Current Path : /compat/linux/proc/self/root/usr/src/contrib/compiler-rt/lib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/compiler-rt/lib/adddf3.c |
//===-- lib/adddf3.c - Double-precision addition ------------------*- C -*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements double-precision soft-float addition with the IEEE-754 // default rounding (to nearest, ties to even). // //===----------------------------------------------------------------------===// #define DOUBLE_PRECISION #include "fp_lib.h" ARM_EABI_FNALIAS(dadd, adddf3); COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b) { rep_t aRep = toRep(a); rep_t bRep = toRep(b); const rep_t aAbs = aRep & absMask; const rep_t bAbs = bRep & absMask; // Detect if a or b is zero, infinity, or NaN. if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) { // NaN + anything = qNaN if (aAbs > infRep) return fromRep(toRep(a) | quietBit); // anything + NaN = qNaN if (bAbs > infRep) return fromRep(toRep(b) | quietBit); if (aAbs == infRep) { // +/-infinity + -/+infinity = qNaN if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep); // +/-infinity + anything remaining = +/- infinity else return a; } // anything remaining + +/-infinity = +/-infinity if (bAbs == infRep) return b; // zero + anything = anything if (!aAbs) { // but we need to get the sign right for zero + zero if (!bAbs) return fromRep(toRep(a) & toRep(b)); else return b; } // anything + zero = anything if (!bAbs) return a; } // Swap a and b if necessary so that a has the larger absolute value. if (bAbs > aAbs) { const rep_t temp = aRep; aRep = bRep; bRep = temp; } // Extract the exponent and significand from the (possibly swapped) a and b. int aExponent = aRep >> significandBits & maxExponent; int bExponent = bRep >> significandBits & maxExponent; rep_t aSignificand = aRep & significandMask; rep_t bSignificand = bRep & significandMask; // Normalize any denormals, and adjust the exponent accordingly. if (aExponent == 0) aExponent = normalize(&aSignificand); if (bExponent == 0) bExponent = normalize(&bSignificand); // The sign of the result is the sign of the larger operand, a. If they // have opposite signs, we are performing a subtraction; otherwise addition. const rep_t resultSign = aRep & signBit; const bool subtraction = (aRep ^ bRep) & signBit; // Shift the significands to give us round, guard and sticky, and or in the // implicit significand bit. (If we fell through from the denormal path it // was already set by normalize( ), but setting it twice won't hurt // anything.) aSignificand = (aSignificand | implicitBit) << 3; bSignificand = (bSignificand | implicitBit) << 3; // Shift the significand of b by the difference in exponents, with a sticky // bottom bit to get rounding correct. const int align = aExponent - bExponent; if (align) { if (align < typeWidth) { const bool sticky = bSignificand << (typeWidth - align); bSignificand = bSignificand >> align | sticky; } else { bSignificand = 1; // sticky; b is known to be non-zero. } } if (subtraction) { aSignificand -= bSignificand; // If a == -b, return +zero. if (aSignificand == 0) return fromRep(0); // If partial cancellation occured, we need to left-shift the result // and adjust the exponent: if (aSignificand < implicitBit << 3) { const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3); aSignificand <<= shift; aExponent -= shift; } } else /* addition */ { aSignificand += bSignificand; // If the addition carried up, we need to right-shift the result and // adjust the exponent: if (aSignificand & implicitBit << 4) { const bool sticky = aSignificand & 1; aSignificand = aSignificand >> 1 | sticky; aExponent += 1; } } // If we have overflowed the type, return +/- infinity: if (aExponent >= maxExponent) return fromRep(infRep | resultSign); if (aExponent <= 0) { // Result is denormal before rounding; the exponent is zero and we // need to shift the significand. const int shift = 1 - aExponent; const bool sticky = aSignificand << (typeWidth - shift); aSignificand = aSignificand >> shift | sticky; aExponent = 0; } // Low three bits are round, guard, and sticky. const int roundGuardSticky = aSignificand & 0x7; // Shift the significand into place, and mask off the implicit bit. rep_t result = aSignificand >> 3 & significandMask; // Insert the exponent and sign. result |= (rep_t)aExponent << significandBits; result |= resultSign; // Final rounding. The result may overflow to infinity, but that is the // correct result in that case. if (roundGuardSticky > 0x4) result++; if (roundGuardSticky == 0x4) result += result & 1; return fromRep(result); }