Current Path : /compat/linux/proc/self/root/sys/powerpc/powermac/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/sys/powerpc/powermac/smu.c |
/*- * Copyright (c) 2009 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/powerpc/powermac/smu.c 233471 2012-03-25 18:42:19Z andreast $"); #include <sys/param.h> #include <sys/bus.h> #include <sys/systm.h> #include <sys/module.h> #include <sys/conf.h> #include <sys/cpu.h> #include <sys/clock.h> #include <sys/ctype.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/reboot.h> #include <sys/rman.h> #include <sys/sysctl.h> #include <sys/unistd.h> #include <machine/bus.h> #include <machine/intr_machdep.h> #include <machine/md_var.h> #include <dev/iicbus/iicbus.h> #include <dev/iicbus/iiconf.h> #include <dev/led/led.h> #include <dev/ofw/openfirm.h> #include <dev/ofw/ofw_bus.h> #include <dev/ofw/ofw_bus_subr.h> #include <powerpc/powermac/macgpiovar.h> #include <powerpc/powermac/powermac_thermal.h> #include "clock_if.h" #include "iicbus_if.h" struct smu_cmd { volatile uint8_t cmd; uint8_t len; uint8_t data[254]; STAILQ_ENTRY(smu_cmd) cmd_q; }; STAILQ_HEAD(smu_cmdq, smu_cmd); struct smu_fan { struct pmac_fan fan; device_t dev; cell_t reg; enum { SMU_FAN_RPM, SMU_FAN_PWM } type; int old_style; int setpoint; int rpm; }; /* We can read the PWM and the RPM from a PWM controlled fan. * Offer both values via sysctl. */ enum { SMU_PWM_SYSCTL_PWM = 1 << 8, SMU_PWM_SYSCTL_RPM = 2 << 8 }; struct smu_sensor { struct pmac_therm therm; device_t dev; cell_t reg; enum { SMU_CURRENT_SENSOR, SMU_VOLTAGE_SENSOR, SMU_POWER_SENSOR, SMU_TEMP_SENSOR } type; }; struct smu_softc { device_t sc_dev; struct mtx sc_mtx; struct resource *sc_memr; int sc_memrid; int sc_u3; bus_dma_tag_t sc_dmatag; bus_space_tag_t sc_bt; bus_space_handle_t sc_mailbox; struct smu_cmd *sc_cmd, *sc_cur_cmd; bus_addr_t sc_cmd_phys; bus_dmamap_t sc_cmd_dmamap; struct smu_cmdq sc_cmdq; struct smu_fan *sc_fans; int sc_nfans; struct smu_sensor *sc_sensors; int sc_nsensors; int sc_doorbellirqid; struct resource *sc_doorbellirq; void *sc_doorbellirqcookie; struct proc *sc_fanmgt_proc; time_t sc_lastuserchange; /* Calibration data */ uint16_t sc_cpu_diode_scale; int16_t sc_cpu_diode_offset; uint16_t sc_cpu_volt_scale; int16_t sc_cpu_volt_offset; uint16_t sc_cpu_curr_scale; int16_t sc_cpu_curr_offset; uint16_t sc_slots_pow_scale; int16_t sc_slots_pow_offset; struct cdev *sc_leddev; }; /* regular bus attachment functions */ static int smu_probe(device_t); static int smu_attach(device_t); static const struct ofw_bus_devinfo * smu_get_devinfo(device_t bus, device_t dev); /* cpufreq notification hooks */ static void smu_cpufreq_pre_change(device_t, const struct cf_level *level); static void smu_cpufreq_post_change(device_t, const struct cf_level *level); /* clock interface */ static int smu_gettime(device_t dev, struct timespec *ts); static int smu_settime(device_t dev, struct timespec *ts); /* utility functions */ static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait); static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len); static void smu_attach_i2c(device_t dev, phandle_t i2croot); static void smu_attach_fans(device_t dev, phandle_t fanroot); static void smu_attach_sensors(device_t dev, phandle_t sensroot); static void smu_set_sleepled(void *xdev, int onoff); static int smu_server_mode(SYSCTL_HANDLER_ARGS); static void smu_doorbell_intr(void *xdev); static void smu_shutdown(void *xdev, int howto); /* where to find the doorbell GPIO */ static device_t smu_doorbell = NULL; static device_method_t smu_methods[] = { /* Device interface */ DEVMETHOD(device_probe, smu_probe), DEVMETHOD(device_attach, smu_attach), /* Clock interface */ DEVMETHOD(clock_gettime, smu_gettime), DEVMETHOD(clock_settime, smu_settime), /* ofw_bus interface */ DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str), DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo), DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), { 0, 0 }, }; static driver_t smu_driver = { "smu", smu_methods, sizeof(struct smu_softc) }; static devclass_t smu_devclass; DRIVER_MODULE(smu, nexus, smu_driver, smu_devclass, 0, 0); static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information"); #define SMU_MAILBOX 0x8000860c #define SMU_FANMGT_INTERVAL 1000 /* ms */ /* Command types */ #define SMU_ADC 0xd8 #define SMU_FAN 0x4a #define SMU_RPM_STATUS 0x01 #define SMU_RPM_SETPOINT 0x02 #define SMU_PWM_STATUS 0x11 #define SMU_PWM_SETPOINT 0x12 #define SMU_I2C 0x9a #define SMU_I2C_SIMPLE 0x00 #define SMU_I2C_NORMAL 0x01 #define SMU_I2C_COMBINED 0x02 #define SMU_MISC 0xee #define SMU_MISC_GET_DATA 0x02 #define SMU_MISC_LED_CTRL 0x04 #define SMU_POWER 0xaa #define SMU_POWER_EVENTS 0x8f #define SMU_PWR_GET_POWERUP 0x00 #define SMU_PWR_SET_POWERUP 0x01 #define SMU_PWR_CLR_POWERUP 0x02 #define SMU_RTC 0x8e #define SMU_RTC_GET 0x81 #define SMU_RTC_SET 0x80 /* Power event types */ #define SMU_WAKEUP_KEYPRESS 0x01 #define SMU_WAKEUP_AC_INSERT 0x02 #define SMU_WAKEUP_AC_CHANGE 0x04 #define SMU_WAKEUP_RING 0x10 /* Data blocks */ #define SMU_CPUTEMP_CAL 0x18 #define SMU_CPUVOLT_CAL 0x21 #define SMU_SLOTPW_CAL 0x78 /* Partitions */ #define SMU_PARTITION 0x3e #define SMU_PARTITION_LATEST 0x01 #define SMU_PARTITION_BASE 0x02 #define SMU_PARTITION_UPDATE 0x03 static int smu_probe(device_t dev) { const char *name = ofw_bus_get_name(dev); if (strcmp(name, "smu") != 0) return (ENXIO); device_set_desc(dev, "Apple System Management Unit"); return (0); } static void smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct smu_softc *sc = xsc; sc->sc_cmd_phys = segs[0].ds_addr; } static int smu_attach(device_t dev) { struct smu_softc *sc; phandle_t node, child; uint8_t data[12]; sc = device_get_softc(dev); mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF); sc->sc_cur_cmd = NULL; sc->sc_doorbellirqid = -1; sc->sc_u3 = 0; if (OF_finddevice("/u3") != -1) sc->sc_u3 = 1; /* * Map the mailbox area. This should be determined from firmware, * but I have not found a simple way to do that. */ bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL, NULL, &(sc->sc_dmatag)); sc->sc_bt = &bs_le_tag; bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox); /* * Allocate the command buffer. This can be anywhere in the low 4 GB * of memory. */ bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->sc_cmd_dmamap); bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap, sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0); STAILQ_INIT(&sc->sc_cmdq); /* * Set up handlers to change CPU voltage when CPU frequency is changed. */ EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev, EVENTHANDLER_PRI_ANY); EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev, EVENTHANDLER_PRI_ANY); node = ofw_bus_get_node(dev); /* Some SMUs have RPM and PWM controlled fans which do not sit * under the same node. So we have to attach them separately. */ smu_attach_fans(dev, node); /* * Now detect and attach the other child devices. */ for (child = OF_child(node); child != 0; child = OF_peer(child)) { char name[32]; memset(name, 0, sizeof(name)); OF_getprop(child, "name", name, sizeof(name)); if (strncmp(name, "sensors", 8) == 0) smu_attach_sensors(dev, child); if (strncmp(name, "smu-i2c-control", 15) == 0) smu_attach_i2c(dev, child); } /* Some SMUs have the I2C children directly under the bus. */ smu_attach_i2c(dev, node); /* * Collect calibration constants. */ smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data)); sc->sc_cpu_diode_scale = (data[4] << 8) + data[5]; sc->sc_cpu_diode_offset = (data[6] << 8) + data[7]; smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data)); sc->sc_cpu_volt_scale = (data[4] << 8) + data[5]; sc->sc_cpu_volt_offset = (data[6] << 8) + data[7]; sc->sc_cpu_curr_scale = (data[8] << 8) + data[9]; sc->sc_cpu_curr_offset = (data[10] << 8) + data[11]; smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data)); sc->sc_slots_pow_scale = (data[4] << 8) + data[5]; sc->sc_slots_pow_offset = (data[6] << 8) + data[7]; /* * Set up LED interface */ sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled"); /* * Reset on power loss behavior */ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "server_mode", CTLTYPE_INT | CTLFLAG_RW, dev, 0, smu_server_mode, "I", "Enable reboot after power failure"); /* * Set up doorbell interrupt. */ sc->sc_doorbellirqid = 0; sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ, &sc->sc_doorbellirqid, RF_ACTIVE); bus_setup_intr(smu_doorbell, sc->sc_doorbellirq, INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev, &sc->sc_doorbellirqcookie); powerpc_config_intr(rman_get_start(sc->sc_doorbellirq), INTR_TRIGGER_EDGE, INTR_POLARITY_LOW); /* * Connect RTC interface. */ clock_register(dev, 1000); /* * Learn about shutdown events */ EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev, SHUTDOWN_PRI_LAST); return (bus_generic_attach(dev)); } static const struct ofw_bus_devinfo * smu_get_devinfo(device_t bus, device_t dev) { return (device_get_ivars(dev)); } static void smu_send_cmd(device_t dev, struct smu_cmd *cmd) { struct smu_softc *sc; sc = device_get_softc(dev); mtx_assert(&sc->sc_mtx, MA_OWNED); if (sc->sc_u3) powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */ sc->sc_cur_cmd = cmd; /* Copy the command to the mailbox */ sc->sc_cmd->cmd = cmd->cmd; sc->sc_cmd->len = cmd->len; memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data)); bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE); bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys); /* Flush the cacheline it is in -- SMU bypasses the cache */ __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory"); /* Ring SMU doorbell */ macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT); } static void smu_doorbell_intr(void *xdev) { device_t smu; struct smu_softc *sc; int doorbell_ack; smu = xdev; doorbell_ack = macgpio_read(smu_doorbell); sc = device_get_softc(smu); if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA)) return; mtx_lock(&sc->sc_mtx); if (sc->sc_cur_cmd == NULL) /* spurious */ goto done; /* Check result. First invalidate the cache again... */ __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory"); bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD); sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd; sc->sc_cur_cmd->len = sc->sc_cmd->len; memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data, sizeof(sc->sc_cmd->data)); wakeup(sc->sc_cur_cmd); sc->sc_cur_cmd = NULL; if (sc->sc_u3) powerpc_pow_enabled = 1; done: /* Queue next command if one is pending */ if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) { sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq); STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q); smu_send_cmd(smu, sc->sc_cur_cmd); } mtx_unlock(&sc->sc_mtx); } static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait) { struct smu_softc *sc; uint8_t cmd_code; int error; sc = device_get_softc(dev); cmd_code = cmd->cmd; mtx_lock(&sc->sc_mtx); if (sc->sc_cur_cmd != NULL) { STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q); } else smu_send_cmd(dev, cmd); mtx_unlock(&sc->sc_mtx); if (!wait) return (0); if (sc->sc_doorbellirqid < 0) { /* Poll if the IRQ has not been set up yet */ do { DELAY(50); smu_doorbell_intr(dev); } while (sc->sc_cur_cmd != NULL); } else { /* smu_doorbell_intr will wake us when the command is ACK'ed */ error = tsleep(cmd, 0, "smu", 800 * hz / 1000); if (error != 0) smu_doorbell_intr(dev); /* One last chance */ if (error != 0) { mtx_lock(&sc->sc_mtx); if (cmd->cmd == cmd_code) { /* Never processed */ /* Abort this command if we timed out */ if (sc->sc_cur_cmd == cmd) sc->sc_cur_cmd = NULL; else STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd, cmd_q); mtx_unlock(&sc->sc_mtx); return (error); } error = 0; mtx_unlock(&sc->sc_mtx); } } /* SMU acks the command by inverting the command bits */ if (cmd->cmd == ((~cmd_code) & 0xff)) error = 0; else error = EIO; return (error); } static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len) { struct smu_cmd cmd; uint8_t addr[4]; cmd.cmd = SMU_PARTITION; cmd.len = 2; cmd.data[0] = SMU_PARTITION_LATEST; cmd.data[1] = id; smu_run_cmd(dev, &cmd, 1); addr[0] = addr[1] = 0; addr[2] = cmd.data[0]; addr[3] = cmd.data[1]; cmd.cmd = SMU_MISC; cmd.len = 7; cmd.data[0] = SMU_MISC_GET_DATA; cmd.data[1] = sizeof(addr); memcpy(&cmd.data[2], addr, sizeof(addr)); cmd.data[6] = len; smu_run_cmd(dev, &cmd, 1); memcpy(buf, cmd.data, len); return (0); } static void smu_slew_cpu_voltage(device_t dev, int to) { struct smu_cmd cmd; cmd.cmd = SMU_POWER; cmd.len = 8; cmd.data[0] = 'V'; cmd.data[1] = 'S'; cmd.data[2] = 'L'; cmd.data[3] = 'E'; cmd.data[4] = 'W'; cmd.data[5] = 0xff; cmd.data[6] = 1; cmd.data[7] = to; smu_run_cmd(dev, &cmd, 1); } static void smu_cpufreq_pre_change(device_t dev, const struct cf_level *level) { /* * Make sure the CPU voltage is raised before we raise * the clock. */ if (level->rel_set[0].freq == 10000 /* max */) smu_slew_cpu_voltage(dev, 0); } static void smu_cpufreq_post_change(device_t dev, const struct cf_level *level) { /* We are safe to reduce CPU voltage after a downward transition */ if (level->rel_set[0].freq < 10000 /* max */) smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */ } /* Routines for probing the SMU doorbell GPIO */ static int doorbell_probe(device_t dev); static int doorbell_attach(device_t dev); static device_method_t doorbell_methods[] = { /* Device interface */ DEVMETHOD(device_probe, doorbell_probe), DEVMETHOD(device_attach, doorbell_attach), { 0, 0 }, }; static driver_t doorbell_driver = { "smudoorbell", doorbell_methods, 0 }; static devclass_t doorbell_devclass; DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass, 0, 0); static int doorbell_probe(device_t dev) { const char *name = ofw_bus_get_name(dev); if (strcmp(name, "smu-doorbell") != 0) return (ENXIO); device_set_desc(dev, "SMU Doorbell GPIO"); device_quiet(dev); return (0); } static int doorbell_attach(device_t dev) { smu_doorbell = dev; return (0); } /* * Sensor and fan management */ static int smu_fan_set_rpm(struct smu_fan *fan, int rpm) { device_t smu = fan->dev; struct smu_cmd cmd; int error; cmd.cmd = SMU_FAN; error = EIO; /* Clamp to allowed range */ rpm = max(fan->fan.min_rpm, rpm); rpm = min(fan->fan.max_rpm, rpm); /* * Apple has two fan control mechanisms. We can't distinguish * them except by seeing if the new one fails. If the new one * fails, use the old one. */ if (!fan->old_style) { cmd.len = 4; cmd.data[0] = 0x30; cmd.data[1] = fan->reg; cmd.data[2] = (rpm >> 8) & 0xff; cmd.data[3] = rpm & 0xff; error = smu_run_cmd(smu, &cmd, 1); if (error && error != EWOULDBLOCK) fan->old_style = 1; } if (fan->old_style) { cmd.len = 14; cmd.data[0] = 0x00; /* RPM fan. */ cmd.data[1] = 1 << fan->reg; cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff; cmd.data[3 + 2*fan->reg] = rpm & 0xff; error = smu_run_cmd(smu, &cmd, 1); } if (error == 0) fan->setpoint = rpm; return (error); } static int smu_fan_read_rpm(struct smu_fan *fan) { device_t smu = fan->dev; struct smu_cmd cmd; int rpm, error; if (!fan->old_style) { cmd.cmd = SMU_FAN; cmd.len = 2; cmd.data[0] = 0x31; cmd.data[1] = fan->reg; error = smu_run_cmd(smu, &cmd, 1); if (error && error != EWOULDBLOCK) fan->old_style = 1; rpm = (cmd.data[0] << 8) | cmd.data[1]; } if (fan->old_style) { cmd.cmd = SMU_FAN; cmd.len = 1; cmd.data[0] = SMU_RPM_STATUS; error = smu_run_cmd(smu, &cmd, 1); if (error) return (error); rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; } return (rpm); } static int smu_fan_set_pwm(struct smu_fan *fan, int pwm) { device_t smu = fan->dev; struct smu_cmd cmd; int error; cmd.cmd = SMU_FAN; error = EIO; /* Clamp to allowed range */ pwm = max(fan->fan.min_rpm, pwm); pwm = min(fan->fan.max_rpm, pwm); /* * Apple has two fan control mechanisms. We can't distinguish * them except by seeing if the new one fails. If the new one * fails, use the old one. */ if (!fan->old_style) { cmd.len = 4; cmd.data[0] = 0x30; cmd.data[1] = fan->reg; cmd.data[2] = (pwm >> 8) & 0xff; cmd.data[3] = pwm & 0xff; error = smu_run_cmd(smu, &cmd, 1); if (error && error != EWOULDBLOCK) fan->old_style = 1; } if (fan->old_style) { cmd.len = 14; cmd.data[0] = 0x10; /* PWM fan. */ cmd.data[1] = 1 << fan->reg; cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff; cmd.data[3 + 2*fan->reg] = pwm & 0xff; error = smu_run_cmd(smu, &cmd, 1); } if (error == 0) fan->setpoint = pwm; return (error); } static int smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm) { device_t smu = fan->dev; struct smu_cmd cmd; int error; if (!fan->old_style) { cmd.cmd = SMU_FAN; cmd.len = 2; cmd.data[0] = 0x31; cmd.data[1] = fan->reg; error = smu_run_cmd(smu, &cmd, 1); if (error && error != EWOULDBLOCK) fan->old_style = 1; *rpm = (cmd.data[0] << 8) | cmd.data[1]; } if (fan->old_style) { cmd.cmd = SMU_FAN; cmd.len = 1; cmd.data[0] = SMU_PWM_STATUS; error = smu_run_cmd(smu, &cmd, 1); if (error) return (error); *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; } if (fan->old_style) { cmd.cmd = SMU_FAN; cmd.len = 14; cmd.data[0] = SMU_PWM_SETPOINT; cmd.data[1] = 1 << fan->reg; error = smu_run_cmd(smu, &cmd, 1); if (error) return (error); *pwm = cmd.data[fan->reg*2+2]; } return (0); } static int smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS) { device_t smu; struct smu_softc *sc; struct smu_fan *fan; int pwm = 0, rpm, error = 0; smu = arg1; sc = device_get_softc(smu); fan = &sc->sc_fans[arg2 & 0xff]; if (fan->type == SMU_FAN_RPM) { rpm = smu_fan_read_rpm(fan); if (rpm < 0) return (rpm); error = sysctl_handle_int(oidp, &rpm, 0, req); } else { error = smu_fan_read_pwm(fan, &pwm, &rpm); if (error < 0) return (EIO); switch (arg2 & 0xff00) { case SMU_PWM_SYSCTL_PWM: error = sysctl_handle_int(oidp, &pwm, 0, req); break; case SMU_PWM_SYSCTL_RPM: error = sysctl_handle_int(oidp, &rpm, 0, req); break; default: /* This should never happen */ return (EINVAL); }; } /* We can only read the RPM from a PWM controlled fan, so return. */ if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM) return (0); if (error || !req->newptr) return (error); sc->sc_lastuserchange = time_uptime; if (fan->type == SMU_FAN_RPM) return (smu_fan_set_rpm(fan, rpm)); else return (smu_fan_set_pwm(fan, pwm)); } static void smu_fill_fan_prop(device_t dev, phandle_t child, int id) { struct smu_fan *fan; struct smu_softc *sc; char type[32]; sc = device_get_softc(dev); fan = &sc->sc_fans[id]; OF_getprop(child, "device_type", type, sizeof(type)); /* We have either RPM or PWM controlled fans. */ if (strcmp(type, "fan-rpm-control") == 0) fan->type = SMU_FAN_RPM; else fan->type = SMU_FAN_PWM; fan->dev = dev; fan->old_style = 0; OF_getprop(child, "reg", &fan->reg, sizeof(cell_t)); OF_getprop(child, "min-value", &fan->fan.min_rpm, sizeof(int)); OF_getprop(child, "max-value", &fan->fan.max_rpm, sizeof(int)); OF_getprop(child, "zone", &fan->fan.zone, sizeof(int)); if (OF_getprop(child, "unmanaged-value", &fan->fan.default_rpm, sizeof(int)) != sizeof(int)) fan->fan.default_rpm = fan->fan.max_rpm; OF_getprop(child, "location", fan->fan.name, sizeof(fan->fan.name)); if (fan->type == SMU_FAN_RPM) fan->setpoint = smu_fan_read_rpm(fan); else smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm); } /* On the first call count the number of fans. In the second call, * after allocating the fan struct, fill the properties of the fans. */ static int smu_count_fans(device_t dev) { struct smu_softc *sc; phandle_t child, node, root; int nfans = 0; node = ofw_bus_get_node(dev); sc = device_get_softc(dev); /* First find the fanroots and count the number of fans. */ for (root = OF_child(node); root != 0; root = OF_peer(root)) { char name[32]; memset(name, 0, sizeof(name)); OF_getprop(root, "name", name, sizeof(name)); if (strncmp(name, "rpm-fans", 9) == 0 || strncmp(name, "pwm-fans", 9) == 0 || strncmp(name, "fans", 5) == 0) for (child = OF_child(root); child != 0; child = OF_peer(child)) { nfans++; /* When allocated, fill the fan properties. */ if (sc->sc_fans != NULL) smu_fill_fan_prop(dev, child, nfans - 1); } } if (nfans == 0) { device_printf(dev, "WARNING: No fans detected!\n"); return (0); } return (nfans); } static void smu_attach_fans(device_t dev, phandle_t fanroot) { struct smu_fan *fan; struct smu_softc *sc; struct sysctl_oid *oid, *fanroot_oid; struct sysctl_ctx_list *ctx; char sysctl_name[32]; int i, j; sc = device_get_softc(dev); /* Get the number of fans. */ sc->sc_nfans = smu_count_fans(dev); if (sc->sc_nfans == 0) return; /* Now we're able to allocate memory for the fans struct. */ sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU, M_WAITOK | M_ZERO); /* Now fill in the properties. */ smu_count_fans(dev); /* Register fans with pmac_thermal */ for (i = 0; i < sc->sc_nfans; i++) pmac_thermal_fan_register(&sc->sc_fans[i].fan); ctx = device_get_sysctl_ctx(dev); fanroot_oid = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans", CTLFLAG_RD, 0, "SMU Fan Information"); /* Add sysctls */ for (i = 0; i < sc->sc_nfans; i++) { fan = &sc->sc_fans[i]; for (j = 0; j < strlen(fan->fan.name); j++) { sysctl_name[j] = tolower(fan->fan.name[j]); if (isspace(sysctl_name[j])) sysctl_name[j] = '_'; } sysctl_name[j] = 0; if (fan->type == SMU_FAN_RPM) { oid = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(fanroot_oid), OID_AUTO, sysctl_name, CTLFLAG_RD, 0, "Fan Information"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "minrpm", CTLTYPE_INT | CTLFLAG_RD, &fan->fan.min_rpm, sizeof(int), "Minimum allowed RPM"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "maxrpm", CTLTYPE_INT | CTLFLAG_RD, &fan->fan.max_rpm, sizeof(int), "Maximum allowed RPM"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "rpm",CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, i, smu_fanrpm_sysctl, "I", "Fan RPM"); fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm; fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm; } else { oid = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(fanroot_oid), OID_AUTO, sysctl_name, CTLFLAG_RD, 0, "Fan Information"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "minpwm", CTLTYPE_INT | CTLFLAG_RD, &fan->fan.min_rpm, sizeof(int), "Minimum allowed PWM in %"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "maxpwm", CTLTYPE_INT | CTLFLAG_RD, &fan->fan.max_rpm, sizeof(int), "Maximum allowed PWM in %"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "pwm",CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, SMU_PWM_SYSCTL_PWM | i, smu_fanrpm_sysctl, "I", "Fan PWM in %"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "rpm",CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, SMU_PWM_SYSCTL_RPM | i, smu_fanrpm_sysctl, "I", "Fan RPM"); fan->fan.read = NULL; fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm; } if (bootverbose) device_printf(dev, "Fan: %s type: %d\n", fan->fan.name, fan->type); } } static int smu_sensor_read(struct smu_sensor *sens) { device_t smu = sens->dev; struct smu_cmd cmd; struct smu_softc *sc; int64_t value; int error; cmd.cmd = SMU_ADC; cmd.len = 1; cmd.data[0] = sens->reg; error = 0; error = smu_run_cmd(smu, &cmd, 1); if (error != 0) return (-1); sc = device_get_softc(smu); value = (cmd.data[0] << 8) | cmd.data[1]; switch (sens->type) { case SMU_TEMP_SENSOR: value *= sc->sc_cpu_diode_scale; value >>= 3; value += ((int64_t)sc->sc_cpu_diode_offset) << 9; value <<= 1; /* Convert from 16.16 fixed point degC into integer 0.1 K. */ value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2732; break; case SMU_VOLTAGE_SENSOR: value *= sc->sc_cpu_volt_scale; value += sc->sc_cpu_volt_offset; value <<= 4; /* Convert from 16.16 fixed point V into mV. */ value *= 15625; value /= 1024; value /= 1000; break; case SMU_CURRENT_SENSOR: value *= sc->sc_cpu_curr_scale; value += sc->sc_cpu_curr_offset; value <<= 4; /* Convert from 16.16 fixed point A into mA. */ value *= 15625; value /= 1024; value /= 1000; break; case SMU_POWER_SENSOR: value *= sc->sc_slots_pow_scale; value += sc->sc_slots_pow_offset; value <<= 4; /* Convert from 16.16 fixed point W into mW. */ value *= 15625; value /= 1024; value /= 1000; break; } return (value); } static int smu_sensor_sysctl(SYSCTL_HANDLER_ARGS) { device_t smu; struct smu_softc *sc; struct smu_sensor *sens; int value, error; smu = arg1; sc = device_get_softc(smu); sens = &sc->sc_sensors[arg2]; value = smu_sensor_read(sens); if (value < 0) return (EBUSY); error = sysctl_handle_int(oidp, &value, 0, req); return (error); } static void smu_attach_sensors(device_t dev, phandle_t sensroot) { struct smu_sensor *sens; struct smu_softc *sc; struct sysctl_oid *sensroot_oid; struct sysctl_ctx_list *ctx; phandle_t child; char type[32]; int i; sc = device_get_softc(dev); sc->sc_nsensors = 0; for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) sc->sc_nsensors++; if (sc->sc_nsensors == 0) { device_printf(dev, "WARNING: No sensors detected!\n"); return; } sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor), M_SMU, M_WAITOK | M_ZERO); sens = sc->sc_sensors; sc->sc_nsensors = 0; ctx = device_get_sysctl_ctx(dev); sensroot_oid = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors", CTLFLAG_RD, 0, "SMU Sensor Information"); for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) { char sysctl_name[40], sysctl_desc[40]; const char *units; sens->dev = dev; OF_getprop(child, "device_type", type, sizeof(type)); if (strcmp(type, "current-sensor") == 0) { sens->type = SMU_CURRENT_SENSOR; units = "mA"; } else if (strcmp(type, "temp-sensor") == 0) { sens->type = SMU_TEMP_SENSOR; units = "C"; } else if (strcmp(type, "voltage-sensor") == 0) { sens->type = SMU_VOLTAGE_SENSOR; units = "mV"; } else if (strcmp(type, "power-sensor") == 0) { sens->type = SMU_POWER_SENSOR; units = "mW"; } else { continue; } OF_getprop(child, "reg", &sens->reg, sizeof(cell_t)); OF_getprop(child, "zone", &sens->therm.zone, sizeof(int)); OF_getprop(child, "location", sens->therm.name, sizeof(sens->therm.name)); for (i = 0; i < strlen(sens->therm.name); i++) { sysctl_name[i] = tolower(sens->therm.name[i]); if (isspace(sysctl_name[i])) sysctl_name[i] = '_'; } sysctl_name[i] = 0; sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO, sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, sc->sc_nsensors, smu_sensor_sysctl, (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc); if (sens->type == SMU_TEMP_SENSOR) { /* Make up some numbers */ sens->therm.target_temp = 500 + 2732; /* 50 C */ sens->therm.max_temp = 900 + 2732; /* 90 C */ sens->therm.read = (int (*)(struct pmac_therm *))smu_sensor_read; pmac_thermal_sensor_register(&sens->therm); } sens++; sc->sc_nsensors++; } } static void smu_set_sleepled(void *xdev, int onoff) { static struct smu_cmd cmd; device_t smu = xdev; cmd.cmd = SMU_MISC; cmd.len = 3; cmd.data[0] = SMU_MISC_LED_CTRL; cmd.data[1] = 0; cmd.data[2] = onoff; smu_run_cmd(smu, &cmd, 0); } static int smu_server_mode(SYSCTL_HANDLER_ARGS) { struct smu_cmd cmd; u_int server_mode; device_t smu = arg1; int error; cmd.cmd = SMU_POWER_EVENTS; cmd.len = 1; cmd.data[0] = SMU_PWR_GET_POWERUP; error = smu_run_cmd(smu, &cmd, 1); if (error) return (error); server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0; error = sysctl_handle_int(oidp, &server_mode, 0, req); if (error || !req->newptr) return (error); if (server_mode == 1) cmd.data[0] = SMU_PWR_SET_POWERUP; else if (server_mode == 0) cmd.data[0] = SMU_PWR_CLR_POWERUP; else return (EINVAL); cmd.len = 3; cmd.data[1] = 0; cmd.data[2] = SMU_WAKEUP_AC_INSERT; return (smu_run_cmd(smu, &cmd, 1)); } static void smu_shutdown(void *xdev, int howto) { device_t smu = xdev; struct smu_cmd cmd; cmd.cmd = SMU_POWER; if (howto & RB_HALT) strcpy(cmd.data, "SHUTDOWN"); else strcpy(cmd.data, "RESTART"); cmd.len = strlen(cmd.data); smu_run_cmd(smu, &cmd, 1); for (;;); } static int smu_gettime(device_t dev, struct timespec *ts) { struct smu_cmd cmd; struct clocktime ct; cmd.cmd = SMU_RTC; cmd.len = 1; cmd.data[0] = SMU_RTC_GET; if (smu_run_cmd(dev, &cmd, 1) != 0) return (ENXIO); ct.nsec = 0; ct.sec = bcd2bin(cmd.data[0]); ct.min = bcd2bin(cmd.data[1]); ct.hour = bcd2bin(cmd.data[2]); ct.dow = bcd2bin(cmd.data[3]); ct.day = bcd2bin(cmd.data[4]); ct.mon = bcd2bin(cmd.data[5]); ct.year = bcd2bin(cmd.data[6]) + 2000; return (clock_ct_to_ts(&ct, ts)); } static int smu_settime(device_t dev, struct timespec *ts) { static struct smu_cmd cmd; struct clocktime ct; cmd.cmd = SMU_RTC; cmd.len = 8; cmd.data[0] = SMU_RTC_SET; clock_ts_to_ct(ts, &ct); cmd.data[1] = bin2bcd(ct.sec); cmd.data[2] = bin2bcd(ct.min); cmd.data[3] = bin2bcd(ct.hour); cmd.data[4] = bin2bcd(ct.dow); cmd.data[5] = bin2bcd(ct.day); cmd.data[6] = bin2bcd(ct.mon); cmd.data[7] = bin2bcd(ct.year - 2000); return (smu_run_cmd(dev, &cmd, 0)); } /* SMU I2C Interface */ static int smuiic_probe(device_t dev); static int smuiic_attach(device_t dev); static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs); static phandle_t smuiic_get_node(device_t bus, device_t dev); static device_method_t smuiic_methods[] = { /* device interface */ DEVMETHOD(device_probe, smuiic_probe), DEVMETHOD(device_attach, smuiic_attach), /* iicbus interface */ DEVMETHOD(iicbus_callback, iicbus_null_callback), DEVMETHOD(iicbus_transfer, smuiic_transfer), /* ofw_bus interface */ DEVMETHOD(ofw_bus_get_node, smuiic_get_node), { 0, 0 } }; struct smuiic_softc { struct mtx sc_mtx; volatile int sc_iic_inuse; int sc_busno; }; static driver_t smuiic_driver = { "iichb", smuiic_methods, sizeof(struct smuiic_softc) }; static devclass_t smuiic_devclass; DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0); static void smu_attach_i2c(device_t smu, phandle_t i2croot) { phandle_t child; device_t cdev; struct ofw_bus_devinfo *dinfo; char name[32]; for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) { if (OF_getprop(child, "name", name, sizeof(name)) <= 0) continue; if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0) continue; dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU, M_WAITOK | M_ZERO); if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) { free(dinfo, M_SMU); continue; } cdev = device_add_child(smu, NULL, -1); if (cdev == NULL) { device_printf(smu, "<%s>: device_add_child failed\n", dinfo->obd_name); ofw_bus_gen_destroy_devinfo(dinfo); free(dinfo, M_SMU); continue; } device_set_ivars(cdev, dinfo); } } static int smuiic_probe(device_t dev) { const char *name; name = ofw_bus_get_name(dev); if (name == NULL) return (ENXIO); if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) { device_set_desc(dev, "SMU I2C controller"); return (0); } return (ENXIO); } static int smuiic_attach(device_t dev) { struct smuiic_softc *sc = device_get_softc(dev); mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF); sc->sc_iic_inuse = 0; /* Get our bus number */ OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno, sizeof(sc->sc_busno)); /* Add the IIC bus layer */ device_add_child(dev, "iicbus", -1); return (bus_generic_attach(dev)); } static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) { struct smuiic_softc *sc = device_get_softc(dev); struct smu_cmd cmd; int i, j, error; mtx_lock(&sc->sc_mtx); while (sc->sc_iic_inuse) mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100); sc->sc_iic_inuse = 1; error = 0; for (i = 0; i < nmsgs; i++) { cmd.cmd = SMU_I2C; cmd.data[0] = sc->sc_busno; if (msgs[i].flags & IIC_M_NOSTOP) cmd.data[1] = SMU_I2C_COMBINED; else cmd.data[1] = SMU_I2C_SIMPLE; cmd.data[2] = msgs[i].slave; if (msgs[i].flags & IIC_M_RD) cmd.data[2] |= 1; if (msgs[i].flags & IIC_M_NOSTOP) { KASSERT(msgs[i].len < 4, ("oversize I2C combined message")); cmd.data[3] = min(msgs[i].len, 3); memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3)); i++; /* Advance to next part of message */ } else { cmd.data[3] = 0; memset(&cmd.data[4], 0, 3); } cmd.data[7] = msgs[i].slave; if (msgs[i].flags & IIC_M_RD) cmd.data[7] |= 1; cmd.data[8] = msgs[i].len; if (msgs[i].flags & IIC_M_RD) { memset(&cmd.data[9], 0xff, msgs[i].len); cmd.len = 9; } else { memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len); cmd.len = 9 + msgs[i].len; } mtx_unlock(&sc->sc_mtx); smu_run_cmd(device_get_parent(dev), &cmd, 1); mtx_lock(&sc->sc_mtx); for (j = 0; j < 10; j++) { cmd.cmd = SMU_I2C; cmd.len = 1; cmd.data[0] = 0; memset(&cmd.data[1], 0xff, msgs[i].len); mtx_unlock(&sc->sc_mtx); smu_run_cmd(device_get_parent(dev), &cmd, 1); mtx_lock(&sc->sc_mtx); if (!(cmd.data[0] & 0x80)) break; mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10); } if (cmd.data[0] & 0x80) { error = EIO; msgs[i].len = 0; goto exit; } memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len); msgs[i].len = cmd.len - 1; } exit: sc->sc_iic_inuse = 0; mtx_unlock(&sc->sc_mtx); wakeup(sc); return (error); } static phandle_t smuiic_get_node(device_t bus, device_t dev) { return (ofw_bus_get_node(bus)); }