Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcc/cfgbuild.c |
/* Control flow graph building code for GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* find_basic_blocks divides the current function's rtl into basic blocks and constructs the CFG. The blocks are recorded in the basic_block_info array; the CFG exists in the edge structures referenced by the blocks. find_basic_blocks also finds any unreachable loops and deletes them. Available functionality: - CFG construction find_basic_blocks */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "hard-reg-set.h" #include "basic-block.h" #include "regs.h" #include "flags.h" #include "output.h" #include "function.h" #include "except.h" #include "toplev.h" #include "timevar.h" static int count_basic_blocks (rtx); static void find_basic_blocks_1 (rtx); static void make_edges (basic_block, basic_block, int); static void make_label_edge (sbitmap, basic_block, rtx, int); static void find_bb_boundaries (basic_block); static void compute_outgoing_frequencies (basic_block); /* Return true if insn is something that should be contained inside basic block. */ bool inside_basic_block_p (rtx insn) { switch (GET_CODE (insn)) { case CODE_LABEL: /* Avoid creating of basic block for jumptables. */ return (NEXT_INSN (insn) == 0 || !JUMP_P (NEXT_INSN (insn)) || (GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_VEC && GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_DIFF_VEC)); case JUMP_INSN: return (GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC); case CALL_INSN: case INSN: return true; case BARRIER: case NOTE: return false; default: gcc_unreachable (); } } /* Return true if INSN may cause control flow transfer, so it should be last in the basic block. */ bool control_flow_insn_p (rtx insn) { rtx note; switch (GET_CODE (insn)) { case NOTE: case CODE_LABEL: return false; case JUMP_INSN: /* Jump insn always causes control transfer except for tablejumps. */ return (GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC); case CALL_INSN: /* Noreturn and sibling call instructions terminate the basic blocks (but only if they happen unconditionally). */ if ((SIBLING_CALL_P (insn) || find_reg_note (insn, REG_NORETURN, 0)) && GET_CODE (PATTERN (insn)) != COND_EXEC) return true; /* Call insn may return to the nonlocal goto handler. */ return ((nonlocal_goto_handler_labels && (0 == (note = find_reg_note (insn, REG_EH_REGION, NULL_RTX)) || INTVAL (XEXP (note, 0)) >= 0)) /* Or may trap. */ || can_throw_internal (insn)); case INSN: /* Treat trap instructions like noreturn calls (same provision). */ if (GET_CODE (PATTERN (insn)) == TRAP_IF && XEXP (PATTERN (insn), 0) == const1_rtx) return true; return (flag_non_call_exceptions && can_throw_internal (insn)); case BARRIER: /* It is nonsense to reach barrier when looking for the end of basic block, but before dead code is eliminated this may happen. */ return false; default: gcc_unreachable (); } } /* Count the basic blocks of the function. */ static int count_basic_blocks (rtx f) { int count = NUM_FIXED_BLOCKS; bool saw_insn = false; rtx insn; for (insn = f; insn; insn = NEXT_INSN (insn)) { /* Code labels and barriers causes current basic block to be terminated at previous real insn. */ if ((LABEL_P (insn) || BARRIER_P (insn)) && saw_insn) count++, saw_insn = false; /* Start basic block if needed. */ if (!saw_insn && inside_basic_block_p (insn)) saw_insn = true; /* Control flow insn causes current basic block to be terminated. */ if (saw_insn && control_flow_insn_p (insn)) count++, saw_insn = false; } if (saw_insn) count++; /* The rest of the compiler works a bit smoother when we don't have to check for the edge case of do-nothing functions with no basic blocks. */ if (count == NUM_FIXED_BLOCKS) { emit_insn (gen_rtx_USE (VOIDmode, const0_rtx)); count = NUM_FIXED_BLOCKS + 1; } return count; } /* Create an edge between two basic blocks. FLAGS are auxiliary information about the edge that is accumulated between calls. */ /* Create an edge from a basic block to a label. */ static void make_label_edge (sbitmap edge_cache, basic_block src, rtx label, int flags) { gcc_assert (LABEL_P (label)); /* If the label was never emitted, this insn is junk, but avoid a crash trying to refer to BLOCK_FOR_INSN (label). This can happen as a result of a syntax error and a diagnostic has already been printed. */ if (INSN_UID (label) == 0) return; cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags); } /* Create the edges generated by INSN in REGION. */ void rtl_make_eh_edge (sbitmap edge_cache, basic_block src, rtx insn) { int is_call = CALL_P (insn) ? EDGE_ABNORMAL_CALL : 0; rtx handlers, i; handlers = reachable_handlers (insn); for (i = handlers; i; i = XEXP (i, 1)) make_label_edge (edge_cache, src, XEXP (i, 0), EDGE_ABNORMAL | EDGE_EH | is_call); free_INSN_LIST_list (&handlers); } /* States of basic block as seen by find_many_sub_basic_blocks. */ enum state { /* Basic blocks created via split_block belong to this state. make_edges will examine these basic blocks to see if we need to create edges going out of them. */ BLOCK_NEW = 0, /* Basic blocks that do not need examining belong to this state. These blocks will be left intact. In particular, make_edges will not create edges going out of these basic blocks. */ BLOCK_ORIGINAL, /* Basic blocks that may need splitting (due to a label appearing in the middle, etc) belong to this state. After splitting them, make_edges will create edges going out of them as needed. */ BLOCK_TO_SPLIT }; #define STATE(BB) (enum state) ((size_t) (BB)->aux) #define SET_STATE(BB, STATE) ((BB)->aux = (void *) (size_t) (STATE)) /* Used internally by purge_dead_tablejump_edges, ORed into state. */ #define BLOCK_USED_BY_TABLEJUMP 32 #define FULL_STATE(BB) ((size_t) (BB)->aux) /* Identify the edges going out of basic blocks between MIN and MAX, inclusive, that have their states set to BLOCK_NEW or BLOCK_TO_SPLIT. UPDATE_P should be nonzero if we are updating CFG and zero if we are building CFG from scratch. */ static void make_edges (basic_block min, basic_block max, int update_p) { basic_block bb; sbitmap edge_cache = NULL; /* Heavy use of computed goto in machine-generated code can lead to nearly fully-connected CFGs. In that case we spend a significant amount of time searching the edge lists for duplicates. */ if (forced_labels || cfun->max_jumptable_ents > 100) edge_cache = sbitmap_alloc (last_basic_block); /* By nature of the way these get numbered, ENTRY_BLOCK_PTR->next_bb block is always the entry. */ if (min == ENTRY_BLOCK_PTR->next_bb) make_edge (ENTRY_BLOCK_PTR, min, EDGE_FALLTHRU); FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb) { rtx insn, x; enum rtx_code code; edge e; edge_iterator ei; if (STATE (bb) == BLOCK_ORIGINAL) continue; /* If we have an edge cache, cache edges going out of BB. */ if (edge_cache) { sbitmap_zero (edge_cache); if (update_p) { FOR_EACH_EDGE (e, ei, bb->succs) if (e->dest != EXIT_BLOCK_PTR) SET_BIT (edge_cache, e->dest->index); } } if (LABEL_P (BB_HEAD (bb)) && LABEL_ALT_ENTRY_P (BB_HEAD (bb))) cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0); /* Examine the last instruction of the block, and discover the ways we can leave the block. */ insn = BB_END (bb); code = GET_CODE (insn); /* A branch. */ if (code == JUMP_INSN) { rtx tmp; /* Recognize exception handling placeholders. */ if (GET_CODE (PATTERN (insn)) == RESX) rtl_make_eh_edge (edge_cache, bb, insn); /* Recognize a non-local goto as a branch outside the current function. */ else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) ; /* Recognize a tablejump and do the right thing. */ else if (tablejump_p (insn, NULL, &tmp)) { rtvec vec; int j; if (GET_CODE (PATTERN (tmp)) == ADDR_VEC) vec = XVEC (PATTERN (tmp), 0); else vec = XVEC (PATTERN (tmp), 1); for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j) make_label_edge (edge_cache, bb, XEXP (RTVEC_ELT (vec, j), 0), 0); /* Some targets (eg, ARM) emit a conditional jump that also contains the out-of-range target. Scan for these and add an edge if necessary. */ if ((tmp = single_set (insn)) != NULL && SET_DEST (tmp) == pc_rtx && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF) make_label_edge (edge_cache, bb, XEXP (XEXP (SET_SRC (tmp), 2), 0), 0); } /* If this is a computed jump, then mark it as reaching everything on the forced_labels list. */ else if (computed_jump_p (insn)) { for (x = forced_labels; x; x = XEXP (x, 1)) make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL); } /* Returns create an exit out. */ else if (returnjump_p (insn)) cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0); /* Otherwise, we have a plain conditional or unconditional jump. */ else { gcc_assert (JUMP_LABEL (insn)); make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0); } } /* If this is a sibling call insn, then this is in effect a combined call and return, and so we need an edge to the exit block. No need to worry about EH edges, since we wouldn't have created the sibling call in the first place. */ if (code == CALL_INSN && SIBLING_CALL_P (insn)) cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_SIBCALL | EDGE_ABNORMAL); /* If this is a CALL_INSN, then mark it as reaching the active EH handler for this CALL_INSN. If we're handling non-call exceptions then any insn can reach any of the active handlers. Also mark the CALL_INSN as reaching any nonlocal goto handler. */ else if (code == CALL_INSN || flag_non_call_exceptions) { /* Add any appropriate EH edges. */ rtl_make_eh_edge (edge_cache, bb, insn); if (code == CALL_INSN && nonlocal_goto_handler_labels) { /* ??? This could be made smarter: in some cases it's possible to tell that certain calls will not do a nonlocal goto. For example, if the nested functions that do the nonlocal gotos do not have their addresses taken, then only calls to those functions or to other nested functions that use them could possibly do nonlocal gotos. */ /* We do know that a REG_EH_REGION note with a value less than 0 is guaranteed not to perform a non-local goto. */ rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); if (!note || INTVAL (XEXP (note, 0)) >= 0) for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1)) make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL | EDGE_ABNORMAL_CALL); } } /* Find out if we can drop through to the next block. */ insn = NEXT_INSN (insn); e = find_edge (bb, EXIT_BLOCK_PTR); if (e && e->flags & EDGE_FALLTHRU) insn = NULL; while (insn && NOTE_P (insn) && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK) insn = NEXT_INSN (insn); if (!insn) cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU); else if (bb->next_bb != EXIT_BLOCK_PTR) { if (insn == BB_HEAD (bb->next_bb)) cached_make_edge (edge_cache, bb, bb->next_bb, EDGE_FALLTHRU); } } if (edge_cache) sbitmap_vector_free (edge_cache); } /* Find all basic blocks of the function whose first insn is F. Collect and return a list of labels whose addresses are taken. This will be used in make_edges for use with computed gotos. */ static void find_basic_blocks_1 (rtx f) { rtx insn, next; rtx bb_note = NULL_RTX; rtx head = NULL_RTX; rtx end = NULL_RTX; basic_block prev = ENTRY_BLOCK_PTR; /* We process the instructions in a slightly different way than we did previously. This is so that we see a NOTE_BASIC_BLOCK after we have closed out the previous block, so that it gets attached at the proper place. Since this form should be equivalent to the previous, count_basic_blocks continues to use the old form as a check. */ for (insn = f; insn; insn = next) { enum rtx_code code = GET_CODE (insn); next = NEXT_INSN (insn); if ((LABEL_P (insn) || BARRIER_P (insn)) && head) { prev = create_basic_block_structure (head, end, bb_note, prev); head = end = NULL_RTX; bb_note = NULL_RTX; } if (inside_basic_block_p (insn)) { if (head == NULL_RTX) head = insn; end = insn; } if (head && control_flow_insn_p (insn)) { prev = create_basic_block_structure (head, end, bb_note, prev); head = end = NULL_RTX; bb_note = NULL_RTX; } switch (code) { case NOTE: { int kind = NOTE_LINE_NUMBER (insn); /* Look for basic block notes with which to keep the basic_block_info pointers stable. Unthread the note now; we'll put it back at the right place in create_basic_block. Or not at all if we've already found a note in this block. */ if (kind == NOTE_INSN_BASIC_BLOCK) { if (bb_note == NULL_RTX) bb_note = insn; else next = delete_insn (insn); } break; } case CODE_LABEL: case JUMP_INSN: case CALL_INSN: case INSN: case BARRIER: break; default: gcc_unreachable (); } } if (head != NULL_RTX) create_basic_block_structure (head, end, bb_note, prev); else if (bb_note) delete_insn (bb_note); gcc_assert (last_basic_block == n_basic_blocks); clear_aux_for_blocks (); } /* Find basic blocks of the current function. F is the first insn of the function. */ void find_basic_blocks (rtx f) { basic_block bb; timevar_push (TV_CFG); /* Flush out existing data. */ if (basic_block_info != NULL) { clear_edges (); /* Clear bb->aux on all extant basic blocks. We'll use this as a tag for reuse during create_basic_block, just in case some pass copies around basic block notes improperly. */ FOR_EACH_BB (bb) bb->aux = NULL; basic_block_info = NULL; } n_basic_blocks = count_basic_blocks (f); last_basic_block = NUM_FIXED_BLOCKS; ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR; EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR; /* Size the basic block table. The actual structures will be allocated by find_basic_blocks_1, since we want to keep the structure pointers stable across calls to find_basic_blocks. */ /* ??? This whole issue would be much simpler if we called find_basic_blocks exactly once, and thereafter we don't have a single long chain of instructions at all until close to the end of compilation when we actually lay them out. */ basic_block_info = VEC_alloc (basic_block, gc, n_basic_blocks); VEC_safe_grow (basic_block, gc, basic_block_info, n_basic_blocks); memset (VEC_address (basic_block, basic_block_info), 0, sizeof (basic_block) * n_basic_blocks); SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR); SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR); find_basic_blocks_1 (f); profile_status = PROFILE_ABSENT; /* Tell make_edges to examine every block for out-going edges. */ FOR_EACH_BB (bb) SET_STATE (bb, BLOCK_NEW); /* Discover the edges of our cfg. */ make_edges (ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR->prev_bb, 0); /* Do very simple cleanup now, for the benefit of code that runs between here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */ tidy_fallthru_edges (); #ifdef ENABLE_CHECKING verify_flow_info (); #endif timevar_pop (TV_CFG); } static void mark_tablejump_edge (rtx label) { basic_block bb; gcc_assert (LABEL_P (label)); /* See comment in make_label_edge. */ if (INSN_UID (label) == 0) return; bb = BLOCK_FOR_INSN (label); SET_STATE (bb, FULL_STATE (bb) | BLOCK_USED_BY_TABLEJUMP); } static void purge_dead_tablejump_edges (basic_block bb, rtx table) { rtx insn = BB_END (bb), tmp; rtvec vec; int j; edge_iterator ei; edge e; if (GET_CODE (PATTERN (table)) == ADDR_VEC) vec = XVEC (PATTERN (table), 0); else vec = XVEC (PATTERN (table), 1); for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j) mark_tablejump_edge (XEXP (RTVEC_ELT (vec, j), 0)); /* Some targets (eg, ARM) emit a conditional jump that also contains the out-of-range target. Scan for these and add an edge if necessary. */ if ((tmp = single_set (insn)) != NULL && SET_DEST (tmp) == pc_rtx && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF) mark_tablejump_edge (XEXP (XEXP (SET_SRC (tmp), 2), 0)); for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) { if (FULL_STATE (e->dest) & BLOCK_USED_BY_TABLEJUMP) SET_STATE (e->dest, FULL_STATE (e->dest) & ~(size_t) BLOCK_USED_BY_TABLEJUMP); else if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH))) { remove_edge (e); continue; } ei_next (&ei); } } /* Scan basic block BB for possible BB boundaries inside the block and create new basic blocks in the progress. */ static void find_bb_boundaries (basic_block bb) { basic_block orig_bb = bb; rtx insn = BB_HEAD (bb); rtx end = BB_END (bb); rtx table; rtx flow_transfer_insn = NULL_RTX; edge fallthru = NULL; if (insn == BB_END (bb)) return; if (LABEL_P (insn)) insn = NEXT_INSN (insn); /* Scan insn chain and try to find new basic block boundaries. */ while (1) { enum rtx_code code = GET_CODE (insn); /* On code label, split current basic block. */ if (code == CODE_LABEL) { fallthru = split_block (bb, PREV_INSN (insn)); if (flow_transfer_insn) BB_END (bb) = flow_transfer_insn; bb = fallthru->dest; remove_edge (fallthru); flow_transfer_insn = NULL_RTX; if (LABEL_ALT_ENTRY_P (insn)) make_edge (ENTRY_BLOCK_PTR, bb, 0); } /* In case we've previously seen an insn that effects a control flow transfer, split the block. */ if (flow_transfer_insn && inside_basic_block_p (insn)) { fallthru = split_block (bb, PREV_INSN (insn)); BB_END (bb) = flow_transfer_insn; bb = fallthru->dest; remove_edge (fallthru); flow_transfer_insn = NULL_RTX; } if (control_flow_insn_p (insn)) flow_transfer_insn = insn; if (insn == end) break; insn = NEXT_INSN (insn); } /* In case expander replaced normal insn by sequence terminating by return and barrier, or possibly other sequence not behaving like ordinary jump, we need to take care and move basic block boundary. */ if (flow_transfer_insn) BB_END (bb) = flow_transfer_insn; /* We've possibly replaced the conditional jump by conditional jump followed by cleanup at fallthru edge, so the outgoing edges may be dead. */ purge_dead_edges (bb); /* purge_dead_edges doesn't handle tablejump's, but if we have split the basic block, we might need to kill some edges. */ if (bb != orig_bb && tablejump_p (BB_END (bb), NULL, &table)) purge_dead_tablejump_edges (bb, table); } /* Assume that frequency of basic block B is known. Compute frequencies and probabilities of outgoing edges. */ static void compute_outgoing_frequencies (basic_block b) { edge e, f; edge_iterator ei; if (EDGE_COUNT (b->succs) == 2) { rtx note = find_reg_note (BB_END (b), REG_BR_PROB, NULL); int probability; if (note) { probability = INTVAL (XEXP (note, 0)); e = BRANCH_EDGE (b); e->probability = probability; e->count = ((b->count * probability + REG_BR_PROB_BASE / 2) / REG_BR_PROB_BASE); f = FALLTHRU_EDGE (b); f->probability = REG_BR_PROB_BASE - probability; f->count = b->count - e->count; return; } } if (single_succ_p (b)) { e = single_succ_edge (b); e->probability = REG_BR_PROB_BASE; e->count = b->count; return; } guess_outgoing_edge_probabilities (b); if (b->count) FOR_EACH_EDGE (e, ei, b->succs) e->count = ((b->count * e->probability + REG_BR_PROB_BASE / 2) / REG_BR_PROB_BASE); } /* Assume that some pass has inserted labels or control flow instructions within a basic block. Split basic blocks as needed and create edges. */ void find_many_sub_basic_blocks (sbitmap blocks) { basic_block bb, min, max; FOR_EACH_BB (bb) SET_STATE (bb, TEST_BIT (blocks, bb->index) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL); FOR_EACH_BB (bb) if (STATE (bb) == BLOCK_TO_SPLIT) find_bb_boundaries (bb); FOR_EACH_BB (bb) if (STATE (bb) != BLOCK_ORIGINAL) break; min = max = bb; for (; bb != EXIT_BLOCK_PTR; bb = bb->next_bb) if (STATE (bb) != BLOCK_ORIGINAL) max = bb; /* Now re-scan and wire in all edges. This expect simple (conditional) jumps at the end of each new basic blocks. */ make_edges (min, max, 1); /* Update branch probabilities. Expect only (un)conditional jumps to be created with only the forward edges. */ if (profile_status != PROFILE_ABSENT) FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb) { edge e; edge_iterator ei; if (STATE (bb) == BLOCK_ORIGINAL) continue; if (STATE (bb) == BLOCK_NEW) { bb->count = 0; bb->frequency = 0; FOR_EACH_EDGE (e, ei, bb->preds) { bb->count += e->count; bb->frequency += EDGE_FREQUENCY (e); } } compute_outgoing_frequencies (bb); } FOR_EACH_BB (bb) SET_STATE (bb, 0); }