = 0; i < 64; i++) /* PD2<1> */ for (j = 2; j < 4; j++) pd2 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^ (block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^ (block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 1; for (i = 0; i < 32; i++) /* PD2<2> */ for (j = 4; j < 8; j++) pd2 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^ (block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^ (block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 2; for (i = 0; i < 16; i++) /* PD2<3> */ for (j = 8; j < 16; j++) pd2 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^ (block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^ (block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 3; for (i = 0; i < 8; i++) /* PD2<4> */ for (j = 16; j < 32; j++) pd2 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^ (block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^ (block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 4; for (i = 0; i < 4; i++) /* PD2<5> */ for (j = 32; j < 64; j++) pd2 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^ (block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^ (block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 5; for (i = 0; i < 2; i++) /* PD2<6> */ for (j = 64; j < 128; j++) pd2 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^ (block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^ (block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 6; for (i = 128; i < 256; i++) /* PD2<7> */ pd2 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7; xorpd0 = pd0 ^ block[256]; xorpd1 = pd1 ^ block[257]; xorpd2 = pd2 ^ block[258]; xor_num = __builtin_popcount((xorpd0 << 16) | (xorpd1 << 8) | xorpd2); check = (((xorpd1 & 7) << 8) | xorpd0) ^ ((xorpd2 << 3) | (xorpd1 >> 5)); if (xor_num == 0) return 0; else if ((xor_num > 1) && (check != 0x7FF)) return 2; if (check == 0x7FF) { /* Correct the error */ block[xorpd2] ^= 1 << (xorpd1 >> 5); } return 1; } cvmx_nand_status_t cvmx_nand_set_defaults(int page_size, int oob_size, int pages_per_block, int blocks, int onfi_timing_mode) { if (!page_size || !oob_size || !pages_per_block || !blocks || onfi_timing_mode > 5) CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM); cvmx_nand_default.page_size = page_size; cvmx_nand_default.oob_size = oob_size; cvmx_nand_default.pages_per_block = pages_per_block; cvmx_nand_default.blocks = blocks; cvmx_nand_default.onfi_timing = onfi_timing_mode; CVMX_NAND_RETURN(CVMX_NAND_SUCCESS); }