Current Path : /compat/linux/proc/self/root/usr/src/contrib/compiler-rt/lib/arm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/compiler-rt/lib/arm/comparesf2.S |
//===-- comparesf2.S - Implement single-precision soft-float comparisons --===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the following soft-fp_t comparison routines: // // __eqsf2 __gesf2 __unordsf2 // __lesf2 __gtsf2 // __ltsf2 // __nesf2 // // The semantics of the routines grouped in each column are identical, so there // is a single implementation for each, with multiple names. // // The routines behave as follows: // // __lesf2(a,b) returns -1 if a < b // 0 if a == b // 1 if a > b // 1 if either a or b is NaN // // __gesf2(a,b) returns -1 if a < b // 0 if a == b // 1 if a > b // -1 if either a or b is NaN // // __unordsf2(a,b) returns 0 if both a and b are numbers // 1 if either a or b is NaN // // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of // NaN values. // //===----------------------------------------------------------------------===// #include "../assembly.h" .syntax unified .align 2 DEFINE_COMPILERRT_FUNCTION(__eqsf2) DEFINE_COMPILERRT_FUNCTION(__lesf2) DEFINE_COMPILERRT_FUNCTION(__ltsf2) DEFINE_COMPILERRT_FUNCTION(__nesf2) // Make copies of a and b with the sign bit shifted off the top. These will // be used to detect zeros and NaNs. mov r2, r0, lsl #1 mov r3, r1, lsl #1 // We do the comparison in three stages (ignoring NaN values for the time // being). First, we orr the absolute values of a and b; this sets the Z // flag if both a and b are zero (of either sign). The shift of r3 doesn't // effect this at all, but it *does* make sure that the C flag is clear for // the subsequent operations. orrs r12, r2, r3, lsr #1 // Next, we check if a and b have the same or different signs. If they have // opposite signs, this eor will set the N flag. eorsne r12, r0, r1 // If a and b are equal (either both zeros or bit identical; again, we're // ignoring NaNs for now), this subtract will zero out r0. If they have the // same sign, the flags are updated as they would be for a comparison of the // absolute values of a and b. subspl r0, r2, r3 // If a is smaller in magnitude than b and both have the same sign, place // the negation of the sign of b in r0. Thus, if both are negative and // a > b, this sets r0 to 0; if both are positive and a < b, this sets // r0 to -1. // // This is also done if a and b have opposite signs and are not both zero, // because in that case the subtract was not performed and the C flag is // still clear from the shift argument in orrs; if a is positive and b // negative, this places 0 in r0; if a is negative and b positive, -1 is // placed in r0. mvnlo r0, r1, asr #31 // If a is greater in magnitude than b and both have the same sign, place // the sign of b in r0. Thus, if both are negative and a < b, -1 is placed // in r0, which is the desired result. Conversely, if both are positive // and a > b, zero is placed in r0. movhi r0, r1, asr #31 // If you've been keeping track, at this point r0 contains -1 if a < b and // 0 if a >= b. All that remains to be done is to set it to 1 if a > b. // If a == b, then the Z flag is set, so we can get the correct final value // into r0 by simply or'ing with 1 if Z is clear. orrne r0, r0, #1 // Finally, we need to deal with NaNs. If either argument is NaN, replace // the value in r0 with 1. cmp r2, #0xff000000 cmpls r3, #0xff000000 movhi r0, #1 bx lr .align 2 DEFINE_COMPILERRT_FUNCTION(__gesf2) DEFINE_COMPILERRT_FUNCTION(__gtsf2) // Identical to the preceeding except in that we return -1 for NaN values. // Given that the two paths share so much code, one might be tempted to // unify them; however, the extra code needed to do so makes the code size // to performance tradeoff very hard to justify for such small functions. mov r2, r0, lsl #1 mov r3, r1, lsl #1 orrs r12, r2, r3, lsr #1 eorsne r12, r0, r1 subspl r0, r2, r3 mvnlo r0, r1, asr #31 movhi r0, r1, asr #31 orrne r0, r0, #1 cmp r2, #0xff000000 cmpls r3, #0xff000000 movhi r0, #-1 bx lr .align 2 DEFINE_COMPILERRT_FUNCTION(__unordsf2) // Return 1 for NaN values, 0 otherwise. mov r2, r0, lsl #1 mov r3, r1, lsl #1 mov r0, #0 cmp r2, #0xff000000 cmpls r3, #0xff000000 movhi r0, #1 bx lr