Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcc/config/arm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcc/config/arm/ieee754-df.S |
/* ieee754-df.S double-precision floating point support for ARM Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc. Contributed by Nicolas Pitre (nico@cam.org) This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Notes: * * The goal of this code is to be as fast as possible. This is * not meant to be easy to understand for the casual reader. * For slightly simpler code please see the single precision version * of this file. * * Only the default rounding mode is intended for best performances. * Exceptions aren't supported yet, but that can be added quite easily * if necessary without impacting performances. */ @ For FPA, float words are always big-endian. @ For VFP, floats words follow the memory system mode. #if defined(__VFP_FP__) && !defined(__ARMEB__) #define xl r0 #define xh r1 #define yl r2 #define yh r3 #else #define xh r0 #define xl r1 #define yh r2 #define yl r3 #endif #ifdef L_negdf2 ARM_FUNC_START negdf2 ARM_FUNC_ALIAS aeabi_dneg negdf2 @ flip sign bit eor xh, xh, #0x80000000 RET FUNC_END aeabi_dneg FUNC_END negdf2 #endif #ifdef L_addsubdf3 ARM_FUNC_START aeabi_drsub eor xh, xh, #0x80000000 @ flip sign bit of first arg b 1f ARM_FUNC_START subdf3 ARM_FUNC_ALIAS aeabi_dsub subdf3 eor yh, yh, #0x80000000 @ flip sign bit of second arg #if defined(__INTERWORKING_STUBS__) b 1f @ Skip Thumb-code prologue #endif ARM_FUNC_START adddf3 ARM_FUNC_ALIAS aeabi_dadd adddf3 1: stmfd sp!, {r4, r5, lr} @ Look for zeroes, equal values, INF, or NAN. mov r4, xh, lsl #1 mov r5, yh, lsl #1 teq r4, r5 teqeq xl, yl orrnes ip, r4, xl orrnes ip, r5, yl mvnnes ip, r4, asr #21 mvnnes ip, r5, asr #21 beq LSYM(Lad_s) @ Compute exponent difference. Make largest exponent in r4, @ corresponding arg in xh-xl, and positive exponent difference in r5. mov r4, r4, lsr #21 rsbs r5, r4, r5, lsr #21 rsblt r5, r5, #0 ble 1f add r4, r4, r5 eor yl, xl, yl eor yh, xh, yh eor xl, yl, xl eor xh, yh, xh eor yl, xl, yl eor yh, xh, yh 1: @ If exponent difference is too large, return largest argument @ already in xh-xl. We need up to 54 bit to handle proper rounding @ of 0x1p54 - 1.1. cmp r5, #54 RETLDM "r4, r5" hi @ Convert mantissa to signed integer. tst xh, #0x80000000 mov xh, xh, lsl #12 mov ip, #0x00100000 orr xh, ip, xh, lsr #12 beq 1f rsbs xl, xl, #0 rsc xh, xh, #0 1: tst yh, #0x80000000 mov yh, yh, lsl #12 orr yh, ip, yh, lsr #12 beq 1f rsbs yl, yl, #0 rsc yh, yh, #0 1: @ If exponent == difference, one or both args were denormalized. @ Since this is not common case, rescale them off line. teq r4, r5 beq LSYM(Lad_d) LSYM(Lad_x): @ Compensate for the exponent overlapping the mantissa MSB added later sub r4, r4, #1 @ Shift yh-yl right per r5, add to xh-xl, keep leftover bits into ip. rsbs lr, r5, #32 blt 1f mov ip, yl, lsl lr adds xl, xl, yl, lsr r5 adc xh, xh, #0 adds xl, xl, yh, lsl lr adcs xh, xh, yh, asr r5 b 2f 1: sub r5, r5, #32 add lr, lr, #32 cmp yl, #1 mov ip, yh, lsl lr orrcs ip, ip, #2 @ 2 not 1, to allow lsr #1 later adds xl, xl, yh, asr r5 adcs xh, xh, yh, asr #31 2: @ We now have a result in xh-xl-ip. @ Keep absolute value in xh-xl-ip, sign in r5 (the n bit was set above) and r5, xh, #0x80000000 bpl LSYM(Lad_p) rsbs ip, ip, #0 rscs xl, xl, #0 rsc xh, xh, #0 @ Determine how to normalize the result. LSYM(Lad_p): cmp xh, #0x00100000 bcc LSYM(Lad_a) cmp xh, #0x00200000 bcc LSYM(Lad_e) @ Result needs to be shifted right. movs xh, xh, lsr #1 movs xl, xl, rrx mov ip, ip, rrx add r4, r4, #1 @ Make sure we did not bust our exponent. mov r2, r4, lsl #21 cmn r2, #(2 << 21) bcs LSYM(Lad_o) @ Our result is now properly aligned into xh-xl, remaining bits in ip. @ Round with MSB of ip. If halfway between two numbers, round towards @ LSB of xl = 0. @ Pack final result together. LSYM(Lad_e): cmp ip, #0x80000000 moveqs ip, xl, lsr #1 adcs xl, xl, #0 adc xh, xh, r4, lsl #20 orr xh, xh, r5 RETLDM "r4, r5" @ Result must be shifted left and exponent adjusted. LSYM(Lad_a): movs ip, ip, lsl #1 adcs xl, xl, xl adc xh, xh, xh tst xh, #0x00100000 sub r4, r4, #1 bne LSYM(Lad_e) @ No rounding necessary since ip will always be 0 at this point. LSYM(Lad_l): #if __ARM_ARCH__ < 5 teq xh, #0 movne r3, #20 moveq r3, #52 moveq xh, xl moveq xl, #0 mov r2, xh cmp r2, #(1 << 16) movhs r2, r2, lsr #16 subhs r3, r3, #16 cmp r2, #(1 << 8) movhs r2, r2, lsr #8 subhs r3, r3, #8 cmp r2, #(1 << 4) movhs r2, r2, lsr #4 subhs r3, r3, #4 cmp r2, #(1 << 2) subhs r3, r3, #2 sublo r3, r3, r2, lsr #1 sub r3, r3, r2, lsr #3 #else teq xh, #0 moveq xh, xl moveq xl, #0 clz r3, xh addeq r3, r3, #32 sub r3, r3, #11 #endif @ determine how to shift the value. subs r2, r3, #32 bge 2f adds r2, r2, #12 ble 1f @ shift value left 21 to 31 bits, or actually right 11 to 1 bits @ since a register switch happened above. add ip, r2, #20 rsb r2, r2, #12 mov xl, xh, lsl ip mov xh, xh, lsr r2 b 3f @ actually shift value left 1 to 20 bits, which might also represent @ 32 to 52 bits if counting the register switch that happened earlier. 1: add r2, r2, #20 2: rsble ip, r2, #32 mov xh, xh, lsl r2 orrle xh, xh, xl, lsr ip movle xl, xl, lsl r2 @ adjust exponent accordingly. 3: subs r4, r4, r3 addge xh, xh, r4, lsl #20 orrge xh, xh, r5 RETLDM "r4, r5" ge @ Exponent too small, denormalize result. @ Find out proper shift value. mvn r4, r4 subs r4, r4, #31 bge 2f adds r4, r4, #12 bgt 1f @ shift result right of 1 to 20 bits, sign is in r5. add r4, r4, #20 rsb r2, r4, #32 mov xl, xl, lsr r4 orr xl, xl, xh, lsl r2 orr xh, r5, xh, lsr r4 RETLDM "r4, r5" @ shift result right of 21 to 31 bits, or left 11 to 1 bits after @ a register switch from xh to xl. 1: rsb r4, r4, #12 rsb r2, r4, #32 mov xl, xl, lsr r2 orr xl, xl, xh, lsl r4 mov xh, r5 RETLDM "r4, r5" @ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch @ from xh to xl. 2: mov xl, xh, lsr r4 mov xh, r5 RETLDM "r4, r5" @ Adjust exponents for denormalized arguments. @ Note that r4 must not remain equal to 0. LSYM(Lad_d): teq r4, #0 eor yh, yh, #0x00100000 eoreq xh, xh, #0x00100000 addeq r4, r4, #1 subne r5, r5, #1 b LSYM(Lad_x) LSYM(Lad_s): mvns ip, r4, asr #21 mvnnes ip, r5, asr #21 beq LSYM(Lad_i) teq r4, r5 teqeq xl, yl beq 1f @ Result is x + 0.0 = x or 0.0 + y = y. orrs ip, r4, xl moveq xh, yh moveq xl, yl RETLDM "r4, r5" 1: teq xh, yh @ Result is x - x = 0. movne xh, #0 movne xl, #0 RETLDM "r4, r5" ne @ Result is x + x = 2x. movs ip, r4, lsr #21 bne 2f movs xl, xl, lsl #1 adcs xh, xh, xh orrcs xh, xh, #0x80000000 RETLDM "r4, r5" 2: adds r4, r4, #(2 << 21) addcc xh, xh, #(1 << 20) RETLDM "r4, r5" cc and r5, xh, #0x80000000 @ Overflow: return INF. LSYM(Lad_o): orr xh, r5, #0x7f000000 orr xh, xh, #0x00f00000 mov xl, #0 RETLDM "r4, r5" @ At least one of x or y is INF/NAN. @ if xh-xl != INF/NAN: return yh-yl (which is INF/NAN) @ if yh-yl != INF/NAN: return xh-xl (which is INF/NAN) @ if either is NAN: return NAN @ if opposite sign: return NAN @ otherwise return xh-xl (which is INF or -INF) LSYM(Lad_i): mvns ip, r4, asr #21 movne xh, yh movne xl, yl mvneqs ip, r5, asr #21 movne yh, xh movne yl, xl orrs r4, xl, xh, lsl #12 orreqs r5, yl, yh, lsl #12 teqeq xh, yh orrne xh, xh, #0x00080000 @ quiet NAN RETLDM "r4, r5" FUNC_END aeabi_dsub FUNC_END subdf3 FUNC_END aeabi_dadd FUNC_END adddf3 ARM_FUNC_START floatunsidf ARM_FUNC_ALIAS aeabi_ui2d floatunsidf teq r0, #0 moveq r1, #0 RETc(eq) stmfd sp!, {r4, r5, lr} mov r4, #0x400 @ initial exponent add r4, r4, #(52-1 - 1) mov r5, #0 @ sign bit is 0 .ifnc xl, r0 mov xl, r0 .endif mov xh, #0 b LSYM(Lad_l) FUNC_END aeabi_ui2d FUNC_END floatunsidf ARM_FUNC_START floatsidf ARM_FUNC_ALIAS aeabi_i2d floatsidf teq r0, #0 moveq r1, #0 RETc(eq) stmfd sp!, {r4, r5, lr} mov r4, #0x400 @ initial exponent add r4, r4, #(52-1 - 1) ands r5, r0, #0x80000000 @ sign bit in r5 rsbmi r0, r0, #0 @ absolute value .ifnc xl, r0 mov xl, r0 .endif mov xh, #0 b LSYM(Lad_l) FUNC_END aeabi_i2d FUNC_END floatsidf ARM_FUNC_START extendsfdf2 ARM_FUNC_ALIAS aeabi_f2d extendsfdf2 movs r2, r0, lsl #1 @ toss sign bit mov xh, r2, asr #3 @ stretch exponent mov xh, xh, rrx @ retrieve sign bit mov xl, r2, lsl #28 @ retrieve remaining bits andnes r3, r2, #0xff000000 @ isolate exponent teqne r3, #0xff000000 @ if not 0, check if INF or NAN eorne xh, xh, #0x38000000 @ fixup exponent otherwise. RETc(ne) @ and return it. teq r2, #0 @ if actually 0 teqne r3, #0xff000000 @ or INF or NAN RETc(eq) @ we are done already. @ value was denormalized. We can normalize it now. stmfd sp!, {r4, r5, lr} mov r4, #0x380 @ setup corresponding exponent and r5, xh, #0x80000000 @ move sign bit in r5 bic xh, xh, #0x80000000 b LSYM(Lad_l) FUNC_END aeabi_f2d FUNC_END extendsfdf2 ARM_FUNC_START floatundidf ARM_FUNC_ALIAS aeabi_ul2d floatundidf orrs r2, r0, r1 #if !defined (__VFP_FP__) && !defined(__SOFTFP__) mvfeqd f0, #0.0 #endif RETc(eq) #if !defined (__VFP_FP__) && !defined(__SOFTFP__) @ For hard FPA code we want to return via the tail below so that @ we can return the result in f0 as well as in r0/r1 for backwards @ compatibility. adr ip, LSYM(f0_ret) stmfd sp!, {r4, r5, ip, lr} #else stmfd sp!, {r4, r5, lr} #endif mov r5, #0 b 2f ARM_FUNC_START floatdidf ARM_FUNC_ALIAS aeabi_l2d floatdidf orrs r2, r0, r1 #if !defined (__VFP_FP__) && !defined(__SOFTFP__) mvfeqd f0, #0.0 #endif RETc(eq) #if !defined (__VFP_FP__) && !defined(__SOFTFP__) @ For hard FPA code we want to return via the tail below so that @ we can return the result in f0 as well as in r0/r1 for backwards @ compatibility. adr ip, LSYM(f0_ret) stmfd sp!, {r4, r5, ip, lr} #else stmfd sp!, {r4, r5, lr} #endif ands r5, ah, #0x80000000 @ sign bit in r5 bpl 2f rsbs al, al, #0 rsc ah, ah, #0 2: mov r4, #0x400 @ initial exponent add r4, r4, #(52-1 - 1) @ FPA little-endian: must swap the word order. .ifnc xh, ah mov ip, al mov xh, ah mov xl, ip .endif movs ip, xh, lsr #22 beq LSYM(Lad_p) @ The value is too big. Scale it down a bit... mov r2, #3 movs ip, ip, lsr #3 addne r2, r2, #3 movs ip, ip, lsr #3 addne r2, r2, #3 add r2, r2, ip, lsr #3 rsb r3, r2, #32 mov ip, xl, lsl r3 mov xl, xl, lsr r2 orr xl, xl, xh, lsl r3 mov xh, xh, lsr r2 add r4, r4, r2 b LSYM(Lad_p) #if !defined (__VFP_FP__) && !defined(__SOFTFP__) @ Legacy code expects the result to be returned in f0. Copy it @ there as well. LSYM(f0_ret): stmfd sp!, {r0, r1} ldfd f0, [sp], #8 RETLDM #endif FUNC_END floatdidf FUNC_END aeabi_l2d FUNC_END floatundidf FUNC_END aeabi_ul2d #endif /* L_addsubdf3 */ #ifdef L_muldivdf3 ARM_FUNC_START muldf3 ARM_FUNC_ALIAS aeabi_dmul muldf3 stmfd sp!, {r4, r5, r6, lr} @ Mask out exponents, trap any zero/denormal/INF/NAN. mov ip, #0xff orr ip, ip, #0x700 ands r4, ip, xh, lsr #20 andnes r5, ip, yh, lsr #20 teqne r4, ip teqne r5, ip bleq LSYM(Lml_s) @ Add exponents together add r4, r4, r5 @ Determine final sign. eor r6, xh, yh @ Convert mantissa to unsigned integer. @ If power of two, branch to a separate path. bic xh, xh, ip, lsl #21 bic yh, yh, ip, lsl #21 orrs r5, xl, xh, lsl #12 orrnes r5, yl, yh, lsl #12 orr xh, xh, #0x00100000 orr yh, yh, #0x00100000 beq LSYM(Lml_1) #if __ARM_ARCH__ < 4 @ Put sign bit in r6, which will be restored in yl later. and r6, r6, #0x80000000 @ Well, no way to make it shorter without the umull instruction. stmfd sp!, {r6, r7, r8, r9, sl, fp} mov r7, xl, lsr #16 mov r8, yl, lsr #16 mov r9, xh, lsr #16 mov sl, yh, lsr #16 bic xl, xl, r7, lsl #16 bic yl, yl, r8, lsl #16 bic xh, xh, r9, lsl #16 bic yh, yh, sl, lsl #16 mul ip, xl, yl mul fp, xl, r8 mov lr, #0 adds ip, ip, fp, lsl #16 adc lr, lr, fp, lsr #16 mul fp, r7, yl adds ip, ip, fp, lsl #16 adc lr, lr, fp, lsr #16 mul fp, xl, sl mov r5, #0 adds lr, lr, fp, lsl #16 adc r5, r5, fp, lsr #16 mul fp, r7, yh adds lr, lr, fp, lsl #16 adc r5, r5, fp, lsr #16 mul fp, xh, r8 adds lr, lr, fp, lsl #16 adc r5, r5, fp, lsr #16 mul fp, r9, yl adds lr, lr, fp, lsl #16 adc r5, r5, fp, lsr #16 mul fp, xh, sl mul r6, r9, sl adds r5, r5, fp, lsl #16 adc r6, r6, fp, lsr #16 mul fp, r9, yh adds r5, r5, fp, lsl #16 adc r6, r6, fp, lsr #16 mul fp, xl, yh adds lr, lr, fp mul fp, r7, sl adcs r5, r5, fp mul fp, xh, yl adc r6, r6, #0 adds lr, lr, fp mul fp, r9, r8 adcs r5, r5, fp mul fp, r7, r8 adc r6, r6, #0 adds lr, lr, fp mul fp, xh, yh adcs r5, r5, fp adc r6, r6, #0 ldmfd sp!, {yl, r7, r8, r9, sl, fp} #else @ Here is the actual multiplication. umull ip, lr, xl, yl mov r5, #0 umlal lr, r5, xh, yl and yl, r6, #0x80000000 umlal lr, r5, xl, yh mov r6, #0 umlal r5, r6, xh, yh #endif @ The LSBs in ip are only significant for the final rounding. @ Fold them into lr. teq ip, #0 orrne lr, lr, #1 @ Adjust result upon the MSB position. sub r4, r4, #0xff cmp r6, #(1 << (20-11)) sbc r4, r4, #0x300 bcs 1f movs lr, lr, lsl #1 adcs r5, r5, r5 adc r6, r6, r6 1: @ Shift to final position, add sign to result. orr xh, yl, r6, lsl #11 orr xh, xh, r5, lsr #21 mov xl, r5, lsl #11 orr xl, xl, lr, lsr #21 mov lr, lr, lsl #11 @ Check exponent range for under/overflow. subs ip, r4, #(254 - 1) cmphi ip, #0x700 bhi LSYM(Lml_u) @ Round the result, merge final exponent. cmp lr, #0x80000000 moveqs lr, xl, lsr #1 adcs xl, xl, #0 adc xh, xh, r4, lsl #20 RETLDM "r4, r5, r6" @ Multiplication by 0x1p*: let''s shortcut a lot of code. LSYM(Lml_1): and r6, r6, #0x80000000 orr xh, r6, xh orr xl, xl, yl eor xh, xh, yh subs r4, r4, ip, lsr #1 rsbgts r5, r4, ip orrgt xh, xh, r4, lsl #20 RETLDM "r4, r5, r6" gt @ Under/overflow: fix things up for the code below. orr xh, xh, #0x00100000 mov lr, #0 subs r4, r4, #1 LSYM(Lml_u): @ Overflow? bgt LSYM(Lml_o) @ Check if denormalized result is possible, otherwise return signed 0. cmn r4, #(53 + 1) movle xl, #0 bicle xh, xh, #0x7fffffff RETLDM "r4, r5, r6" le @ Find out proper shift value. rsb r4, r4, #0 subs r4, r4, #32 bge 2f adds r4, r4, #12 bgt 1f @ shift result right of 1 to 20 bits, preserve sign bit, round, etc. add r4, r4, #20 rsb r5, r4, #32 mov r3, xl, lsl r5 mov xl, xl, lsr r4 orr xl, xl, xh, lsl r5 and r2, xh, #0x80000000 bic xh, xh, #0x80000000 adds xl, xl, r3, lsr #31 adc xh, r2, xh, lsr r4 orrs lr, lr, r3, lsl #1 biceq xl, xl, r3, lsr #31 RETLDM "r4, r5, r6" @ shift result right of 21 to 31 bits, or left 11 to 1 bits after @ a register switch from xh to xl. Then round. 1: rsb r4, r4, #12 rsb r5, r4, #32 mov r3, xl, lsl r4 mov xl, xl, lsr r5 orr xl, xl, xh, lsl r4 bic xh, xh, #0x7fffffff adds xl, xl, r3, lsr #31 adc xh, xh, #0 orrs lr, lr, r3, lsl #1 biceq xl, xl, r3, lsr #31 RETLDM "r4, r5, r6" @ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch @ from xh to xl. Leftover bits are in r3-r6-lr for rounding. 2: rsb r5, r4, #32 orr lr, lr, xl, lsl r5 mov r3, xl, lsr r4 orr r3, r3, xh, lsl r5 mov xl, xh, lsr r4 bic xh, xh, #0x7fffffff bic xl, xl, xh, lsr r4 add xl, xl, r3, lsr #31 orrs lr, lr, r3, lsl #1 biceq xl, xl, r3, lsr #31 RETLDM "r4, r5, r6" @ One or both arguments are denormalized. @ Scale them leftwards and preserve sign bit. LSYM(Lml_d): teq r4, #0 bne 2f and r6, xh, #0x80000000 1: movs xl, xl, lsl #1 adc xh, xh, xh tst xh, #0x00100000 subeq r4, r4, #1 beq 1b orr xh, xh, r6 teq r5, #0 movne pc, lr 2: and r6, yh, #0x80000000 3: movs yl, yl, lsl #1 adc yh, yh, yh tst yh, #0x00100000 subeq r5, r5, #1 beq 3b orr yh, yh, r6 mov pc, lr LSYM(Lml_s): @ Isolate the INF and NAN cases away teq r4, ip and r5, ip, yh, lsr #20 teqne r5, ip beq 1f @ Here, one or more arguments are either denormalized or zero. orrs r6, xl, xh, lsl #1 orrnes r6, yl, yh, lsl #1 bne LSYM(Lml_d) @ Result is 0, but determine sign anyway. LSYM(Lml_z): eor xh, xh, yh bic xh, xh, #0x7fffffff mov xl, #0 RETLDM "r4, r5, r6" 1: @ One or both args are INF or NAN. orrs r6, xl, xh, lsl #1 moveq xl, yl moveq xh, yh orrnes r6, yl, yh, lsl #1 beq LSYM(Lml_n) @ 0 * INF or INF * 0 -> NAN teq r4, ip bne 1f orrs r6, xl, xh, lsl #12 bne LSYM(Lml_n) @ NAN * <anything> -> NAN 1: teq r5, ip bne LSYM(Lml_i) orrs r6, yl, yh, lsl #12 movne xl, yl movne xh, yh bne LSYM(Lml_n) @ <anything> * NAN -> NAN @ Result is INF, but we need to determine its sign. LSYM(Lml_i): eor xh, xh, yh @ Overflow: return INF (sign already in xh). LSYM(Lml_o): and xh, xh, #0x80000000 orr xh, xh, #0x7f000000 orr xh, xh, #0x00f00000 mov xl, #0 RETLDM "r4, r5, r6" @ Return a quiet NAN. LSYM(Lml_n): orr xh, xh, #0x7f000000 orr xh, xh, #0x00f80000 RETLDM "r4, r5, r6" FUNC_END aeabi_dmul FUNC_END muldf3 ARM_FUNC_START divdf3 ARM_FUNC_ALIAS aeabi_ddiv divdf3 stmfd sp!, {r4, r5, r6, lr} @ Mask out exponents, trap any zero/denormal/INF/NAN. mov ip, #0xff orr ip, ip, #0x700 ands r4, ip, xh, lsr #20 andnes r5, ip, yh, lsr #20 teqne r4, ip teqne r5, ip bleq LSYM(Ldv_s) @ Substract divisor exponent from dividend''s. sub r4, r4, r5 @ Preserve final sign into lr. eor lr, xh, yh @ Convert mantissa to unsigned integer. @ Dividend -> r5-r6, divisor -> yh-yl. orrs r5, yl, yh, lsl #12 mov xh, xh, lsl #12 beq LSYM(Ldv_1) mov yh, yh, lsl #12 mov r5, #0x10000000 orr yh, r5, yh, lsr #4 orr yh, yh, yl, lsr #24 mov yl, yl, lsl #8 orr r5, r5, xh, lsr #4 orr r5, r5, xl, lsr #24 mov r6, xl, lsl #8 @ Initialize xh with final sign bit. and xh, lr, #0x80000000 @ Ensure result will land to known bit position. @ Apply exponent bias accordingly. cmp r5, yh cmpeq r6, yl adc r4, r4, #(255 - 2) add r4, r4, #0x300 bcs 1f movs yh, yh, lsr #1 mov yl, yl, rrx 1: @ Perform first substraction to align result to a nibble. subs r6, r6, yl sbc r5, r5, yh movs yh, yh, lsr #1 mov yl, yl, rrx mov xl, #0x00100000 mov ip, #0x00080000 @ The actual division loop. 1: subs lr, r6, yl sbcs lr, r5, yh subcs r6, r6, yl movcs r5, lr orrcs xl, xl, ip movs yh, yh, lsr #1 mov yl, yl, rrx subs lr, r6, yl sbcs lr, r5, yh subcs r6, r6, yl movcs r5, lr orrcs xl, xl, ip, lsr #1 movs yh, yh, lsr #1 mov yl, yl, rrx subs lr, r6, yl sbcs lr, r5, yh subcs r6, r6, yl movcs r5, lr orrcs xl, xl, ip, lsr #2 movs yh, yh, lsr #1 mov yl, yl, rrx subs lr, r6, yl sbcs lr, r5, yh subcs r6, r6, yl movcs r5, lr orrcs xl, xl, ip, lsr #3 orrs lr, r5, r6 beq 2f mov r5, r5, lsl #4 orr r5, r5, r6, lsr #28 mov r6, r6, lsl #4 mov yh, yh, lsl #3 orr yh, yh, yl, lsr #29 mov yl, yl, lsl #3 movs ip, ip, lsr #4 bne 1b @ We are done with a word of the result. @ Loop again for the low word if this pass was for the high word. tst xh, #0x00100000 bne 3f orr xh, xh, xl mov xl, #0 mov ip, #0x80000000 b 1b 2: @ Be sure result starts in the high word. tst xh, #0x00100000 orreq xh, xh, xl moveq xl, #0 3: @ Check exponent range for under/overflow. subs ip, r4, #(254 - 1) cmphi ip, #0x700 bhi LSYM(Lml_u) @ Round the result, merge final exponent. subs ip, r5, yh subeqs ip, r6, yl moveqs ip, xl, lsr #1 adcs xl, xl, #0 adc xh, xh, r4, lsl #20 RETLDM "r4, r5, r6" @ Division by 0x1p*: shortcut a lot of code. LSYM(Ldv_1): and lr, lr, #0x80000000 orr xh, lr, xh, lsr #12 adds r4, r4, ip, lsr #1 rsbgts r5, r4, ip orrgt xh, xh, r4, lsl #20 RETLDM "r4, r5, r6" gt orr xh, xh, #0x00100000 mov lr, #0 subs r4, r4, #1 b LSYM(Lml_u) @ Result mightt need to be denormalized: put remainder bits @ in lr for rounding considerations. LSYM(Ldv_u): orr lr, r5, r6 b LSYM(Lml_u) @ One or both arguments is either INF, NAN or zero. LSYM(Ldv_s): and r5, ip, yh, lsr #20 teq r4, ip teqeq r5, ip beq LSYM(Lml_n) @ INF/NAN / INF/NAN -> NAN teq r4, ip bne 1f orrs r4, xl, xh, lsl #12 bne LSYM(Lml_n) @ NAN / <anything> -> NAN teq r5, ip bne LSYM(Lml_i) @ INF / <anything> -> INF mov xl, yl mov xh, yh b LSYM(Lml_n) @ INF / (INF or NAN) -> NAN 1: teq r5, ip bne 2f orrs r5, yl, yh, lsl #12 beq LSYM(Lml_z) @ <anything> / INF -> 0 mov xl, yl mov xh, yh b LSYM(Lml_n) @ <anything> / NAN -> NAN 2: @ If both are nonzero, we need to normalize and resume above. orrs r6, xl, xh, lsl #1 orrnes r6, yl, yh, lsl #1 bne LSYM(Lml_d) @ One or both arguments are 0. orrs r4, xl, xh, lsl #1 bne LSYM(Lml_i) @ <non_zero> / 0 -> INF orrs r5, yl, yh, lsl #1 bne LSYM(Lml_z) @ 0 / <non_zero> -> 0 b LSYM(Lml_n) @ 0 / 0 -> NAN FUNC_END aeabi_ddiv FUNC_END divdf3 #endif /* L_muldivdf3 */ #ifdef L_cmpdf2 @ Note: only r0 (return value) and ip are clobbered here. ARM_FUNC_START gtdf2 ARM_FUNC_ALIAS gedf2 gtdf2 mov ip, #-1 b 1f ARM_FUNC_START ltdf2 ARM_FUNC_ALIAS ledf2 ltdf2 mov ip, #1 b 1f ARM_FUNC_START cmpdf2 ARM_FUNC_ALIAS nedf2 cmpdf2 ARM_FUNC_ALIAS eqdf2 cmpdf2 mov ip, #1 @ how should we specify unordered here? 1: str ip, [sp, #-4] @ Trap any INF/NAN first. mov ip, xh, lsl #1 mvns ip, ip, asr #21 mov ip, yh, lsl #1 mvnnes ip, ip, asr #21 beq 3f @ Test for equality. @ Note that 0.0 is equal to -0.0. 2: orrs ip, xl, xh, lsl #1 @ if x == 0.0 or -0.0 orreqs ip, yl, yh, lsl #1 @ and y == 0.0 or -0.0 teqne xh, yh @ or xh == yh teqeq xl, yl @ and xl == yl moveq r0, #0 @ then equal. RETc(eq) @ Clear C flag cmn r0, #0 @ Compare sign, teq xh, yh @ Compare values if same sign cmppl xh, yh cmpeq xl, yl @ Result: movcs r0, yh, asr #31 mvncc r0, yh, asr #31 orr r0, r0, #1 RET @ Look for a NAN. 3: mov ip, xh, lsl #1 mvns ip, ip, asr #21 bne 4f orrs ip, xl, xh, lsl #12 bne 5f @ x is NAN 4: mov ip, yh, lsl #1 mvns ip, ip, asr #21 bne 2b orrs ip, yl, yh, lsl #12 beq 2b @ y is not NAN 5: ldr r0, [sp, #-4] @ unordered return code RET FUNC_END gedf2 FUNC_END gtdf2 FUNC_END ledf2 FUNC_END ltdf2 FUNC_END nedf2 FUNC_END eqdf2 FUNC_END cmpdf2 ARM_FUNC_START aeabi_cdrcmple mov ip, r0 mov r0, r2 mov r2, ip mov ip, r1 mov r1, r3 mov r3, ip b 6f ARM_FUNC_START aeabi_cdcmpeq ARM_FUNC_ALIAS aeabi_cdcmple aeabi_cdcmpeq @ The status-returning routines are required to preserve all @ registers except ip, lr, and cpsr. 6: stmfd sp!, {r0, lr} ARM_CALL cmpdf2 @ Set the Z flag correctly, and the C flag unconditionally. cmp r0, #0 @ Clear the C flag if the return value was -1, indicating @ that the first operand was smaller than the second. cmnmi r0, #0 RETLDM "r0" FUNC_END aeabi_cdcmple FUNC_END aeabi_cdcmpeq FUNC_END aeabi_cdrcmple ARM_FUNC_START aeabi_dcmpeq str lr, [sp, #-8]! ARM_CALL aeabi_cdcmple moveq r0, #1 @ Equal to. movne r0, #0 @ Less than, greater than, or unordered. RETLDM FUNC_END aeabi_dcmpeq ARM_FUNC_START aeabi_dcmplt str lr, [sp, #-8]! ARM_CALL aeabi_cdcmple movcc r0, #1 @ Less than. movcs r0, #0 @ Equal to, greater than, or unordered. RETLDM FUNC_END aeabi_dcmplt ARM_FUNC_START aeabi_dcmple str lr, [sp, #-8]! ARM_CALL aeabi_cdcmple movls r0, #1 @ Less than or equal to. movhi r0, #0 @ Greater than or unordered. RETLDM FUNC_END aeabi_dcmple ARM_FUNC_START aeabi_dcmpge str lr, [sp, #-8]! ARM_CALL aeabi_cdrcmple movls r0, #1 @ Operand 2 is less than or equal to operand 1. movhi r0, #0 @ Operand 2 greater than operand 1, or unordered. RETLDM FUNC_END aeabi_dcmpge ARM_FUNC_START aeabi_dcmpgt str lr, [sp, #-8]! ARM_CALL aeabi_cdrcmple movcc r0, #1 @ Operand 2 is less than operand 1. movcs r0, #0 @ Operand 2 is greater than or equal to operand 1, @ or they are unordered. RETLDM FUNC_END aeabi_dcmpgt #endif /* L_cmpdf2 */ #ifdef L_unorddf2 ARM_FUNC_START unorddf2 ARM_FUNC_ALIAS aeabi_dcmpun unorddf2 mov ip, xh, lsl #1 mvns ip, ip, asr #21 bne 1f orrs ip, xl, xh, lsl #12 bne 3f @ x is NAN 1: mov ip, yh, lsl #1 mvns ip, ip, asr #21 bne 2f orrs ip, yl, yh, lsl #12 bne 3f @ y is NAN 2: mov r0, #0 @ arguments are ordered. RET 3: mov r0, #1 @ arguments are unordered. RET FUNC_END aeabi_dcmpun FUNC_END unorddf2 #endif /* L_unorddf2 */ #ifdef L_fixdfsi ARM_FUNC_START fixdfsi ARM_FUNC_ALIAS aeabi_d2iz fixdfsi @ check exponent range. mov r2, xh, lsl #1 adds r2, r2, #(1 << 21) bcs 2f @ value is INF or NAN bpl 1f @ value is too small mov r3, #(0xfffffc00 + 31) subs r2, r3, r2, asr #21 bls 3f @ value is too large @ scale value mov r3, xh, lsl #11 orr r3, r3, #0x80000000 orr r3, r3, xl, lsr #21 tst xh, #0x80000000 @ the sign bit mov r0, r3, lsr r2 rsbne r0, r0, #0 RET 1: mov r0, #0 RET 2: orrs xl, xl, xh, lsl #12 bne 4f @ x is NAN. 3: ands r0, xh, #0x80000000 @ the sign bit moveq r0, #0x7fffffff @ maximum signed positive si RET 4: mov r0, #0 @ How should we convert NAN? RET FUNC_END aeabi_d2iz FUNC_END fixdfsi #endif /* L_fixdfsi */ #ifdef L_fixunsdfsi ARM_FUNC_START fixunsdfsi ARM_FUNC_ALIAS aeabi_d2uiz fixunsdfsi @ check exponent range. movs r2, xh, lsl #1 bcs 1f @ value is negative adds r2, r2, #(1 << 21) bcs 2f @ value is INF or NAN bpl 1f @ value is too small mov r3, #(0xfffffc00 + 31) subs r2, r3, r2, asr #21 bmi 3f @ value is too large @ scale value mov r3, xh, lsl #11 orr r3, r3, #0x80000000 orr r3, r3, xl, lsr #21 mov r0, r3, lsr r2 RET 1: mov r0, #0 RET 2: orrs xl, xl, xh, lsl #12 bne 4f @ value is NAN. 3: mov r0, #0xffffffff @ maximum unsigned si RET 4: mov r0, #0 @ How should we convert NAN? RET FUNC_END aeabi_d2uiz FUNC_END fixunsdfsi #endif /* L_fixunsdfsi */ #ifdef L_truncdfsf2 ARM_FUNC_START truncdfsf2 ARM_FUNC_ALIAS aeabi_d2f truncdfsf2 @ check exponent range. mov r2, xh, lsl #1 subs r3, r2, #((1023 - 127) << 21) subcss ip, r3, #(1 << 21) rsbcss ip, ip, #(254 << 21) bls 2f @ value is out of range 1: @ shift and round mantissa and ip, xh, #0x80000000 mov r2, xl, lsl #3 orr xl, ip, xl, lsr #29 cmp r2, #0x80000000 adc r0, xl, r3, lsl #2 biceq r0, r0, #1 RET 2: @ either overflow or underflow tst xh, #0x40000000 bne 3f @ overflow @ check if denormalized value is possible adds r2, r3, #(23 << 21) andlt r0, xh, #0x80000000 @ too small, return signed 0. RETc(lt) @ denormalize value so we can resume with the code above afterwards. orr xh, xh, #0x00100000 mov r2, r2, lsr #21 rsb r2, r2, #24 rsb ip, r2, #32 movs r3, xl, lsl ip mov xl, xl, lsr r2 orrne xl, xl, #1 @ fold r3 for rounding considerations. mov r3, xh, lsl #11 mov r3, r3, lsr #11 orr xl, xl, r3, lsl ip mov r3, r3, lsr r2 mov r3, r3, lsl #1 b 1b 3: @ chech for NAN mvns r3, r2, asr #21 bne 5f @ simple overflow orrs r3, xl, xh, lsl #12 movne r0, #0x7f000000 orrne r0, r0, #0x00c00000 RETc(ne) @ return NAN 5: @ return INF with sign and r0, xh, #0x80000000 orr r0, r0, #0x7f000000 orr r0, r0, #0x00800000 RET FUNC_END aeabi_d2f FUNC_END truncdfsf2 #endif /* L_truncdfsf2 */