Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcc/config/arm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcc/config/arm/mmintrin.h |
/* Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* As a special exception, if you include this header file into source files compiled by GCC, this header file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef _MMINTRIN_H_INCLUDED #define _MMINTRIN_H_INCLUDED /* The data type intended for user use. */ typedef unsigned long long __m64, __int64; /* Internal data types for implementing the intrinsics. */ typedef int __v2si __attribute__ ((vector_size (8))); typedef short __v4hi __attribute__ ((vector_size (8))); typedef char __v8qi __attribute__ ((vector_size (8))); /* "Convert" __m64 and __int64 into each other. */ static __inline __m64 _mm_cvtsi64_m64 (__int64 __i) { return __i; } static __inline __int64 _mm_cvtm64_si64 (__m64 __i) { return __i; } static __inline int _mm_cvtsi64_si32 (__int64 __i) { return __i; } static __inline __int64 _mm_cvtsi32_si64 (int __i) { return __i; } /* Pack the four 16-bit values from M1 into the lower four 8-bit values of the result, and the four 16-bit values from M2 into the upper four 8-bit values of the result, all with signed saturation. */ static __inline __m64 _mm_packs_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackhss ((__v4hi)__m1, (__v4hi)__m2); } /* Pack the two 32-bit values from M1 in to the lower two 16-bit values of the result, and the two 32-bit values from M2 into the upper two 16-bit values of the result, all with signed saturation. */ static __inline __m64 _mm_packs_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackwss ((__v2si)__m1, (__v2si)__m2); } /* Copy the 64-bit value from M1 into the lower 32-bits of the result, and the 64-bit value from M2 into the upper 32-bits of the result, all with signed saturation for values that do not fit exactly into 32-bits. */ static __inline __m64 _mm_packs_pi64 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackdss ((long long)__m1, (long long)__m2); } /* Pack the four 16-bit values from M1 into the lower four 8-bit values of the result, and the four 16-bit values from M2 into the upper four 8-bit values of the result, all with unsigned saturation. */ static __inline __m64 _mm_packs_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackhus ((__v4hi)__m1, (__v4hi)__m2); } /* Pack the two 32-bit values from M1 into the lower two 16-bit values of the result, and the two 32-bit values from M2 into the upper two 16-bit values of the result, all with unsigned saturation. */ static __inline __m64 _mm_packs_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackwus ((__v2si)__m1, (__v2si)__m2); } /* Copy the 64-bit value from M1 into the lower 32-bits of the result, and the 64-bit value from M2 into the upper 32-bits of the result, all with unsigned saturation for values that do not fit exactly into 32-bits. */ static __inline __m64 _mm_packs_pu64 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackdus ((long long)__m1, (long long)__m2); } /* Interleave the four 8-bit values from the high half of M1 with the four 8-bit values from the high half of M2. */ static __inline __m64 _mm_unpackhi_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckihb ((__v8qi)__m1, (__v8qi)__m2); } /* Interleave the two 16-bit values from the high half of M1 with the two 16-bit values from the high half of M2. */ static __inline __m64 _mm_unpackhi_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckihh ((__v4hi)__m1, (__v4hi)__m2); } /* Interleave the 32-bit value from the high half of M1 with the 32-bit value from the high half of M2. */ static __inline __m64 _mm_unpackhi_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckihw ((__v2si)__m1, (__v2si)__m2); } /* Interleave the four 8-bit values from the low half of M1 with the four 8-bit values from the low half of M2. */ static __inline __m64 _mm_unpacklo_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckilb ((__v8qi)__m1, (__v8qi)__m2); } /* Interleave the two 16-bit values from the low half of M1 with the two 16-bit values from the low half of M2. */ static __inline __m64 _mm_unpacklo_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckilh ((__v4hi)__m1, (__v4hi)__m2); } /* Interleave the 32-bit value from the low half of M1 with the 32-bit value from the low half of M2. */ static __inline __m64 _mm_unpacklo_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckilw ((__v2si)__m1, (__v2si)__m2); } /* Take the four 8-bit values from the low half of M1, sign extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackel_pi8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelsb ((__v8qi)__m1); } /* Take the two 16-bit values from the low half of M1, sign extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackel_pi16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelsh ((__v4hi)__m1); } /* Take the 32-bit value from the low half of M1, and return it sign extended to 64 bits. */ static __inline __m64 _mm_unpackel_pi32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelsw ((__v2si)__m1); } /* Take the four 8-bit values from the high half of M1, sign extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackeh_pi8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehsb ((__v8qi)__m1); } /* Take the two 16-bit values from the high half of M1, sign extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackeh_pi16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehsh ((__v4hi)__m1); } /* Take the 32-bit value from the high half of M1, and return it sign extended to 64 bits. */ static __inline __m64 _mm_unpackeh_pi32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehsw ((__v2si)__m1); } /* Take the four 8-bit values from the low half of M1, zero extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackel_pu8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelub ((__v8qi)__m1); } /* Take the two 16-bit values from the low half of M1, zero extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackel_pu16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckeluh ((__v4hi)__m1); } /* Take the 32-bit value from the low half of M1, and return it zero extended to 64 bits. */ static __inline __m64 _mm_unpackel_pu32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckeluw ((__v2si)__m1); } /* Take the four 8-bit values from the high half of M1, zero extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackeh_pu8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehub ((__v8qi)__m1); } /* Take the two 16-bit values from the high half of M1, zero extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackeh_pu16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehuh ((__v4hi)__m1); } /* Take the 32-bit value from the high half of M1, and return it zero extended to 64 bits. */ static __inline __m64 _mm_unpackeh_pu32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehuw ((__v2si)__m1); } /* Add the 8-bit values in M1 to the 8-bit values in M2. */ static __inline __m64 _mm_add_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddb ((__v8qi)__m1, (__v8qi)__m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2. */ static __inline __m64 _mm_add_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddh ((__v4hi)__m1, (__v4hi)__m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2. */ static __inline __m64 _mm_add_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddw ((__v2si)__m1, (__v2si)__m2); } /* Add the 8-bit values in M1 to the 8-bit values in M2 using signed saturated arithmetic. */ static __inline __m64 _mm_adds_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddbss ((__v8qi)__m1, (__v8qi)__m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2 using signed saturated arithmetic. */ static __inline __m64 _mm_adds_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddhss ((__v4hi)__m1, (__v4hi)__m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2 using signed saturated arithmetic. */ static __inline __m64 _mm_adds_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddwss ((__v2si)__m1, (__v2si)__m2); } /* Add the 8-bit values in M1 to the 8-bit values in M2 using unsigned saturated arithmetic. */ static __inline __m64 _mm_adds_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddbus ((__v8qi)__m1, (__v8qi)__m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2 using unsigned saturated arithmetic. */ static __inline __m64 _mm_adds_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddhus ((__v4hi)__m1, (__v4hi)__m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2 using unsigned saturated arithmetic. */ static __inline __m64 _mm_adds_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddwus ((__v2si)__m1, (__v2si)__m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1. */ static __inline __m64 _mm_sub_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubb ((__v8qi)__m1, (__v8qi)__m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1. */ static __inline __m64 _mm_sub_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubh ((__v4hi)__m1, (__v4hi)__m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1. */ static __inline __m64 _mm_sub_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubw ((__v2si)__m1, (__v2si)__m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1 using signed saturating arithmetic. */ static __inline __m64 _mm_subs_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubbss ((__v8qi)__m1, (__v8qi)__m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1 using signed saturating arithmetic. */ static __inline __m64 _mm_subs_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubhss ((__v4hi)__m1, (__v4hi)__m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1 using signed saturating arithmetic. */ static __inline __m64 _mm_subs_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubwss ((__v2si)__m1, (__v2si)__m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1 using unsigned saturating arithmetic. */ static __inline __m64 _mm_subs_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubbus ((__v8qi)__m1, (__v8qi)__m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1 using unsigned saturating arithmetic. */ static __inline __m64 _mm_subs_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubhus ((__v4hi)__m1, (__v4hi)__m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1 using unsigned saturating arithmetic. */ static __inline __m64 _mm_subs_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubwus ((__v2si)__m1, (__v2si)__m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing four 32-bit intermediate results, which are then summed by pairs to produce two 32-bit results. */ static __inline __m64 _mm_madd_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmadds ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing four 32-bit intermediate results, which are then summed by pairs to produce two 32-bit results. */ static __inline __m64 _mm_madd_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmaddu ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four signed 16-bit values in M1 by four signed 16-bit values in M2 and produce the high 16 bits of the 32-bit results. */ static __inline __m64 _mm_mulhi_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmulsm ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four signed 16-bit values in M1 by four signed 16-bit values in M2 and produce the high 16 bits of the 32-bit results. */ static __inline __m64 _mm_mulhi_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmulum ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 and produce the low 16 bits of the results. */ static __inline __m64 _mm_mullo_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmulul ((__v4hi)__m1, (__v4hi)__m2); } /* Shift four 16-bit values in M left by COUNT. */ static __inline __m64 _mm_sll_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsllh ((__v4hi)__m, __count); } static __inline __m64 _mm_slli_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsllhi ((__v4hi)__m, __count); } /* Shift two 32-bit values in M left by COUNT. */ static __inline __m64 _mm_sll_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsllw ((__v2si)__m, __count); } static __inline __m64 _mm_slli_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsllwi ((__v2si)__m, __count); } /* Shift the 64-bit value in M left by COUNT. */ static __inline __m64 _mm_sll_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wslld (__m, __count); } static __inline __m64 _mm_slli_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wslldi (__m, __count); } /* Shift four 16-bit values in M right by COUNT; shift in the sign bit. */ static __inline __m64 _mm_sra_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrah ((__v4hi)__m, __count); } static __inline __m64 _mm_srai_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrahi ((__v4hi)__m, __count); } /* Shift two 32-bit values in M right by COUNT; shift in the sign bit. */ static __inline __m64 _mm_sra_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsraw ((__v2si)__m, __count); } static __inline __m64 _mm_srai_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrawi ((__v2si)__m, __count); } /* Shift the 64-bit value in M right by COUNT; shift in the sign bit. */ static __inline __m64 _mm_sra_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrad (__m, __count); } static __inline __m64 _mm_srai_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsradi (__m, __count); } /* Shift four 16-bit values in M right by COUNT; shift in zeros. */ static __inline __m64 _mm_srl_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrlh ((__v4hi)__m, __count); } static __inline __m64 _mm_srli_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrlhi ((__v4hi)__m, __count); } /* Shift two 32-bit values in M right by COUNT; shift in zeros. */ static __inline __m64 _mm_srl_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrlw ((__v2si)__m, __count); } static __inline __m64 _mm_srli_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrlwi ((__v2si)__m, __count); } /* Shift the 64-bit value in M left by COUNT; shift in zeros. */ static __inline __m64 _mm_srl_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrld (__m, __count); } static __inline __m64 _mm_srli_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrldi (__m, __count); } /* Rotate four 16-bit values in M right by COUNT. */ static __inline __m64 _mm_ror_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wrorh ((__v4hi)__m, __count); } static __inline __m64 _mm_rori_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wrorhi ((__v4hi)__m, __count); } /* Rotate two 32-bit values in M right by COUNT. */ static __inline __m64 _mm_ror_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wrorw ((__v2si)__m, __count); } static __inline __m64 _mm_rori_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wrorwi ((__v2si)__m, __count); } /* Rotate two 64-bit values in M right by COUNT. */ static __inline __m64 _mm_ror_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wrord (__m, __count); } static __inline __m64 _mm_rori_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wrordi (__m, __count); } /* Bit-wise AND the 64-bit values in M1 and M2. */ static __inline __m64 _mm_and_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wand (__m1, __m2); } /* Bit-wise complement the 64-bit value in M1 and bit-wise AND it with the 64-bit value in M2. */ static __inline __m64 _mm_andnot_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wandn (__m1, __m2); } /* Bit-wise inclusive OR the 64-bit values in M1 and M2. */ static __inline __m64 _mm_or_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wor (__m1, __m2); } /* Bit-wise exclusive OR the 64-bit values in M1 and M2. */ static __inline __m64 _mm_xor_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wxor (__m1, __m2); } /* Compare eight 8-bit values. The result of the comparison is 0xFF if the test is true and zero if false. */ static __inline __m64 _mm_cmpeq_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpeqb ((__v8qi)__m1, (__v8qi)__m2); } static __inline __m64 _mm_cmpgt_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtsb ((__v8qi)__m1, (__v8qi)__m2); } static __inline __m64 _mm_cmpgt_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtub ((__v8qi)__m1, (__v8qi)__m2); } /* Compare four 16-bit values. The result of the comparison is 0xFFFF if the test is true and zero if false. */ static __inline __m64 _mm_cmpeq_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpeqh ((__v4hi)__m1, (__v4hi)__m2); } static __inline __m64 _mm_cmpgt_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtsh ((__v4hi)__m1, (__v4hi)__m2); } static __inline __m64 _mm_cmpgt_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtuh ((__v4hi)__m1, (__v4hi)__m2); } /* Compare two 32-bit values. The result of the comparison is 0xFFFFFFFF if the test is true and zero if false. */ static __inline __m64 _mm_cmpeq_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpeqw ((__v2si)__m1, (__v2si)__m2); } static __inline __m64 _mm_cmpgt_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtsw ((__v2si)__m1, (__v2si)__m2); } static __inline __m64 _mm_cmpgt_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtuw ((__v2si)__m1, (__v2si)__m2); } /* Element-wise multiplication of unsigned 16-bit values __B and __C, followed by accumulate across all elements and __A. */ static __inline __m64 _mm_mac_pu16 (__m64 __A, __m64 __B, __m64 __C) { return __builtin_arm_wmacu (__A, (__v4hi)__B, (__v4hi)__C); } /* Element-wise multiplication of signed 16-bit values __B and __C, followed by accumulate across all elements and __A. */ static __inline __m64 _mm_mac_pi16 (__m64 __A, __m64 __B, __m64 __C) { return __builtin_arm_wmacs (__A, (__v4hi)__B, (__v4hi)__C); } /* Element-wise multiplication of unsigned 16-bit values __B and __C, followed by accumulate across all elements. */ static __inline __m64 _mm_macz_pu16 (__m64 __A, __m64 __B) { return __builtin_arm_wmacuz ((__v4hi)__A, (__v4hi)__B); } /* Element-wise multiplication of signed 16-bit values __B and __C, followed by accumulate across all elements. */ static __inline __m64 _mm_macz_pi16 (__m64 __A, __m64 __B) { return __builtin_arm_wmacsz ((__v4hi)__A, (__v4hi)__B); } /* Accumulate across all unsigned 8-bit values in __A. */ static __inline __m64 _mm_acc_pu8 (__m64 __A) { return __builtin_arm_waccb ((__v8qi)__A); } /* Accumulate across all unsigned 16-bit values in __A. */ static __inline __m64 _mm_acc_pu16 (__m64 __A) { return __builtin_arm_wacch ((__v4hi)__A); } /* Accumulate across all unsigned 32-bit values in __A. */ static __inline __m64 _mm_acc_pu32 (__m64 __A) { return __builtin_arm_waccw ((__v2si)__A); } static __inline __m64 _mm_mia_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmia (__A, __B, __C); } static __inline __m64 _mm_miaph_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiaph (__A, __B, __C); } static __inline __m64 _mm_miabb_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiabb (__A, __B, __C); } static __inline __m64 _mm_miabt_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiabt (__A, __B, __C); } static __inline __m64 _mm_miatb_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiatb (__A, __B, __C); } static __inline __m64 _mm_miatt_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiatt (__A, __B, __C); } /* Extract one of the elements of A and sign extend. The selector N must be immediate. */ #define _mm_extract_pi8(A, N) __builtin_arm_textrmsb ((__v8qi)(A), (N)) #define _mm_extract_pi16(A, N) __builtin_arm_textrmsh ((__v4hi)(A), (N)) #define _mm_extract_pi32(A, N) __builtin_arm_textrmsw ((__v2si)(A), (N)) /* Extract one of the elements of A and zero extend. The selector N must be immediate. */ #define _mm_extract_pu8(A, N) __builtin_arm_textrmub ((__v8qi)(A), (N)) #define _mm_extract_pu16(A, N) __builtin_arm_textrmuh ((__v4hi)(A), (N)) #define _mm_extract_pu32(A, N) __builtin_arm_textrmuw ((__v2si)(A), (N)) /* Inserts word D into one of the elements of A. The selector N must be immediate. */ #define _mm_insert_pi8(A, D, N) \ ((__m64) __builtin_arm_tinsrb ((__v8qi)(A), (D), (N))) #define _mm_insert_pi16(A, D, N) \ ((__m64) __builtin_arm_tinsrh ((__v4hi)(A), (D), (N))) #define _mm_insert_pi32(A, D, N) \ ((__m64) __builtin_arm_tinsrw ((__v2si)(A), (D), (N))) /* Compute the element-wise maximum of signed 8-bit values. */ static __inline __m64 _mm_max_pi8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxsb ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise maximum of signed 16-bit values. */ static __inline __m64 _mm_max_pi16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxsh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise maximum of signed 32-bit values. */ static __inline __m64 _mm_max_pi32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxsw ((__v2si)__A, (__v2si)__B); } /* Compute the element-wise maximum of unsigned 8-bit values. */ static __inline __m64 _mm_max_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxub ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise maximum of unsigned 16-bit values. */ static __inline __m64 _mm_max_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxuh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise maximum of unsigned 32-bit values. */ static __inline __m64 _mm_max_pu32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxuw ((__v2si)__A, (__v2si)__B); } /* Compute the element-wise minimum of signed 16-bit values. */ static __inline __m64 _mm_min_pi8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminsb ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise minimum of signed 16-bit values. */ static __inline __m64 _mm_min_pi16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminsh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise minimum of signed 32-bit values. */ static __inline __m64 _mm_min_pi32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminsw ((__v2si)__A, (__v2si)__B); } /* Compute the element-wise minimum of unsigned 16-bit values. */ static __inline __m64 _mm_min_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminub ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise minimum of unsigned 16-bit values. */ static __inline __m64 _mm_min_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminuh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise minimum of unsigned 32-bit values. */ static __inline __m64 _mm_min_pu32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminuw ((__v2si)__A, (__v2si)__B); } /* Create an 8-bit mask of the signs of 8-bit values. */ static __inline int _mm_movemask_pi8 (__m64 __A) { return __builtin_arm_tmovmskb ((__v8qi)__A); } /* Create an 8-bit mask of the signs of 16-bit values. */ static __inline int _mm_movemask_pi16 (__m64 __A) { return __builtin_arm_tmovmskh ((__v4hi)__A); } /* Create an 8-bit mask of the signs of 32-bit values. */ static __inline int _mm_movemask_pi32 (__m64 __A) { return __builtin_arm_tmovmskw ((__v2si)__A); } /* Return a combination of the four 16-bit values in A. The selector must be an immediate. */ #define _mm_shuffle_pi16(A, N) \ ((__m64) __builtin_arm_wshufh ((__v4hi)(A), (N))) /* Compute the rounded averages of the unsigned 8-bit values in A and B. */ static __inline __m64 _mm_avg_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2br ((__v8qi)__A, (__v8qi)__B); } /* Compute the rounded averages of the unsigned 16-bit values in A and B. */ static __inline __m64 _mm_avg_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2hr ((__v4hi)__A, (__v4hi)__B); } /* Compute the averages of the unsigned 8-bit values in A and B. */ static __inline __m64 _mm_avg2_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2b ((__v8qi)__A, (__v8qi)__B); } /* Compute the averages of the unsigned 16-bit values in A and B. */ static __inline __m64 _mm_avg2_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2h ((__v4hi)__A, (__v4hi)__B); } /* Compute the sum of the absolute differences of the unsigned 8-bit values in A and B. Return the value in the lower 16-bit word; the upper words are cleared. */ static __inline __m64 _mm_sad_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadb ((__v8qi)__A, (__v8qi)__B); } /* Compute the sum of the absolute differences of the unsigned 16-bit values in A and B. Return the value in the lower 32-bit word; the upper words are cleared. */ static __inline __m64 _mm_sad_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadh ((__v4hi)__A, (__v4hi)__B); } /* Compute the sum of the absolute differences of the unsigned 8-bit values in A and B. Return the value in the lower 16-bit word; the upper words are cleared. */ static __inline __m64 _mm_sadz_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadbz ((__v8qi)__A, (__v8qi)__B); } /* Compute the sum of the absolute differences of the unsigned 16-bit values in A and B. Return the value in the lower 32-bit word; the upper words are cleared. */ static __inline __m64 _mm_sadz_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadhz ((__v4hi)__A, (__v4hi)__B); } static __inline __m64 _mm_align_si64 (__m64 __A, __m64 __B, int __C) { return (__m64) __builtin_arm_walign ((__v8qi)__A, (__v8qi)__B, __C); } /* Creates a 64-bit zero. */ static __inline __m64 _mm_setzero_si64 (void) { return __builtin_arm_wzero (); } /* Set and Get arbitrary iWMMXt Control registers. Note only registers 0-3 and 8-11 are currently defined, the rest are reserved. */ static __inline void _mm_setwcx (const int __value, const int __regno) { switch (__regno) { case 0: __builtin_arm_setwcx (__value, 0); break; case 1: __builtin_arm_setwcx (__value, 1); break; case 2: __builtin_arm_setwcx (__value, 2); break; case 3: __builtin_arm_setwcx (__value, 3); break; case 8: __builtin_arm_setwcx (__value, 8); break; case 9: __builtin_arm_setwcx (__value, 9); break; case 10: __builtin_arm_setwcx (__value, 10); break; case 11: __builtin_arm_setwcx (__value, 11); break; default: break; } } static __inline int _mm_getwcx (const int __regno) { switch (__regno) { case 0: return __builtin_arm_getwcx (0); case 1: return __builtin_arm_getwcx (1); case 2: return __builtin_arm_getwcx (2); case 3: return __builtin_arm_getwcx (3); case 8: return __builtin_arm_getwcx (8); case 9: return __builtin_arm_getwcx (9); case 10: return __builtin_arm_getwcx (10); case 11: return __builtin_arm_getwcx (11); default: return 0; } } /* Creates a vector of two 32-bit values; I0 is least significant. */ static __inline __m64 _mm_set_pi32 (int __i1, int __i0) { union { __m64 __q; struct { unsigned int __i0; unsigned int __i1; } __s; } __u; __u.__s.__i0 = __i0; __u.__s.__i1 = __i1; return __u.__q; } /* Creates a vector of four 16-bit values; W0 is least significant. */ static __inline __m64 _mm_set_pi16 (short __w3, short __w2, short __w1, short __w0) { unsigned int __i1 = (unsigned short)__w3 << 16 | (unsigned short)__w2; unsigned int __i0 = (unsigned short)__w1 << 16 | (unsigned short)__w0; return _mm_set_pi32 (__i1, __i0); } /* Creates a vector of eight 8-bit values; B0 is least significant. */ static __inline __m64 _mm_set_pi8 (char __b7, char __b6, char __b5, char __b4, char __b3, char __b2, char __b1, char __b0) { unsigned int __i1, __i0; __i1 = (unsigned char)__b7; __i1 = __i1 << 8 | (unsigned char)__b6; __i1 = __i1 << 8 | (unsigned char)__b5; __i1 = __i1 << 8 | (unsigned char)__b4; __i0 = (unsigned char)__b3; __i0 = __i0 << 8 | (unsigned char)__b2; __i0 = __i0 << 8 | (unsigned char)__b1; __i0 = __i0 << 8 | (unsigned char)__b0; return _mm_set_pi32 (__i1, __i0); } /* Similar, but with the arguments in reverse order. */ static __inline __m64 _mm_setr_pi32 (int __i0, int __i1) { return _mm_set_pi32 (__i1, __i0); } static __inline __m64 _mm_setr_pi16 (short __w0, short __w1, short __w2, short __w3) { return _mm_set_pi16 (__w3, __w2, __w1, __w0); } static __inline __m64 _mm_setr_pi8 (char __b0, char __b1, char __b2, char __b3, char __b4, char __b5, char __b6, char __b7) { return _mm_set_pi8 (__b7, __b6, __b5, __b4, __b3, __b2, __b1, __b0); } /* Creates a vector of two 32-bit values, both elements containing I. */ static __inline __m64 _mm_set1_pi32 (int __i) { return _mm_set_pi32 (__i, __i); } /* Creates a vector of four 16-bit values, all elements containing W. */ static __inline __m64 _mm_set1_pi16 (short __w) { unsigned int __i = (unsigned short)__w << 16 | (unsigned short)__w; return _mm_set1_pi32 (__i); } /* Creates a vector of four 16-bit values, all elements containing B. */ static __inline __m64 _mm_set1_pi8 (char __b) { unsigned int __w = (unsigned char)__b << 8 | (unsigned char)__b; unsigned int __i = __w << 16 | __w; return _mm_set1_pi32 (__i); } /* Convert an integer to a __m64 object. */ static __inline __m64 _m_from_int (int __a) { return (__m64)__a; } #define _m_packsswb _mm_packs_pi16 #define _m_packssdw _mm_packs_pi32 #define _m_packuswb _mm_packs_pu16 #define _m_packusdw _mm_packs_pu32 #define _m_packssqd _mm_packs_pi64 #define _m_packusqd _mm_packs_pu64 #define _mm_packs_si64 _mm_packs_pi64 #define _mm_packs_su64 _mm_packs_pu64 #define _m_punpckhbw _mm_unpackhi_pi8 #define _m_punpckhwd _mm_unpackhi_pi16 #define _m_punpckhdq _mm_unpackhi_pi32 #define _m_punpcklbw _mm_unpacklo_pi8 #define _m_punpcklwd _mm_unpacklo_pi16 #define _m_punpckldq _mm_unpacklo_pi32 #define _m_punpckehsbw _mm_unpackeh_pi8 #define _m_punpckehswd _mm_unpackeh_pi16 #define _m_punpckehsdq _mm_unpackeh_pi32 #define _m_punpckehubw _mm_unpackeh_pu8 #define _m_punpckehuwd _mm_unpackeh_pu16 #define _m_punpckehudq _mm_unpackeh_pu32 #define _m_punpckelsbw _mm_unpackel_pi8 #define _m_punpckelswd _mm_unpackel_pi16 #define _m_punpckelsdq _mm_unpackel_pi32 #define _m_punpckelubw _mm_unpackel_pu8 #define _m_punpckeluwd _mm_unpackel_pu16 #define _m_punpckeludq _mm_unpackel_pu32 #define _m_paddb _mm_add_pi8 #define _m_paddw _mm_add_pi16 #define _m_paddd _mm_add_pi32 #define _m_paddsb _mm_adds_pi8 #define _m_paddsw _mm_adds_pi16 #define _m_paddsd _mm_adds_pi32 #define _m_paddusb _mm_adds_pu8 #define _m_paddusw _mm_adds_pu16 #define _m_paddusd _mm_adds_pu32 #define _m_psubb _mm_sub_pi8 #define _m_psubw _mm_sub_pi16 #define _m_psubd _mm_sub_pi32 #define _m_psubsb _mm_subs_pi8 #define _m_psubsw _mm_subs_pi16 #define _m_psubuw _mm_subs_pi32 #define _m_psubusb _mm_subs_pu8 #define _m_psubusw _mm_subs_pu16 #define _m_psubusd _mm_subs_pu32 #define _m_pmaddwd _mm_madd_pi16 #define _m_pmadduwd _mm_madd_pu16 #define _m_pmulhw _mm_mulhi_pi16 #define _m_pmulhuw _mm_mulhi_pu16 #define _m_pmullw _mm_mullo_pi16 #define _m_pmacsw _mm_mac_pi16 #define _m_pmacuw _mm_mac_pu16 #define _m_pmacszw _mm_macz_pi16 #define _m_pmacuzw _mm_macz_pu16 #define _m_paccb _mm_acc_pu8 #define _m_paccw _mm_acc_pu16 #define _m_paccd _mm_acc_pu32 #define _m_pmia _mm_mia_si64 #define _m_pmiaph _mm_miaph_si64 #define _m_pmiabb _mm_miabb_si64 #define _m_pmiabt _mm_miabt_si64 #define _m_pmiatb _mm_miatb_si64 #define _m_pmiatt _mm_miatt_si64 #define _m_psllw _mm_sll_pi16 #define _m_psllwi _mm_slli_pi16 #define _m_pslld _mm_sll_pi32 #define _m_pslldi _mm_slli_pi32 #define _m_psllq _mm_sll_si64 #define _m_psllqi _mm_slli_si64 #define _m_psraw _mm_sra_pi16 #define _m_psrawi _mm_srai_pi16 #define _m_psrad _mm_sra_pi32 #define _m_psradi _mm_srai_pi32 #define _m_psraq _mm_sra_si64 #define _m_psraqi _mm_srai_si64 #define _m_psrlw _mm_srl_pi16 #define _m_psrlwi _mm_srli_pi16 #define _m_psrld _mm_srl_pi32 #define _m_psrldi _mm_srli_pi32 #define _m_psrlq _mm_srl_si64 #define _m_psrlqi _mm_srli_si64 #define _m_prorw _mm_ror_pi16 #define _m_prorwi _mm_rori_pi16 #define _m_prord _mm_ror_pi32 #define _m_prordi _mm_rori_pi32 #define _m_prorq _mm_ror_si64 #define _m_prorqi _mm_rori_si64 #define _m_pand _mm_and_si64 #define _m_pandn _mm_andnot_si64 #define _m_por _mm_or_si64 #define _m_pxor _mm_xor_si64 #define _m_pcmpeqb _mm_cmpeq_pi8 #define _m_pcmpeqw _mm_cmpeq_pi16 #define _m_pcmpeqd _mm_cmpeq_pi32 #define _m_pcmpgtb _mm_cmpgt_pi8 #define _m_pcmpgtub _mm_cmpgt_pu8 #define _m_pcmpgtw _mm_cmpgt_pi16 #define _m_pcmpgtuw _mm_cmpgt_pu16 #define _m_pcmpgtd _mm_cmpgt_pi32 #define _m_pcmpgtud _mm_cmpgt_pu32 #define _m_pextrb _mm_extract_pi8 #define _m_pextrw _mm_extract_pi16 #define _m_pextrd _mm_extract_pi32 #define _m_pextrub _mm_extract_pu8 #define _m_pextruw _mm_extract_pu16 #define _m_pextrud _mm_extract_pu32 #define _m_pinsrb _mm_insert_pi8 #define _m_pinsrw _mm_insert_pi16 #define _m_pinsrd _mm_insert_pi32 #define _m_pmaxsb _mm_max_pi8 #define _m_pmaxsw _mm_max_pi16 #define _m_pmaxsd _mm_max_pi32 #define _m_pmaxub _mm_max_pu8 #define _m_pmaxuw _mm_max_pu16 #define _m_pmaxud _mm_max_pu32 #define _m_pminsb _mm_min_pi8 #define _m_pminsw _mm_min_pi16 #define _m_pminsd _mm_min_pi32 #define _m_pminub _mm_min_pu8 #define _m_pminuw _mm_min_pu16 #define _m_pminud _mm_min_pu32 #define _m_pmovmskb _mm_movemask_pi8 #define _m_pmovmskw _mm_movemask_pi16 #define _m_pmovmskd _mm_movemask_pi32 #define _m_pshufw _mm_shuffle_pi16 #define _m_pavgb _mm_avg_pu8 #define _m_pavgw _mm_avg_pu16 #define _m_pavg2b _mm_avg2_pu8 #define _m_pavg2w _mm_avg2_pu16 #define _m_psadbw _mm_sad_pu8 #define _m_psadwd _mm_sad_pu16 #define _m_psadzbw _mm_sadz_pu8 #define _m_psadzwd _mm_sadz_pu16 #define _m_paligniq _mm_align_si64 #define _m_cvt_si2pi _mm_cvtsi64_m64 #define _m_cvt_pi2si _mm_cvtm64_si64 #endif /* _MMINTRIN_H_INCLUDED */