Current Path : /compat/linux/proc/self/root/sys/geom/raid3/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/sys/geom/raid3/g_raid3.c |
/*- * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/geom/raid3/g_raid3.c 223921 2011-07-11 05:22:31Z ae $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/bio.h> #include <sys/sbuf.h> #include <sys/sysctl.h> #include <sys/malloc.h> #include <sys/eventhandler.h> #include <vm/uma.h> #include <geom/geom.h> #include <sys/proc.h> #include <sys/kthread.h> #include <sys/sched.h> #include <geom/raid3/g_raid3.h> FEATURE(geom_raid3, "GEOM RAID-3 functionality"); static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); SYSCTL_DECL(_kern_geom); SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); u_int g_raid3_debug = 0; TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, "Debug level"); static u_int g_raid3_timeout = 4; TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 0, "Time to wait on all raid3 components"); static u_int g_raid3_idletime = 5; TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW, &g_raid3_idletime, 0, "Mark components as clean when idling"); static u_int g_raid3_disconnect_on_failure = 1; TUNABLE_INT("kern.geom.raid3.disconnect_on_failure", &g_raid3_disconnect_on_failure); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); static u_int g_raid3_syncreqs = 2; TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); static u_int g_raid3_use_malloc = 0; TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); static u_int g_raid3_n64k = 50; TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, "Maximum number of 64kB allocations"); static u_int g_raid3_n16k = 200; TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, "Maximum number of 16kB allocations"); static u_int g_raid3_n4k = 1200; TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, "Maximum number of 4kB allocations"); SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, "GEOM_RAID3 statistics"); static u_int g_raid3_parity_mismatch = 0; SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ } while (0) static eventhandler_tag g_raid3_pre_sync = NULL; static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static g_taste_t g_raid3_taste; static void g_raid3_init(struct g_class *mp); static void g_raid3_fini(struct g_class *mp); struct g_class g_raid3_class = { .name = G_RAID3_CLASS_NAME, .version = G_VERSION, .ctlreq = g_raid3_config, .taste = g_raid3_taste, .destroy_geom = g_raid3_destroy_geom, .init = g_raid3_init, .fini = g_raid3_fini }; static void g_raid3_destroy_provider(struct g_raid3_softc *sc); static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); static int g_raid3_register_request(struct bio *pbp); static void g_raid3_sync_release(struct g_raid3_softc *sc); static const char * g_raid3_disk_state2str(int state) { switch (state) { case G_RAID3_DISK_STATE_NODISK: return ("NODISK"); case G_RAID3_DISK_STATE_NONE: return ("NONE"); case G_RAID3_DISK_STATE_NEW: return ("NEW"); case G_RAID3_DISK_STATE_ACTIVE: return ("ACTIVE"); case G_RAID3_DISK_STATE_STALE: return ("STALE"); case G_RAID3_DISK_STATE_SYNCHRONIZING: return ("SYNCHRONIZING"); case G_RAID3_DISK_STATE_DISCONNECTED: return ("DISCONNECTED"); default: return ("INVALID"); } } static const char * g_raid3_device_state2str(int state) { switch (state) { case G_RAID3_DEVICE_STATE_STARTING: return ("STARTING"); case G_RAID3_DEVICE_STATE_DEGRADED: return ("DEGRADED"); case G_RAID3_DEVICE_STATE_COMPLETE: return ("COMPLETE"); default: return ("INVALID"); } } const char * g_raid3_get_diskname(struct g_raid3_disk *disk) { if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) return ("[unknown]"); return (disk->d_name); } static void * g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) { void *ptr; enum g_raid3_zones zone; if (g_raid3_use_malloc || (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) ptr = malloc(size, M_RAID3, flags); else { ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, &sc->sc_zones[zone], flags); sc->sc_zones[zone].sz_requested++; if (ptr == NULL) sc->sc_zones[zone].sz_failed++; } return (ptr); } static void g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) { enum g_raid3_zones zone; if (g_raid3_use_malloc || (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) free(ptr, M_RAID3); else { uma_zfree_arg(sc->sc_zones[zone].sz_zone, ptr, &sc->sc_zones[zone]); } } static int g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) { struct g_raid3_zone *sz = arg; if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) return (ENOMEM); sz->sz_inuse++; return (0); } static void g_raid3_uma_dtor(void *mem, int size, void *arg) { struct g_raid3_zone *sz = arg; sz->sz_inuse--; } #define g_raid3_xor(src, dst, size) \ _g_raid3_xor((uint64_t *)(src), \ (uint64_t *)(dst), (size_t)size) static void _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size) { KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); for (; size > 0; size -= 128) { *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); } } static int g_raid3_is_zero(struct bio *bp) { static const uint64_t zeros[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; u_char *addr; ssize_t size; size = bp->bio_length; addr = (u_char *)bp->bio_data; for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { if (bcmp(addr, zeros, sizeof(zeros)) != 0) return (0); } return (1); } /* * --- Events handling functions --- * Events in geom_raid3 are used to maintain disks and device status * from one thread to simplify locking. */ static void g_raid3_event_free(struct g_raid3_event *ep) { free(ep, M_RAID3); } int g_raid3_event_send(void *arg, int state, int flags) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct g_raid3_event *ep; int error; ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); if ((flags & G_RAID3_EVENT_DEVICE) != 0) { disk = NULL; sc = arg; } else { disk = arg; sc = disk->d_softc; } ep->e_disk = disk; ep->e_state = state; ep->e_flags = flags; ep->e_error = 0; mtx_lock(&sc->sc_events_mtx); TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); mtx_unlock(&sc->sc_events_mtx); G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); mtx_lock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); mtx_unlock(&sc->sc_queue_mtx); if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) return (0); sx_assert(&sc->sc_lock, SX_XLOCKED); G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); sx_xunlock(&sc->sc_lock); while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { mtx_lock(&sc->sc_events_mtx); MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", hz * 5); } error = ep->e_error; g_raid3_event_free(ep); sx_xlock(&sc->sc_lock); return (error); } static struct g_raid3_event * g_raid3_event_get(struct g_raid3_softc *sc) { struct g_raid3_event *ep; mtx_lock(&sc->sc_events_mtx); ep = TAILQ_FIRST(&sc->sc_events); mtx_unlock(&sc->sc_events_mtx); return (ep); } static void g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) { mtx_lock(&sc->sc_events_mtx); TAILQ_REMOVE(&sc->sc_events, ep, e_next); mtx_unlock(&sc->sc_events_mtx); } static void g_raid3_event_cancel(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; struct g_raid3_event *ep, *tmpep; sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); mtx_lock(&sc->sc_events_mtx); TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) continue; if (ep->e_disk != disk) continue; TAILQ_REMOVE(&sc->sc_events, ep, e_next); if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) g_raid3_event_free(ep); else { ep->e_error = ECANCELED; wakeup(ep); } } mtx_unlock(&sc->sc_events_mtx); } /* * Return the number of disks in the given state. * If state is equal to -1, count all connected disks. */ u_int g_raid3_ndisks(struct g_raid3_softc *sc, int state) { struct g_raid3_disk *disk; u_int n, ndisks; sx_assert(&sc->sc_lock, SX_LOCKED); for (n = ndisks = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if (state == -1 || disk->d_state == state) ndisks++; } return (ndisks); } static u_int g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) { struct bio *bp; u_int nreqs = 0; mtx_lock(&sc->sc_queue_mtx); TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_from == cp) nreqs++; } mtx_unlock(&sc->sc_queue_mtx); return (nreqs); } static int g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) { if (cp->index > 0) { G_RAID3_DEBUG(2, "I/O requests for %s exist, can't destroy it now.", cp->provider->name); return (1); } if (g_raid3_nrequests(sc, cp) > 0) { G_RAID3_DEBUG(2, "I/O requests for %s in queue, can't destroy it now.", cp->provider->name); return (1); } return (0); } static void g_raid3_destroy_consumer(void *arg, int flags __unused) { struct g_consumer *cp; g_topology_assert(); cp = arg; G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); g_detach(cp); g_destroy_consumer(cp); } static void g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) { struct g_provider *pp; int retaste_wait; g_topology_assert(); cp->private = NULL; if (g_raid3_is_busy(sc, cp)) return; G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); pp = cp->provider; retaste_wait = 0; if (cp->acw == 1) { if ((pp->geom->flags & G_GEOM_WITHER) == 0) retaste_wait = 1; } G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, -cp->acw, -cp->ace, 0); if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) g_access(cp, -cp->acr, -cp->acw, -cp->ace); if (retaste_wait) { /* * After retaste event was send (inside g_access()), we can send * event to detach and destroy consumer. * A class, which has consumer to the given provider connected * will not receive retaste event for the provider. * This is the way how I ignore retaste events when I close * consumers opened for write: I detach and destroy consumer * after retaste event is sent. */ g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); return; } G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); g_detach(cp); g_destroy_consumer(cp); } static int g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) { struct g_consumer *cp; int error; g_topology_assert_not(); KASSERT(disk->d_consumer == NULL, ("Disk already connected (device %s).", disk->d_softc->sc_name)); g_topology_lock(); cp = g_new_consumer(disk->d_softc->sc_geom); error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); g_topology_unlock(); return (error); } error = g_access(cp, 1, 1, 1); g_topology_unlock(); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", pp->name, error); return (error); } disk->d_consumer = cp; disk->d_consumer->private = disk; disk->d_consumer->index = 0; G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); return (0); } static void g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) { g_topology_assert(); if (cp == NULL) return; if (cp->provider != NULL) g_raid3_kill_consumer(sc, cp); else g_destroy_consumer(cp); } /* * Initialize disk. This means allocate memory, create consumer, attach it * to the provider and open access (r1w1e1) to it. */ static struct g_raid3_disk * g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, struct g_raid3_metadata *md, int *errorp) { struct g_raid3_disk *disk; int error; disk = &sc->sc_disks[md->md_no]; error = g_raid3_connect_disk(disk, pp); if (error != 0) { if (errorp != NULL) *errorp = error; return (NULL); } disk->d_state = G_RAID3_DISK_STATE_NONE; disk->d_flags = md->md_dflags; if (md->md_provider[0] != '\0') disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; disk->d_sync.ds_consumer = NULL; disk->d_sync.ds_offset = md->md_sync_offset; disk->d_sync.ds_offset_done = md->md_sync_offset; disk->d_genid = md->md_genid; disk->d_sync.ds_syncid = md->md_syncid; if (errorp != NULL) *errorp = 0; return (disk); } static void g_raid3_destroy_disk(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); if (disk->d_state == G_RAID3_DISK_STATE_NODISK) return; g_raid3_event_cancel(disk); switch (disk->d_state) { case G_RAID3_DISK_STATE_SYNCHRONIZING: if (sc->sc_syncdisk != NULL) g_raid3_sync_stop(sc, 1); /* FALLTHROUGH */ case G_RAID3_DISK_STATE_NEW: case G_RAID3_DISK_STATE_STALE: case G_RAID3_DISK_STATE_ACTIVE: g_topology_lock(); g_raid3_disconnect_consumer(sc, disk->d_consumer); g_topology_unlock(); disk->d_consumer = NULL; break; default: KASSERT(0 == 1, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); } disk->d_state = G_RAID3_DISK_STATE_NODISK; } static void g_raid3_destroy_device(struct g_raid3_softc *sc) { struct g_raid3_event *ep; struct g_raid3_disk *disk; struct g_geom *gp; struct g_consumer *cp; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); gp = sc->sc_geom; if (sc->sc_provider != NULL) g_raid3_destroy_provider(sc); for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; g_raid3_update_metadata(disk); g_raid3_destroy_disk(disk); } } while ((ep = g_raid3_event_get(sc)) != NULL) { g_raid3_event_remove(sc, ep); if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) g_raid3_event_free(ep); else { ep->e_error = ECANCELED; ep->e_flags |= G_RAID3_EVENT_DONE; G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); mtx_lock(&sc->sc_events_mtx); wakeup(ep); mtx_unlock(&sc->sc_events_mtx); } } callout_drain(&sc->sc_callout); cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); g_topology_lock(); if (cp != NULL) g_raid3_disconnect_consumer(sc, cp); g_wither_geom(sc->sc_sync.ds_geom, ENXIO); G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom(gp, ENXIO); g_topology_unlock(); if (!g_raid3_use_malloc) { uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); } mtx_destroy(&sc->sc_queue_mtx); mtx_destroy(&sc->sc_events_mtx); sx_xunlock(&sc->sc_lock); sx_destroy(&sc->sc_lock); } static void g_raid3_orphan(struct g_consumer *cp) { struct g_raid3_disk *disk; g_topology_assert(); disk = cp->private; if (disk == NULL) return; disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } static int g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) { struct g_raid3_softc *sc; struct g_consumer *cp; off_t offset, length; u_char *sector; int error = 0; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); cp = disk->d_consumer; KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); length = cp->provider->sectorsize; offset = cp->provider->mediasize - length; sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); if (md != NULL) raid3_metadata_encode(md, sector); error = g_write_data(cp, offset, sector, length); free(sector, M_RAID3); if (error != 0) { if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { G_RAID3_DEBUG(0, "Cannot write metadata on %s " "(device=%s, error=%d).", g_raid3_get_diskname(disk), sc->sc_name, error); disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; } else { G_RAID3_DEBUG(1, "Cannot write metadata on %s " "(device=%s, error=%d).", g_raid3_get_diskname(disk), sc->sc_name, error); } if (g_raid3_disconnect_on_failure && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } } return (error); } int g_raid3_clear_metadata(struct g_raid3_disk *disk) { int error; g_topology_assert_not(); sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); error = g_raid3_write_metadata(disk, NULL); if (error == 0) { G_RAID3_DEBUG(2, "Metadata on %s cleared.", g_raid3_get_diskname(disk)); } else { G_RAID3_DEBUG(0, "Cannot clear metadata on disk %s (error=%d).", g_raid3_get_diskname(disk), error); } return (error); } void g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) { struct g_raid3_softc *sc; struct g_provider *pp; sc = disk->d_softc; strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); md->md_version = G_RAID3_VERSION; strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); md->md_id = sc->sc_id; md->md_all = sc->sc_ndisks; md->md_genid = sc->sc_genid; md->md_mediasize = sc->sc_mediasize; md->md_sectorsize = sc->sc_sectorsize; md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); md->md_no = disk->d_no; md->md_syncid = disk->d_sync.ds_syncid; md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) md->md_sync_offset = 0; else { md->md_sync_offset = disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); } if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) pp = disk->d_consumer->provider; else pp = NULL; if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); else bzero(md->md_provider, sizeof(md->md_provider)); if (pp != NULL) md->md_provsize = pp->mediasize; else md->md_provsize = 0; } void g_raid3_update_metadata(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; struct g_raid3_metadata md; int error; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); g_raid3_fill_metadata(disk, &md); error = g_raid3_write_metadata(disk, &md); if (error == 0) { G_RAID3_DEBUG(2, "Metadata on %s updated.", g_raid3_get_diskname(disk)); } else { G_RAID3_DEBUG(0, "Cannot update metadata on disk %s (error=%d).", g_raid3_get_diskname(disk), error); } } static void g_raid3_bump_syncid(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, ("%s called with no active disks (device=%s).", __func__, sc->sc_name)); sc->sc_syncid++; G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, sc->sc_syncid); for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { disk->d_sync.ds_syncid = sc->sc_syncid; g_raid3_update_metadata(disk); } } } static void g_raid3_bump_genid(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, ("%s called with no active disks (device=%s).", __func__, sc->sc_name)); sc->sc_genid++; G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, sc->sc_genid); for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { disk->d_genid = sc->sc_genid; g_raid3_update_metadata(disk); } } } static int g_raid3_idle(struct g_raid3_softc *sc, int acw) { struct g_raid3_disk *disk; u_int i; int timeout; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if (sc->sc_provider == NULL) return (0); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) return (0); if (sc->sc_idle) return (0); if (sc->sc_writes > 0) return (0); if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); if (timeout > 0) return (timeout); } sc->sc_idle = 1; for (i = 0; i < sc->sc_ndisks; i++) { disk = &sc->sc_disks[i]; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) continue; G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; g_raid3_update_metadata(disk); } return (0); } static void g_raid3_unidle(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; u_int i; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) return; sc->sc_idle = 0; sc->sc_last_write = time_uptime; for (i = 0; i < sc->sc_ndisks; i++) { disk = &sc->sc_disks[i]; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) continue; G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; g_raid3_update_metadata(disk); } } /* * Treat bio_driver1 field in parent bio as list head and field bio_caller1 * in child bio as pointer to the next element on the list. */ #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 #define G_RAID3_FOREACH_BIO(pbp, bp) \ for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ (bp) = G_RAID3_NEXT_BIO(bp)) #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ for ((bp) = G_RAID3_HEAD_BIO(pbp); \ (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ (bp) = (tmpbp)) static void g_raid3_init_bio(struct bio *pbp) { G_RAID3_HEAD_BIO(pbp) = NULL; } static void g_raid3_remove_bio(struct bio *cbp) { struct bio *pbp, *bp; pbp = cbp->bio_parent; if (G_RAID3_HEAD_BIO(pbp) == cbp) G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == cbp) { G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); break; } } } G_RAID3_NEXT_BIO(cbp) = NULL; } static void g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) { struct bio *pbp, *bp; g_raid3_remove_bio(sbp); pbp = dbp->bio_parent; G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); if (G_RAID3_HEAD_BIO(pbp) == dbp) G_RAID3_HEAD_BIO(pbp) = sbp; else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == dbp) { G_RAID3_NEXT_BIO(bp) = sbp; break; } } } G_RAID3_NEXT_BIO(dbp) = NULL; } static void g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) { struct bio *bp, *pbp; size_t size; pbp = cbp->bio_parent; pbp->bio_children--; KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); size = pbp->bio_length / (sc->sc_ndisks - 1); g_raid3_free(sc, cbp->bio_data, size); if (G_RAID3_HEAD_BIO(pbp) == cbp) { G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); G_RAID3_NEXT_BIO(cbp) = NULL; g_destroy_bio(cbp); } else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == cbp) break; } if (bp != NULL) { KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, ("NULL bp->bio_driver1")); G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); G_RAID3_NEXT_BIO(cbp) = NULL; } g_destroy_bio(cbp); } } static struct bio * g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) { struct bio *bp, *cbp; size_t size; int memflag; cbp = g_clone_bio(pbp); if (cbp == NULL) return (NULL); size = pbp->bio_length / (sc->sc_ndisks - 1); if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) memflag = M_WAITOK; else memflag = M_NOWAIT; cbp->bio_data = g_raid3_alloc(sc, size, memflag); if (cbp->bio_data == NULL) { pbp->bio_children--; g_destroy_bio(cbp); return (NULL); } G_RAID3_NEXT_BIO(cbp) = NULL; if (G_RAID3_HEAD_BIO(pbp) == NULL) G_RAID3_HEAD_BIO(pbp) = cbp; else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == NULL) { G_RAID3_NEXT_BIO(bp) = cbp; break; } } } return (cbp); } static void g_raid3_scatter(struct bio *pbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct bio *bp, *cbp, *tmpbp; off_t atom, cadd, padd, left; int first; sc = pbp->bio_to->geom->softc; bp = NULL; if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { /* * Find bio for which we should calculate data. */ G_RAID3_FOREACH_BIO(pbp, cbp) { if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { bp = cbp; break; } } KASSERT(bp != NULL, ("NULL parity bio.")); } atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); cadd = padd = 0; for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { G_RAID3_FOREACH_BIO(pbp, cbp) { if (cbp == bp) continue; bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); padd += atom; } cadd += atom; } if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { /* * Calculate parity. */ first = 1; G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { if (cbp == bp) continue; if (first) { bcopy(cbp->bio_data, bp->bio_data, bp->bio_length); first = 0; } else { g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_length); } if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) g_raid3_destroy_bio(sc, cbp); } } G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { struct g_consumer *cp; disk = cbp->bio_caller2; cp = disk->d_consumer; cbp->bio_to = cp->provider; G_RAID3_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; sc->sc_writes++; g_io_request(cbp, cp); } } static void g_raid3_gather(struct bio *pbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct bio *xbp, *fbp, *cbp; off_t atom, cadd, padd, left; sc = pbp->bio_to->geom->softc; /* * Find bio for which we have to calculate data. * While going through this path, check if all requests * succeeded, if not, deny whole request. * If we're in COMPLETE mode, we allow one request to fail, * so if we find one, we're sending it to the parity consumer. * If there are more failed requests, we deny whole request. */ xbp = fbp = NULL; G_RAID3_FOREACH_BIO(pbp, cbp) { if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { KASSERT(xbp == NULL, ("More than one parity bio.")); xbp = cbp; } if (cbp->bio_error == 0) continue; /* * Found failed request. */ if (fbp == NULL) { if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { /* * We are already in degraded mode, so we can't * accept any failures. */ if (pbp->bio_error == 0) pbp->bio_error = cbp->bio_error; } else { fbp = cbp; } } else { /* * Next failed request, that's too many. */ if (pbp->bio_error == 0) pbp->bio_error = fbp->bio_error; } disk = cbp->bio_caller2; if (disk == NULL) continue; if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", cbp->bio_error); } else { G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", cbp->bio_error); } if (g_raid3_disconnect_on_failure && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } } if (pbp->bio_error != 0) goto finish; if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; if (xbp != fbp) g_raid3_replace_bio(xbp, fbp); g_raid3_destroy_bio(sc, fbp); } else if (fbp != NULL) { struct g_consumer *cp; /* * One request failed, so send the same request to * the parity consumer. */ disk = pbp->bio_driver2; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { pbp->bio_error = fbp->bio_error; goto finish; } pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; pbp->bio_inbed--; fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); if (disk->d_no == sc->sc_ndisks - 1) fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; fbp->bio_error = 0; fbp->bio_completed = 0; fbp->bio_children = 0; fbp->bio_inbed = 0; cp = disk->d_consumer; fbp->bio_caller2 = disk; fbp->bio_to = cp->provider; G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(fbp, cp); return; } if (xbp != NULL) { /* * Calculate parity. */ G_RAID3_FOREACH_BIO(pbp, cbp) { if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) continue; g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_length); } xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { if (!g_raid3_is_zero(xbp)) { g_raid3_parity_mismatch++; pbp->bio_error = EIO; goto finish; } g_raid3_destroy_bio(sc, xbp); } } atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); cadd = padd = 0; for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { G_RAID3_FOREACH_BIO(pbp, cbp) { bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); pbp->bio_completed += atom; padd += atom; } cadd += atom; } finish: if (pbp->bio_error == 0) G_RAID3_LOGREQ(3, pbp, "Request finished."); else { if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) G_RAID3_LOGREQ(1, pbp, "Verification error."); else G_RAID3_LOGREQ(0, pbp, "Request failed."); } pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) g_raid3_destroy_bio(sc, cbp); g_io_deliver(pbp, pbp->bio_error); } static void g_raid3_done(struct bio *bp) { struct g_raid3_softc *sc; sc = bp->bio_from->geom->softc; bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); } static void g_raid3_regular_request(struct bio *cbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct bio *pbp; g_topology_assert_not(); pbp = cbp->bio_parent; sc = pbp->bio_to->geom->softc; cbp->bio_from->index--; if (cbp->bio_cmd == BIO_WRITE) sc->sc_writes--; disk = cbp->bio_from->private; if (disk == NULL) { g_topology_lock(); g_raid3_kill_consumer(sc, cbp->bio_from); g_topology_unlock(); } G_RAID3_LOGREQ(3, cbp, "Request finished."); pbp->bio_inbed++; KASSERT(pbp->bio_inbed <= pbp->bio_children, ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, pbp->bio_children)); if (pbp->bio_inbed != pbp->bio_children) return; switch (pbp->bio_cmd) { case BIO_READ: g_raid3_gather(pbp); break; case BIO_WRITE: case BIO_DELETE: { int error = 0; pbp->bio_completed = pbp->bio_length; while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { if (cbp->bio_error == 0) { g_raid3_destroy_bio(sc, cbp); continue; } if (error == 0) error = cbp->bio_error; else if (pbp->bio_error == 0) { /* * Next failed request, that's too many. */ pbp->bio_error = error; } disk = cbp->bio_caller2; if (disk == NULL) { g_raid3_destroy_bio(sc, cbp); continue; } if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", cbp->bio_error); } else { G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", cbp->bio_error); } if (g_raid3_disconnect_on_failure && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } g_raid3_destroy_bio(sc, cbp); } if (pbp->bio_error == 0) G_RAID3_LOGREQ(3, pbp, "Request finished."); else G_RAID3_LOGREQ(0, pbp, "Request failed."); pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; bioq_remove(&sc->sc_inflight, pbp); /* Release delayed sync requests if possible. */ g_raid3_sync_release(sc); g_io_deliver(pbp, pbp->bio_error); break; } } } static void g_raid3_sync_done(struct bio *bp) { struct g_raid3_softc *sc; G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); sc = bp->bio_from->geom->softc; bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); } static void g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) { struct bio_queue_head queue; struct g_raid3_disk *disk; struct g_consumer *cp; struct bio *cbp; u_int i; bioq_init(&queue); for (i = 0; i < sc->sc_ndisks; i++) { disk = &sc->sc_disks[i]; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) continue; cbp = g_clone_bio(bp); if (cbp == NULL) { for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } bioq_insert_tail(&queue, cbp); cbp->bio_done = g_std_done; cbp->bio_caller1 = disk; cbp->bio_to = disk->d_consumer->provider; } for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); G_RAID3_LOGREQ(3, cbp, "Sending request."); disk = cbp->bio_caller1; cbp->bio_caller1 = NULL; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); g_io_request(cbp, disk->d_consumer); } } static void g_raid3_start(struct bio *bp) { struct g_raid3_softc *sc; sc = bp->bio_to->geom->softc; /* * If sc == NULL or there are no valid disks, provider's error * should be set and g_raid3_start() should not be called at all. */ KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), ("Provider's error should be set (error=%d)(device=%s).", bp->bio_to->error, bp->bio_to->name)); G_RAID3_LOGREQ(3, bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: break; case BIO_FLUSH: g_raid3_flush(sc, bp); return; case BIO_GETATTR: default: g_io_deliver(bp, EOPNOTSUPP); return; } mtx_lock(&sc->sc_queue_mtx); bioq_insert_tail(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); wakeup(sc); } /* * Return TRUE if the given request is colliding with a in-progress * synchronization request. */ static int g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) { struct g_raid3_disk *disk; struct bio *sbp; off_t rstart, rend, sstart, send; int i; disk = sc->sc_syncdisk; if (disk == NULL) return (0); rstart = bp->bio_offset; rend = bp->bio_offset + bp->bio_length; for (i = 0; i < g_raid3_syncreqs; i++) { sbp = disk->d_sync.ds_bios[i]; if (sbp == NULL) continue; sstart = sbp->bio_offset; send = sbp->bio_length; if (sbp->bio_cmd == BIO_WRITE) { sstart *= sc->sc_ndisks - 1; send *= sc->sc_ndisks - 1; } send += sstart; if (rend > sstart && rstart < send) return (1); } return (0); } /* * Return TRUE if the given sync request is colliding with a in-progress regular * request. */ static int g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) { off_t rstart, rend, sstart, send; struct bio *bp; if (sc->sc_syncdisk == NULL) return (0); sstart = sbp->bio_offset; send = sstart + sbp->bio_length; TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { rstart = bp->bio_offset; rend = bp->bio_offset + bp->bio_length; if (rend > sstart && rstart < send) return (1); } return (0); } /* * Puts request onto delayed queue. */ static void g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) { G_RAID3_LOGREQ(2, bp, "Delaying request."); bioq_insert_head(&sc->sc_regular_delayed, bp); } /* * Puts synchronization request onto delayed queue. */ static void g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) { G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); bioq_insert_tail(&sc->sc_sync_delayed, bp); } /* * Releases delayed regular requests which don't collide anymore with sync * requests. */ static void g_raid3_regular_release(struct g_raid3_softc *sc) { struct bio *bp, *bp2; TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { if (g_raid3_sync_collision(sc, bp)) continue; bioq_remove(&sc->sc_regular_delayed, bp); G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); #if 0 /* * wakeup() is not needed, because this function is called from * the worker thread. */ wakeup(&sc->sc_queue); #endif mtx_unlock(&sc->sc_queue_mtx); } } /* * Releases delayed sync requests which don't collide anymore with regular * requests. */ static void g_raid3_sync_release(struct g_raid3_softc *sc) { struct bio *bp, *bp2; TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { if (g_raid3_regular_collision(sc, bp)) continue; bioq_remove(&sc->sc_sync_delayed, bp); G_RAID3_LOGREQ(2, bp, "Releasing delayed synchronization request."); g_io_request(bp, bp->bio_from); } } /* * Handle synchronization requests. * Every synchronization request is two-steps process: first, READ request is * send to active provider and then WRITE request (with read data) to the provider * beeing synchronized. When WRITE is finished, new synchronization request is * send. */ static void g_raid3_sync_request(struct bio *bp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; bp->bio_from->index--; sc = bp->bio_from->geom->softc; disk = bp->bio_from->private; if (disk == NULL) { sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ g_topology_lock(); g_raid3_kill_consumer(sc, bp->bio_from); g_topology_unlock(); free(bp->bio_data, M_RAID3); g_destroy_bio(bp); sx_xlock(&sc->sc_lock); return; } /* * Synchronization request. */ switch (bp->bio_cmd) { case BIO_READ: { struct g_consumer *cp; u_char *dst, *src; off_t left; u_int atom; if (bp->bio_error != 0) { G_RAID3_LOGREQ(0, bp, "Synchronization request failed (error=%d).", bp->bio_error); g_destroy_bio(bp); return; } G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); dst = src = bp->bio_data; if (disk->d_no == sc->sc_ndisks - 1) { u_int n; /* Parity component. */ for (left = bp->bio_length; left > 0; left -= sc->sc_sectorsize) { bcopy(src, dst, atom); src += atom; for (n = 1; n < sc->sc_ndisks - 1; n++) { g_raid3_xor(src, dst, atom); src += atom; } dst += atom; } } else { /* Regular component. */ src += atom * disk->d_no; for (left = bp->bio_length; left > 0; left -= sc->sc_sectorsize) { bcopy(src, dst, atom); src += sc->sc_sectorsize; dst += atom; } } bp->bio_driver1 = bp->bio_driver2 = NULL; bp->bio_pflags = 0; bp->bio_offset /= sc->sc_ndisks - 1; bp->bio_length /= sc->sc_ndisks - 1; bp->bio_cmd = BIO_WRITE; bp->bio_cflags = 0; bp->bio_children = bp->bio_inbed = 0; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(bp, cp); return; } case BIO_WRITE: { struct g_raid3_disk_sync *sync; off_t boffset, moffset; void *data; int i; if (bp->bio_error != 0) { G_RAID3_LOGREQ(0, bp, "Synchronization request failed (error=%d).", bp->bio_error); g_destroy_bio(bp); sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); return; } G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); sync = &disk->d_sync; if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || sync->ds_consumer == NULL || (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { /* Don't send more synchronization requests. */ sync->ds_inflight--; if (sync->ds_bios != NULL) { i = (int)(uintptr_t)bp->bio_caller1; sync->ds_bios[i] = NULL; } free(bp->bio_data, M_RAID3); g_destroy_bio(bp); if (sync->ds_inflight > 0) return; if (sync->ds_consumer == NULL || (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { return; } /* * Disk up-to-date, activate it. */ g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, G_RAID3_EVENT_DONTWAIT); return; } /* Send next synchronization request. */ data = bp->bio_data; bzero(bp, sizeof(*bp)); bp->bio_cmd = BIO_READ; bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); bp->bio_done = g_raid3_sync_done; bp->bio_data = data; bp->bio_from = sync->ds_consumer; bp->bio_to = sc->sc_provider; G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); sync->ds_consumer->index++; /* * Delay the request if it is colliding with a regular request. */ if (g_raid3_regular_collision(sc, bp)) g_raid3_sync_delay(sc, bp); else g_io_request(bp, sync->ds_consumer); /* Release delayed requests if possible. */ g_raid3_regular_release(sc); /* Find the smallest offset. */ moffset = sc->sc_mediasize; for (i = 0; i < g_raid3_syncreqs; i++) { bp = sync->ds_bios[i]; boffset = bp->bio_offset; if (bp->bio_cmd == BIO_WRITE) boffset *= sc->sc_ndisks - 1; if (boffset < moffset) moffset = boffset; } if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { /* Update offset_done on every 100 blocks. */ sync->ds_offset_done = moffset; g_raid3_update_metadata(disk); } return; } default: KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", bp->bio_cmd, sc->sc_name)); break; } } static int g_raid3_register_request(struct bio *pbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct g_consumer *cp; struct bio *cbp, *tmpbp; off_t offset, length; u_int n, ndisks; int round_robin, verify; ndisks = 0; sc = pbp->bio_to->geom->softc; if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && sc->sc_syncdisk == NULL) { g_io_deliver(pbp, EIO); return (0); } g_raid3_init_bio(pbp); length = pbp->bio_length / (sc->sc_ndisks - 1); offset = pbp->bio_offset / (sc->sc_ndisks - 1); round_robin = verify = 0; switch (pbp->bio_cmd) { case BIO_READ: if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; verify = 1; ndisks = sc->sc_ndisks; } else { verify = 0; ndisks = sc->sc_ndisks - 1; } if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { round_robin = 1; } else { round_robin = 0; } KASSERT(!round_robin || !verify, ("ROUND-ROBIN and VERIFY are mutually exclusive.")); pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; break; case BIO_WRITE: case BIO_DELETE: /* * Delay the request if it is colliding with a synchronization * request. */ if (g_raid3_sync_collision(sc, pbp)) { g_raid3_regular_delay(sc, pbp); return (0); } if (sc->sc_idle) g_raid3_unidle(sc); else sc->sc_last_write = time_uptime; ndisks = sc->sc_ndisks; break; } for (n = 0; n < ndisks; n++) { disk = &sc->sc_disks[n]; cbp = g_raid3_clone_bio(sc, pbp); if (cbp == NULL) { while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) g_raid3_destroy_bio(sc, cbp); /* * To prevent deadlock, we must run back up * with the ENOMEM for failed requests of any * of our consumers. Our own sync requests * can stick around, as they are finite. */ if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) { g_io_deliver(pbp, ENOMEM); return (0); } return (ENOMEM); } cbp->bio_offset = offset; cbp->bio_length = length; cbp->bio_done = g_raid3_done; switch (pbp->bio_cmd) { case BIO_READ: if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { /* * Replace invalid component with the parity * component. */ disk = &sc->sc_disks[sc->sc_ndisks - 1]; cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; } else if (round_robin && disk->d_no == sc->sc_round_robin) { /* * In round-robin mode skip one data component * and use parity component when reading. */ pbp->bio_driver2 = disk; disk = &sc->sc_disks[sc->sc_ndisks - 1]; cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; sc->sc_round_robin++; round_robin = 0; } else if (verify && disk->d_no == sc->sc_ndisks - 1) { cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; } break; case BIO_WRITE: case BIO_DELETE: if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { if (n == ndisks - 1) { /* * Active parity component, mark it as such. */ cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; } } else { pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; if (n == ndisks - 1) { /* * Parity component is not connected, * so destroy its request. */ pbp->bio_pflags |= G_RAID3_BIO_PFLAG_NOPARITY; g_raid3_destroy_bio(sc, cbp); cbp = NULL; } else { cbp->bio_cflags |= G_RAID3_BIO_CFLAG_NODISK; disk = NULL; } } break; } if (cbp != NULL) cbp->bio_caller2 = disk; } switch (pbp->bio_cmd) { case BIO_READ: if (round_robin) { /* * If we are in round-robin mode and 'round_robin' is * still 1, it means, that we skipped parity component * for this read and must reset sc_round_robin field. */ sc->sc_round_robin = 0; } G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { disk = cbp->bio_caller2; cp = disk->d_consumer; cbp->bio_to = cp->provider; G_RAID3_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(cbp, cp); } break; case BIO_WRITE: case BIO_DELETE: /* * Put request onto inflight queue, so we can check if new * synchronization requests don't collide with it. */ bioq_insert_tail(&sc->sc_inflight, pbp); /* * Bump syncid on first write. */ if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; g_raid3_bump_syncid(sc); } g_raid3_scatter(pbp); break; } return (0); } static int g_raid3_can_destroy(struct g_raid3_softc *sc) { struct g_geom *gp; struct g_consumer *cp; g_topology_assert(); gp = sc->sc_geom; if (gp->softc == NULL) return (1); LIST_FOREACH(cp, &gp->consumer, consumer) { if (g_raid3_is_busy(sc, cp)) return (0); } gp = sc->sc_sync.ds_geom; LIST_FOREACH(cp, &gp->consumer, consumer) { if (g_raid3_is_busy(sc, cp)) return (0); } G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", sc->sc_name); return (1); } static int g_raid3_try_destroy(struct g_raid3_softc *sc) { g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if (sc->sc_rootmount != NULL) { G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } g_topology_lock(); if (!g_raid3_can_destroy(sc)) { g_topology_unlock(); return (0); } sc->sc_geom->softc = NULL; sc->sc_sync.ds_geom->softc = NULL; if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { g_topology_unlock(); G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, &sc->sc_worker); /* Unlock sc_lock here, as it can be destroyed after wakeup. */ sx_xunlock(&sc->sc_lock); wakeup(&sc->sc_worker); sc->sc_worker = NULL; } else { g_topology_unlock(); g_raid3_destroy_device(sc); free(sc->sc_disks, M_RAID3); free(sc, M_RAID3); } return (1); } /* * Worker thread. */ static void g_raid3_worker(void *arg) { struct g_raid3_softc *sc; struct g_raid3_event *ep; struct bio *bp; int timeout; sc = arg; thread_lock(curthread); sched_prio(curthread, PRIBIO); thread_unlock(curthread); sx_xlock(&sc->sc_lock); for (;;) { G_RAID3_DEBUG(5, "%s: Let's see...", __func__); /* * First take a look at events. * This is important to handle events before any I/O requests. */ ep = g_raid3_event_get(sc); if (ep != NULL) { g_raid3_event_remove(sc, ep); if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { /* Update only device status. */ G_RAID3_DEBUG(3, "Running event for device %s.", sc->sc_name); ep->e_error = 0; g_raid3_update_device(sc, 1); } else { /* Update disk status. */ G_RAID3_DEBUG(3, "Running event for disk %s.", g_raid3_get_diskname(ep->e_disk)); ep->e_error = g_raid3_update_disk(ep->e_disk, ep->e_state); if (ep->e_error == 0) g_raid3_update_device(sc, 0); } if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { KASSERT(ep->e_error == 0, ("Error cannot be handled.")); g_raid3_event_free(ep); } else { ep->e_flags |= G_RAID3_EVENT_DONE; G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); mtx_lock(&sc->sc_events_mtx); wakeup(ep); mtx_unlock(&sc->sc_events_mtx); } if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { if (g_raid3_try_destroy(sc)) { curthread->td_pflags &= ~TDP_GEOM; G_RAID3_DEBUG(1, "Thread exiting."); kproc_exit(0); } } G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); continue; } /* * Check if we can mark array as CLEAN and if we can't take * how much seconds should we wait. */ timeout = g_raid3_idle(sc, -1); /* * Now I/O requests. */ /* Get first request from the queue. */ mtx_lock(&sc->sc_queue_mtx); bp = bioq_first(&sc->sc_queue); if (bp == NULL) { if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { mtx_unlock(&sc->sc_queue_mtx); if (g_raid3_try_destroy(sc)) { curthread->td_pflags &= ~TDP_GEOM; G_RAID3_DEBUG(1, "Thread exiting."); kproc_exit(0); } mtx_lock(&sc->sc_queue_mtx); } sx_xunlock(&sc->sc_lock); /* * XXX: We can miss an event here, because an event * can be added without sx-device-lock and without * mtx-queue-lock. Maybe I should just stop using * dedicated mutex for events synchronization and * stick with the queue lock? * The event will hang here until next I/O request * or next event is received. */ MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", timeout * hz); sx_xlock(&sc->sc_lock); G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); continue; } process: bioq_remove(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); if (bp->bio_from->geom == sc->sc_sync.ds_geom && (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { g_raid3_sync_request(bp); /* READ */ } else if (bp->bio_to != sc->sc_provider) { if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) g_raid3_regular_request(bp); else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) g_raid3_sync_request(bp); /* WRITE */ else { KASSERT(0, ("Invalid request cflags=0x%hhx to=%s.", bp->bio_cflags, bp->bio_to->name)); } } else if (g_raid3_register_request(bp) != 0) { mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); /* * We are short in memory, let see if there are finished * request we can free. */ TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) goto process; } /* * No finished regular request, so at least keep * synchronization running. */ TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) goto process; } sx_xunlock(&sc->sc_lock); MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:lowmem", hz / 10); sx_xlock(&sc->sc_lock); } G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); } } static void g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) { sx_assert(&sc->sc_lock, SX_LOCKED); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) return; if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; } else if (sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; } } static void g_raid3_sync_start(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; struct g_consumer *cp; struct bio *bp; int error; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, ("Device not in DEGRADED state (%s, %u).", sc->sc_name, sc->sc_state)); KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", sc->sc_name, sc->sc_state)); disk = NULL; for (n = 0; n < sc->sc_ndisks; n++) { if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) continue; disk = &sc->sc_disks[n]; break; } if (disk == NULL) return; sx_xunlock(&sc->sc_lock); g_topology_lock(); cp = g_new_consumer(sc->sc_sync.ds_geom); error = g_attach(cp, sc->sc_provider); KASSERT(error == 0, ("Cannot attach to %s (error=%d).", sc->sc_name, error)); error = g_access(cp, 1, 0, 0); KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); g_topology_unlock(); sx_xlock(&sc->sc_lock); G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, g_raid3_get_diskname(disk)); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; KASSERT(disk->d_sync.ds_consumer == NULL, ("Sync consumer already exists (device=%s, disk=%s).", sc->sc_name, g_raid3_get_diskname(disk))); disk->d_sync.ds_consumer = cp; disk->d_sync.ds_consumer->private = disk; disk->d_sync.ds_consumer->index = 0; sc->sc_syncdisk = disk; /* * Allocate memory for synchronization bios and initialize them. */ disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, M_RAID3, M_WAITOK); for (n = 0; n < g_raid3_syncreqs; n++) { bp = g_alloc_bio(); disk->d_sync.ds_bios[n] = bp; bp->bio_parent = NULL; bp->bio_cmd = BIO_READ; bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); bp->bio_cflags = 0; bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); bp->bio_done = g_raid3_sync_done; bp->bio_from = disk->d_sync.ds_consumer; bp->bio_to = sc->sc_provider; bp->bio_caller1 = (void *)(uintptr_t)n; } /* Set the number of in-flight synchronization requests. */ disk->d_sync.ds_inflight = g_raid3_syncreqs; /* * Fire off first synchronization requests. */ for (n = 0; n < g_raid3_syncreqs; n++) { bp = disk->d_sync.ds_bios[n]; G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); disk->d_sync.ds_consumer->index++; /* * Delay the request if it is colliding with a regular request. */ if (g_raid3_regular_collision(sc, bp)) g_raid3_sync_delay(sc, bp); else g_io_request(bp, disk->d_sync.ds_consumer); } } /* * Stop synchronization process. * type: 0 - synchronization finished * 1 - synchronization stopped */ static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type) { struct g_raid3_disk *disk; struct g_consumer *cp; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_LOCKED); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, ("Device not in DEGRADED state (%s, %u).", sc->sc_name, sc->sc_state)); disk = sc->sc_syncdisk; sc->sc_syncdisk = NULL; KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); if (disk->d_sync.ds_consumer == NULL) return; if (type == 0) { G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", sc->sc_name, g_raid3_get_diskname(disk)); } else /* if (type == 1) */ { G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", sc->sc_name, g_raid3_get_diskname(disk)); } free(disk->d_sync.ds_bios, M_RAID3); disk->d_sync.ds_bios = NULL; cp = disk->d_sync.ds_consumer; disk->d_sync.ds_consumer = NULL; disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ g_topology_lock(); g_raid3_kill_consumer(sc, cp); g_topology_unlock(); sx_xlock(&sc->sc_lock); } static void g_raid3_launch_provider(struct g_raid3_softc *sc) { struct g_provider *pp; struct g_raid3_disk *disk; int n; sx_assert(&sc->sc_lock, SX_LOCKED); g_topology_lock(); pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); pp->mediasize = sc->sc_mediasize; pp->sectorsize = sc->sc_sectorsize; pp->stripesize = 0; pp->stripeoffset = 0; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_consumer && disk->d_consumer->provider && disk->d_consumer->provider->stripesize > pp->stripesize) { pp->stripesize = disk->d_consumer->provider->stripesize; pp->stripeoffset = disk->d_consumer->provider->stripeoffset; } } pp->stripesize *= sc->sc_ndisks - 1; pp->stripeoffset *= sc->sc_ndisks - 1; sc->sc_provider = pp; g_error_provider(pp, 0); g_topology_unlock(); G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) g_raid3_sync_start(sc); } static void g_raid3_destroy_provider(struct g_raid3_softc *sc) { struct bio *bp; g_topology_assert_not(); KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", sc->sc_name)); g_topology_lock(); g_error_provider(sc->sc_provider, ENXIO); mtx_lock(&sc->sc_queue_mtx); while ((bp = bioq_first(&sc->sc_queue)) != NULL) { bioq_remove(&sc->sc_queue, bp); g_io_deliver(bp, ENXIO); } mtx_unlock(&sc->sc_queue_mtx); G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, sc->sc_provider->name); sc->sc_provider->flags |= G_PF_WITHER; g_orphan_provider(sc->sc_provider, ENXIO); g_topology_unlock(); sc->sc_provider = NULL; if (sc->sc_syncdisk != NULL) g_raid3_sync_stop(sc, 1); } static void g_raid3_go(void *arg) { struct g_raid3_softc *sc; sc = arg; G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); g_raid3_event_send(sc, 0, G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); } static u_int g_raid3_determine_state(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; u_int state; sc = disk->d_softc; if (sc->sc_syncid == disk->d_sync.ds_syncid) { if ((disk->d_flags & G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { /* Disk does not need synchronization. */ state = G_RAID3_DISK_STATE_ACTIVE; } else { if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { /* * We can start synchronization from * the stored offset. */ state = G_RAID3_DISK_STATE_SYNCHRONIZING; } else { state = G_RAID3_DISK_STATE_STALE; } } } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { /* * Reset all synchronization data for this disk, * because if it even was synchronized, it was * synchronized to disks with different syncid. */ disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; disk->d_sync.ds_offset = 0; disk->d_sync.ds_offset_done = 0; disk->d_sync.ds_syncid = sc->sc_syncid; if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { state = G_RAID3_DISK_STATE_SYNCHRONIZING; } else { state = G_RAID3_DISK_STATE_STALE; } } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { /* * Not good, NOT GOOD! * It means that device was started on stale disks * and more fresh disk just arrive. * If there were writes, device is broken, sorry. * I think the best choice here is don't touch * this disk and inform the user loudly. */ G_RAID3_DEBUG(0, "Device %s was started before the freshest " "disk (%s) arrives!! It will not be connected to the " "running device.", sc->sc_name, g_raid3_get_diskname(disk)); g_raid3_destroy_disk(disk); state = G_RAID3_DISK_STATE_NONE; /* Return immediately, because disk was destroyed. */ return (state); } G_RAID3_DEBUG(3, "State for %s disk: %s.", g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); return (state); } /* * Update device state. */ static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) { struct g_raid3_disk *disk; u_int state; sx_assert(&sc->sc_lock, SX_XLOCKED); switch (sc->sc_state) { case G_RAID3_DEVICE_STATE_STARTING: { u_int n, ndirty, ndisks, genid, syncid; KASSERT(sc->sc_provider == NULL, ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); /* * Are we ready? We are, if all disks are connected or * one disk is missing and 'force' is true. */ if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { if (!force) callout_drain(&sc->sc_callout); } else { if (force) { /* * Timeout expired, so destroy device. */ sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } return; } /* * Find the biggest genid. */ genid = 0; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if (disk->d_genid > genid) genid = disk->d_genid; } sc->sc_genid = genid; /* * Remove all disks without the biggest genid. */ for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if (disk->d_genid < genid) { G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", g_raid3_get_diskname(disk), sc->sc_name); g_raid3_destroy_disk(disk); } } /* * There must be at least 'sc->sc_ndisks - 1' components * with the same syncid and without SYNCHRONIZING flag. */ /* * Find the biggest syncid, number of valid components and * number of dirty components. */ ndirty = ndisks = syncid = 0; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) ndirty++; if (disk->d_sync.ds_syncid > syncid) { syncid = disk->d_sync.ds_syncid; ndisks = 0; } else if (disk->d_sync.ds_syncid < syncid) { continue; } if ((disk->d_flags & G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { continue; } ndisks++; } /* * Do we have enough valid components? */ if (ndisks + 1 < sc->sc_ndisks) { G_RAID3_DEBUG(0, "Device %s is broken, too few valid components.", sc->sc_name); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; return; } /* * If there is one DIRTY component and all disks are present, * mark it for synchronization. If there is more than one DIRTY * component, mark parity component for synchronization. */ if (ndisks == sc->sc_ndisks && ndirty == 1) { for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { continue; } disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; } } else if (ndisks == sc->sc_ndisks && ndirty > 1) { disk = &sc->sc_disks[sc->sc_ndisks - 1]; disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; } sc->sc_syncid = syncid; if (force) { /* Remember to bump syncid on first write. */ sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; } if (ndisks == sc->sc_ndisks) state = G_RAID3_DEVICE_STATE_COMPLETE; else /* if (ndisks == sc->sc_ndisks - 1) */ state = G_RAID3_DEVICE_STATE_DEGRADED; G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_device_state2str(state)); sc->sc_state = state; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; state = g_raid3_determine_state(disk); g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); if (state == G_RAID3_DISK_STATE_STALE) sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; } break; } case G_RAID3_DEVICE_STATE_DEGRADED: /* * Genid need to be bumped immediately, so do it here. */ if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; g_raid3_bump_genid(sc); } if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) return; if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { if (sc->sc_provider != NULL) g_raid3_destroy_provider(sc); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; return; } if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == sc->sc_ndisks) { state = G_RAID3_DEVICE_STATE_COMPLETE; G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_device_state2str(state)); sc->sc_state = state; } if (sc->sc_provider == NULL) g_raid3_launch_provider(sc); if (sc->sc_rootmount != NULL) { G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } break; case G_RAID3_DEVICE_STATE_COMPLETE: /* * Genid need to be bumped immediately, so do it here. */ if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; g_raid3_bump_genid(sc); } if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) return; KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= sc->sc_ndisks - 1, ("Too few ACTIVE components in COMPLETE state (device %s).", sc->sc_name)); if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == sc->sc_ndisks - 1) { state = G_RAID3_DEVICE_STATE_DEGRADED; G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_device_state2str(state)); sc->sc_state = state; } if (sc->sc_provider == NULL) g_raid3_launch_provider(sc); if (sc->sc_rootmount != NULL) { G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } break; default: KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state))); break; } } /* * Update disk state and device state if needed. */ #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ "Disk %s state changed from %s to %s (device %s).", \ g_raid3_get_diskname(disk), \ g_raid3_disk_state2str(disk->d_state), \ g_raid3_disk_state2str(state), sc->sc_name) static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) { struct g_raid3_softc *sc; sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); again: G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), g_raid3_disk_state2str(state)); switch (state) { case G_RAID3_DISK_STATE_NEW: /* * Possible scenarios: * 1. New disk arrive. */ /* Previous state should be NONE. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); disk->d_state = state; G_RAID3_DEBUG(1, "Device %s: provider %s detected.", sc->sc_name, g_raid3_get_diskname(disk)); if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) break; KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); state = g_raid3_determine_state(disk); if (state != G_RAID3_DISK_STATE_NONE) goto again; break; case G_RAID3_DISK_STATE_ACTIVE: /* * Possible scenarios: * 1. New disk does not need synchronization. * 2. Synchronization process finished successfully. */ KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); /* Previous state should be NEW or SYNCHRONIZING. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; g_raid3_sync_stop(sc, 0); } disk->d_state = state; disk->d_sync.ds_offset = 0; disk->d_sync.ds_offset_done = 0; g_raid3_update_idle(sc, disk); g_raid3_update_metadata(disk); G_RAID3_DEBUG(1, "Device %s: provider %s activated.", sc->sc_name, g_raid3_get_diskname(disk)); break; case G_RAID3_DISK_STATE_STALE: /* * Possible scenarios: * 1. Stale disk was connected. */ /* Previous state should be NEW. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); /* * STALE state is only possible if device is marked * NOAUTOSYNC. */ KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; disk->d_state = state; g_raid3_update_metadata(disk); G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", sc->sc_name, g_raid3_get_diskname(disk)); break; case G_RAID3_DISK_STATE_SYNCHRONIZING: /* * Possible scenarios: * 1. Disk which needs synchronization was connected. */ /* Previous state should be NEW. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); if (disk->d_state == G_RAID3_DISK_STATE_NEW) disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; disk->d_state = state; if (sc->sc_provider != NULL) { g_raid3_sync_start(sc); g_raid3_update_metadata(disk); } break; case G_RAID3_DISK_STATE_DISCONNECTED: /* * Possible scenarios: * 1. Device wasn't running yet, but disk disappear. * 2. Disk was active and disapppear. * 3. Disk disappear during synchronization process. */ if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { /* * Previous state should be ACTIVE, STALE or * SYNCHRONIZING. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_STALE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { /* Previous state should be NEW. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); /* * Reset bumping syncid if disk disappeared in STARTING * state. */ if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; #ifdef INVARIANTS } else { KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); #endif } DISK_STATE_CHANGED(); G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", sc->sc_name, g_raid3_get_diskname(disk)); g_raid3_destroy_disk(disk); break; default: KASSERT(1 == 0, ("Unknown state (%u).", state)); break; } return (0); } #undef DISK_STATE_CHANGED int g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); /* Metadata are stored on last sector. */ buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) { G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", cp->provider->name, error); return (error); } /* Decode metadata. */ error = raid3_metadata_decode(buf, md); g_free(buf); if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) return (EINVAL); if (md->md_version > G_RAID3_VERSION) { G_RAID3_DEBUG(0, "Kernel module is too old to handle metadata from %s.", cp->provider->name); return (EINVAL); } if (error != 0) { G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", cp->provider->name); return (error); } if (md->md_sectorsize > MAXPHYS) { G_RAID3_DEBUG(0, "The blocksize is too big."); return (EINVAL); } return (0); } static int g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, struct g_raid3_metadata *md) { if (md->md_no >= sc->sc_ndisks) { G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", pp->name, md->md_no); return (EINVAL); } if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", pp->name, md->md_no); return (EEXIST); } if (md->md_all != sc->sc_ndisks) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_all", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mediasize % md->md_sectorsize) != 0) { G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " "0) on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if (md->md_mediasize != sc->sc_mediasize) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_mediasize", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_mediasize", pp->name, sc->sc_name); return (EINVAL); } if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { G_RAID3_DEBUG(1, "Invalid size of disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_sectorsize", pp->name, sc->sc_name); return (EINVAL); } if (md->md_sectorsize != sc->sc_sectorsize) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_sectorsize", pp->name, sc->sc_name); return (EINVAL); } if ((sc->sc_sectorsize % pp->sectorsize) != 0) { G_RAID3_DEBUG(1, "Invalid sector size of disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { G_RAID3_DEBUG(1, "Invalid device flags on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { /* * VERIFY and ROUND-ROBIN options are mutally exclusive. */ G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " "disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { G_RAID3_DEBUG(1, "Invalid disk flags on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } return (0); } int g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, struct g_raid3_metadata *md) { struct g_raid3_disk *disk; int error; g_topology_assert_not(); G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); error = g_raid3_check_metadata(sc, pp, md); if (error != 0) return (error); if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && md->md_genid < sc->sc_genid) { G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", pp->name, sc->sc_name); return (EINVAL); } disk = g_raid3_init_disk(sc, pp, md, &error); if (disk == NULL) return (error); error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, G_RAID3_EVENT_WAIT); if (error != 0) return (error); if (md->md_version < G_RAID3_VERSION) { G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", pp->name, md->md_version, G_RAID3_VERSION); g_raid3_update_metadata(disk); } return (0); } static void g_raid3_destroy_delayed(void *arg, int flag) { struct g_raid3_softc *sc; int error; if (flag == EV_CANCEL) { G_RAID3_DEBUG(1, "Destroying canceled."); return; } sc = arg; g_topology_unlock(); sx_xlock(&sc->sc_lock); KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, ("DESTROY flag set on %s.", sc->sc_name)); KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, ("DESTROYING flag not set on %s.", sc->sc_name)); G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); if (error != 0) { G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); sx_xunlock(&sc->sc_lock); } g_topology_lock(); } static int g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) { struct g_raid3_softc *sc; int dcr, dcw, dce, error = 0; g_topology_assert(); G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, acw, ace); sc = pp->geom->softc; if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) return (0); KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); dcr = pp->acr + acr; dcw = pp->acw + acw; dce = pp->ace + ace; g_topology_unlock(); sx_xlock(&sc->sc_lock); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { if (acr > 0 || acw > 0 || ace > 0) error = ENXIO; goto end; } if (dcw == 0 && !sc->sc_idle) g_raid3_idle(sc, dcw); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { if (acr > 0 || acw > 0 || ace > 0) { error = ENXIO; goto end; } if (dcr == 0 && dcw == 0 && dce == 0) { g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, sc, NULL); } } end: sx_xunlock(&sc->sc_lock); g_topology_lock(); return (error); } static struct g_geom * g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) { struct g_raid3_softc *sc; struct g_geom *gp; int error, timeout; u_int n; g_topology_assert(); G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); /* One disk is minimum. */ if (md->md_all < 1) return (NULL); /* * Action geom. */ gp = g_new_geomf(mp, "%s", md->md_name); sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, M_WAITOK | M_ZERO); gp->start = g_raid3_start; gp->orphan = g_raid3_orphan; gp->access = g_raid3_access; gp->dumpconf = g_raid3_dumpconf; sc->sc_id = md->md_id; sc->sc_mediasize = md->md_mediasize; sc->sc_sectorsize = md->md_sectorsize; sc->sc_ndisks = md->md_all; sc->sc_round_robin = 0; sc->sc_flags = md->md_mflags; sc->sc_bump_id = 0; sc->sc_idle = 1; sc->sc_last_write = time_uptime; sc->sc_writes = 0; for (n = 0; n < sc->sc_ndisks; n++) { sc->sc_disks[n].d_softc = sc; sc->sc_disks[n].d_no = n; sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; } sx_init(&sc->sc_lock, "graid3:lock"); bioq_init(&sc->sc_queue); mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); bioq_init(&sc->sc_regular_delayed); bioq_init(&sc->sc_inflight); bioq_init(&sc->sc_sync_delayed); TAILQ_INIT(&sc->sc_events); mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); callout_init(&sc->sc_callout, CALLOUT_MPSAFE); sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; gp->softc = sc; sc->sc_geom = gp; sc->sc_provider = NULL; /* * Synchronization geom. */ gp = g_new_geomf(mp, "%s.sync", md->md_name); gp->softc = sc; gp->orphan = g_raid3_orphan; sc->sc_sync.ds_geom = gp; if (!g_raid3_use_malloc) { sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; } error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, "g_raid3 %s", md->md_name); if (error != 0) { G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", sc->sc_name); if (!g_raid3_use_malloc) { uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); } g_destroy_geom(sc->sc_sync.ds_geom); mtx_destroy(&sc->sc_events_mtx); mtx_destroy(&sc->sc_queue_mtx); sx_destroy(&sc->sc_lock); g_destroy_geom(sc->sc_geom); free(sc->sc_disks, M_RAID3); free(sc, M_RAID3); return (NULL); } G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", sc->sc_name, sc->sc_ndisks, sc->sc_id); sc->sc_rootmount = root_mount_hold("GRAID3"); G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); /* * Run timeout. */ timeout = atomic_load_acq_int(&g_raid3_timeout); callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); return (sc->sc_geom); } int g_raid3_destroy(struct g_raid3_softc *sc, int how) { struct g_provider *pp; g_topology_assert_not(); if (sc == NULL) return (ENXIO); sx_assert(&sc->sc_lock, SX_XLOCKED); pp = sc->sc_provider; if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { switch (how) { case G_RAID3_DESTROY_SOFT: G_RAID3_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); case G_RAID3_DESTROY_DELAYED: G_RAID3_DEBUG(1, "Device %s will be destroyed on last close.", pp->name); if (sc->sc_syncdisk != NULL) g_raid3_sync_stop(sc, 1); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; return (EBUSY); case G_RAID3_DESTROY_HARD: G_RAID3_DEBUG(1, "Device %s is still open, so it " "can't be definitely removed.", pp->name); break; } } g_topology_lock(); if (sc->sc_geom->softc == NULL) { g_topology_unlock(); return (0); } sc->sc_geom->softc = NULL; sc->sc_sync.ds_geom->softc = NULL; g_topology_unlock(); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); sx_xunlock(&sc->sc_lock); mtx_lock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); mtx_unlock(&sc->sc_queue_mtx); G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); while (sc->sc_worker != NULL) tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); sx_xlock(&sc->sc_lock); g_raid3_destroy_device(sc); free(sc->sc_disks, M_RAID3); free(sc, M_RAID3); return (0); } static void g_raid3_taste_orphan(struct g_consumer *cp) { KASSERT(1 == 0, ("%s called while tasting %s.", __func__, cp->provider->name)); } static struct g_geom * g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_raid3_metadata md; struct g_raid3_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_topology_assert(); g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); G_RAID3_DEBUG(2, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "raid3:taste"); /* This orphan function should be never called. */ gp->orphan = g_raid3_taste_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_raid3_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (md.md_provider[0] != '\0' && !g_compare_names(md.md_provider, pp->name)) return (NULL); if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) return (NULL); if (g_raid3_debug >= 2) raid3_metadata_dump(&md); /* * Let's check if device already exists. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (sc->sc_sync.ds_geom == gp) continue; if (strcmp(md.md_name, sc->sc_name) != 0) continue; if (md.md_id != sc->sc_id) { G_RAID3_DEBUG(0, "Device %s already configured.", sc->sc_name); return (NULL); } break; } if (gp == NULL) { gp = g_raid3_create(mp, &md); if (gp == NULL) { G_RAID3_DEBUG(0, "Cannot create device %s.", md.md_name); return (NULL); } sc = gp->softc; } G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); g_topology_unlock(); sx_xlock(&sc->sc_lock); error = g_raid3_add_disk(sc, pp, &md); if (error != 0) { G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == sc->sc_ndisks) { g_cancel_event(sc); g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); g_topology_lock(); return (NULL); } gp = NULL; } sx_xunlock(&sc->sc_lock); g_topology_lock(); return (gp); } static int g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_raid3_softc *sc; int error; g_topology_unlock(); sc = gp->softc; sx_xlock(&sc->sc_lock); g_cancel_event(sc); error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); if (error != 0) sx_xunlock(&sc->sc_lock); g_topology_lock(); return (error); } static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_raid3_softc *sc; g_topology_assert(); sc = gp->softc; if (sc == NULL) return; /* Skip synchronization geom. */ if (gp == sc->sc_sync.ds_geom) return; if (pp != NULL) { /* Nothing here. */ } else if (cp != NULL) { struct g_raid3_disk *disk; disk = cp->private; if (disk == NULL) return; g_topology_unlock(); sx_xlock(&sc->sc_lock); sbuf_printf(sb, "%s<Type>", indent); if (disk->d_no == sc->sc_ndisks - 1) sbuf_printf(sb, "PARITY"); else sbuf_printf(sb, "DATA"); sbuf_printf(sb, "</Type>\n"); sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, (u_int)disk->d_no); if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { sbuf_printf(sb, "%s<Synchronized>", indent); if (disk->d_sync.ds_offset == 0) sbuf_printf(sb, "0%%"); else { sbuf_printf(sb, "%u%%", (u_int)((disk->d_sync.ds_offset * 100) / (sc->sc_mediasize / (sc->sc_ndisks - 1)))); } sbuf_printf(sb, "</Synchronized>\n"); } sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, disk->d_sync.ds_syncid); sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); sbuf_printf(sb, "%s<Flags>", indent); if (disk->d_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if ((disk->d_flags & (flag)) != 0) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, "SYNCHRONIZING"); ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); #undef ADD_FLAG } sbuf_printf(sb, "</Flags>\n"); sbuf_printf(sb, "%s<State>%s</State>\n", indent, g_raid3_disk_state2str(disk->d_state)); sx_xunlock(&sc->sc_lock); g_topology_lock(); } else { g_topology_unlock(); sx_xlock(&sc->sc_lock); if (!g_raid3_use_malloc) { sbuf_printf(sb, "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); sbuf_printf(sb, "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); sbuf_printf(sb, "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); sbuf_printf(sb, "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); sbuf_printf(sb, "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); sbuf_printf(sb, "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); } sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); sbuf_printf(sb, "%s<Flags>", indent); if (sc->sc_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if ((sc->sc_flags & (flag)) != 0) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, "ROUND-ROBIN"); ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); #undef ADD_FLAG } sbuf_printf(sb, "</Flags>\n"); sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, sc->sc_ndisks); sbuf_printf(sb, "%s<State>%s</State>\n", indent, g_raid3_device_state2str(sc->sc_state)); sx_xunlock(&sc->sc_lock); g_topology_lock(); } } static void g_raid3_shutdown_pre_sync(void *arg, int howto) { struct g_class *mp; struct g_geom *gp, *gp2; struct g_raid3_softc *sc; int error; mp = arg; DROP_GIANT(); g_topology_lock(); LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { if ((sc = gp->softc) == NULL) continue; /* Skip synchronization geom. */ if (gp == sc->sc_sync.ds_geom) continue; g_topology_unlock(); sx_xlock(&sc->sc_lock); g_cancel_event(sc); error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); if (error != 0) sx_xunlock(&sc->sc_lock); g_topology_lock(); } g_topology_unlock(); PICKUP_GIANT(); } static void g_raid3_init(struct g_class *mp) { g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); if (g_raid3_pre_sync == NULL) G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); } static void g_raid3_fini(struct g_class *mp) { if (g_raid3_pre_sync != NULL) EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync); } DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);