Current Path : /compat/linux/proc/self/root/usr/src/contrib/compiler-rt/lib/sparc64/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/compiler-rt/lib/sparc64/divmod.m4 |
/* * This m4 code has been taken from The SPARC Architecture Manual Version 8. */ /* * Division/Remainder * * Input is: * dividend -- the thing being divided * divisor -- how many ways to divide it * Important parameters: * N -- how many bits per iteration we try to get * as our current guess: define(N, 4) define(TWOSUPN, 16) * WORDSIZE -- how many bits altogether we're talking about: * obviously: define(WORDSIZE, 32) * A derived constant: * TOPBITS -- how many bits are in the top "decade" of a number: * define(TOPBITS, eval( WORDSIZE - N*((WORDSIZE-1)/N) ) ) * Important variables are: * Q -- the partial quotient under development -- initially 0 * R -- the remainder so far -- initially == the dividend * ITER -- number of iterations of the main division loop which will * be required. Equal to CEIL( lg2(quotient)/N ) * Note that this is log_base_(2ˆN) of the quotient. * V -- the current comparand -- initially divisor*2ˆ(ITER*N-1) * Cost: * current estimate for non-large dividend is * CEIL( lg2(quotient) / N ) x ( 10 + 7N/2 ) + C * a large dividend is one greater than 2ˆ(31-TOPBITS) and takes a * different path, as the upper bits of the quotient must be developed * one bit at a time. * This uses the m4 and cpp macro preprocessors. */ define(dividend, `%o0') define(divisor,`%o1') define(Q, `%o2') define(R, `%o3') define(ITER, `%o4') define(V, `%o5') define(SIGN, `%g3') define(T, `%g1') define(SC,`%g2') /* * This is the recursive definition of how we develop quotient digits. * It takes three important parameters: * $1 -- the current depth, 1<=$1<=N * $2 -- the current accumulation of quotient bits * N -- max depth * We add a new bit to $2 and either recurse or insert the bits in the quotient. * Dynamic input: * R -- current remainder * Q -- current quotient * V -- current comparand * cc -- set on current value of R * Dynamic output: * R', Q', V', cc' */ #include "../assembly.h" define(DEVELOP_QUOTIENT_BITS, ` !depth $1, accumulated bits $2 bl L.$1.eval(TWOSUPN+$2) srl V,1,V ! remainder is nonnegative subcc R,V,R ifelse( $1, N, ` b 9f add Q, ($2*2+1), Q ',` DEVELOP_QUOTIENT_BITS( incr($1), `eval(2*$2+1)') ') L.$1.eval(TWOSUPN+$2): ! remainder is negative addcc R,V,R ifelse( $1, N, ` b 9f add Q, ($2*2-1), Q ',` DEVELOP_QUOTIENT_BITS( incr($1), `eval(2*$2-1)') ') ifelse( $1, 1, `9:') ') ifelse( ANSWER, `quotient', ` .text .align 32 DEFINE_COMPILERRT_FUNCTION(__udivsi3) b divide mov 0,SIGN ! result always nonnegative .text .align 32 DEFINE_COMPILERRT_FUNCTION(__divsi3) orcc divisor,dividend,%g0 ! are either dividend or divisor negative bge divide ! if not, skip this junk xor divisor,dividend,SIGN ! record sign of result in sign of SIGN tst divisor bge 2f tst dividend ! divisor < 0 bge divide neg divisor 2: ! dividend < 0 neg dividend ! FALL THROUGH ',` .text .align 32 DEFINE_COMPILERRT_FUNCTION(__umodsi3) b divide mov 0,SIGN ! result always nonnegative .text .align 32 DEFINE_COMPILERRT_FUNCTION(__modsi3) orcc divisor,dividend,%g0 ! are either dividend or divisor negative bge divide ! if not, skip this junk mov dividend,SIGN ! record sign of result in sign of SIGN tst divisor bge 2f tst dividend ! divisor < 0 bge divide neg divisor 2: ! dividend < 0 neg dividend ! FALL THROUGH ') divide: ! Compute size of quotient, scale comparand. orcc divisor,%g0,V ! movcc divisor,V te 2 ! if divisor = 0 mov dividend,R mov 0,Q sethi %hi(1<<(WORDSIZE-TOPBITS-1)),T cmp R,T blu not_really_big mov 0,ITER ! ! Here, the dividend is >= 2ˆ(31-N) or so. We must be careful here, ! as our usual N-at-a-shot divide step will cause overflow and havoc. ! The total number of bits in the result here is N*ITER+SC, where ! SC <= N. ! Compute ITER in an unorthodox manner: know we need to Shift V into ! the top decade: so don't even bother to compare to R. 1: cmp V,T bgeu 3f mov 1,SC sll V,N,V b 1b inc ITER ! Now compute SC 2: addcc V,V,V bcc not_too_big add SC,1,SC ! We're here if the divisor overflowed when Shifting. ! This means that R has the high-order bit set. ! Restore V and subtract from R. sll T,TOPBITS,T ! high order bit srl V,1,V ! rest of V add V,T,V b do_single_div dec SC not_too_big: 3: cmp V,R blu 2b nop be do_single_div nop ! V > R: went too far: back up 1 step ! srl V,1,V ! dec SC ! do single-bit divide steps ! ! We have to be careful here. We know that R >= V, so we can do the ! first divide step without thinking. BUT, the others are conditional, ! and are only done if R >= 0. Because both R and V may have the high- ! order bit set in the first step, just falling into the regular ! division loop will mess up the first time around. ! So we unroll slightly... do_single_div: deccc SC bl end_regular_divide nop sub R,V,R mov 1,Q b,a end_single_divloop ! EMPTY single_divloop: sll Q,1,Q bl 1f srl V,1,V ! R >= 0 sub R,V,R b 2f inc Q 1: ! R < 0 add R,V,R dec Q 2: end_single_divloop: deccc SC bge single_divloop tst R b,a end_regular_divide ! EMPTY not_really_big: 1: sll V,N,V cmp V,R bleu 1b inccc ITER be got_result dec ITER do_regular_divide: ! Do the main division iteration tst R ! Fall through into divide loop divloop: sll Q,N,Q DEVELOP_QUOTIENT_BITS( 1, 0 ) end_regular_divide: deccc ITER bge divloop tst R bl,a got_result ! non-restoring fixup if remainder < 0, otherwise annulled ifelse( ANSWER, `quotient', ` dec Q ',` add R,divisor,R ') got_result: tst SIGN bl,a 1f ! negate for answer < 0, otherwise annulled ifelse( ANSWER, `quotient', ` neg %o2,%o2 ! Q <- -Q ',` neg %o3,%o3 ! R <- -R ') 1: retl ! leaf-routine return ifelse( ANSWER, `quotient', ` mov %o2,%o0 ! quotient <- Q ',` mov %o3,%o0 ! remainder <- R ')