Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcc/final.c |
/* Convert RTL to assembler code and output it, for GNU compiler. Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* This is the final pass of the compiler. It looks at the rtl code for a function and outputs assembler code. Call `final_start_function' to output the assembler code for function entry, `final' to output assembler code for some RTL code, `final_end_function' to output assembler code for function exit. If a function is compiled in several pieces, each piece is output separately with `final'. Some optimizations are also done at this level. Move instructions that were made unnecessary by good register allocation are detected and omitted from the output. (Though most of these are removed by the last jump pass.) Instructions to set the condition codes are omitted when it can be seen that the condition codes already had the desired values. In some cases it is sufficient if the inherited condition codes have related values, but this may require the following insn (the one that tests the condition codes) to be modified. The code for the function prologue and epilogue are generated directly in assembler by the target functions function_prologue and function_epilogue. Those instructions never exist as rtl. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "regs.h" #include "insn-config.h" #include "insn-attr.h" #include "recog.h" #include "conditions.h" #include "flags.h" #include "real.h" #include "hard-reg-set.h" #include "output.h" #include "except.h" #include "function.h" #include "toplev.h" #include "reload.h" #include "intl.h" #include "basic-block.h" #include "target.h" #include "debug.h" #include "expr.h" #include "cfglayout.h" #include "tree-pass.h" #include "timevar.h" #include "cgraph.h" #include "coverage.h" #ifdef XCOFF_DEBUGGING_INFO #include "xcoffout.h" /* Needed for external data declarations for e.g. AIX 4.x. */ #endif #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO) #include "dwarf2out.h" #endif #ifdef DBX_DEBUGGING_INFO #include "dbxout.h" #endif #ifdef SDB_DEBUGGING_INFO #include "sdbout.h" #endif /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a null default for it to save conditionalization later. */ #ifndef CC_STATUS_INIT #define CC_STATUS_INIT #endif /* How to start an assembler comment. */ #ifndef ASM_COMMENT_START #define ASM_COMMENT_START ";#" #endif /* Is the given character a logical line separator for the assembler? */ #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';') #endif #ifndef JUMP_TABLES_IN_TEXT_SECTION #define JUMP_TABLES_IN_TEXT_SECTION 0 #endif /* Bitflags used by final_scan_insn. */ #define SEEN_BB 1 #define SEEN_NOTE 2 #define SEEN_EMITTED 4 /* Last insn processed by final_scan_insn. */ static rtx debug_insn; rtx current_output_insn; /* Line number of last NOTE. */ static int last_linenum; /* Highest line number in current block. */ static int high_block_linenum; /* Likewise for function. */ static int high_function_linenum; /* Filename of last NOTE. */ static const char *last_filename; /* Whether to force emission of a line note before the next insn. */ static bool force_source_line = false; extern const int length_unit_log; /* This is defined in insn-attrtab.c. */ /* Nonzero while outputting an `asm' with operands. This means that inconsistencies are the user's fault, so don't die. The precise value is the insn being output, to pass to error_for_asm. */ rtx this_is_asm_operands; /* Number of operands of this insn, for an `asm' with operands. */ static unsigned int insn_noperands; /* Compare optimization flag. */ static rtx last_ignored_compare = 0; /* Assign a unique number to each insn that is output. This can be used to generate unique local labels. */ static int insn_counter = 0; #ifdef HAVE_cc0 /* This variable contains machine-dependent flags (defined in tm.h) set and examined by output routines that describe how to interpret the condition codes properly. */ CC_STATUS cc_status; /* During output of an insn, this contains a copy of cc_status from before the insn. */ CC_STATUS cc_prev_status; #endif /* Indexed by hardware reg number, is 1 if that register is ever used in the current function. In life_analysis, or in stupid_life_analysis, this is set up to record the hard regs used explicitly. Reload adds in the hard regs used for holding pseudo regs. Final uses it to generate the code in the function prologue and epilogue to save and restore registers as needed. */ char regs_ever_live[FIRST_PSEUDO_REGISTER]; /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm. Unlike regs_ever_live, elements of this array corresponding to eliminable regs like the frame pointer are set if an asm sets them. */ char regs_asm_clobbered[FIRST_PSEUDO_REGISTER]; /* Nonzero means current function must be given a frame pointer. Initialized in function.c to 0. Set only in reload1.c as per the needs of the function. */ int frame_pointer_needed; /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */ static int block_depth; /* Nonzero if have enabled APP processing of our assembler output. */ static int app_on; /* If we are outputting an insn sequence, this contains the sequence rtx. Zero otherwise. */ rtx final_sequence; #ifdef ASSEMBLER_DIALECT /* Number of the assembler dialect to use, starting at 0. */ static int dialect_number; #endif #ifdef HAVE_conditional_execution /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */ rtx current_insn_predicate; #endif #ifdef HAVE_ATTR_length static int asm_insn_count (rtx); #endif static void profile_function (FILE *); static void profile_after_prologue (FILE *); static bool notice_source_line (rtx); static rtx walk_alter_subreg (rtx *); static void output_asm_name (void); static void output_alternate_entry_point (FILE *, rtx); static tree get_mem_expr_from_op (rtx, int *); static void output_asm_operand_names (rtx *, int *, int); static void output_operand (rtx, int); #ifdef LEAF_REGISTERS static void leaf_renumber_regs (rtx); #endif #ifdef HAVE_cc0 static int alter_cond (rtx); #endif #ifndef ADDR_VEC_ALIGN static int final_addr_vec_align (rtx); #endif #ifdef HAVE_ATTR_length static int align_fuzz (rtx, rtx, int, unsigned); #endif /* Initialize data in final at the beginning of a compilation. */ void init_final (const char *filename ATTRIBUTE_UNUSED) { app_on = 0; final_sequence = 0; #ifdef ASSEMBLER_DIALECT dialect_number = ASSEMBLER_DIALECT; #endif } /* Default target function prologue and epilogue assembler output. If not overridden for epilogue code, then the function body itself contains return instructions wherever needed. */ void default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { } /* Default target hook that outputs nothing to a stream. */ void no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED) { } /* Enable APP processing of subsequent output. Used before the output from an `asm' statement. */ void app_enable (void) { if (! app_on) { fputs (ASM_APP_ON, asm_out_file); app_on = 1; } } /* Disable APP processing of subsequent output. Called from varasm.c before most kinds of output. */ void app_disable (void) { if (app_on) { fputs (ASM_APP_OFF, asm_out_file); app_on = 0; } } /* Return the number of slots filled in the current delayed branch sequence (we don't count the insn needing the delay slot). Zero if not in a delayed branch sequence. */ #ifdef DELAY_SLOTS int dbr_sequence_length (void) { if (final_sequence != 0) return XVECLEN (final_sequence, 0) - 1; else return 0; } #endif /* The next two pages contain routines used to compute the length of an insn and to shorten branches. */ /* Arrays for insn lengths, and addresses. The latter is referenced by `insn_current_length'. */ static int *insn_lengths; varray_type insn_addresses_; /* Max uid for which the above arrays are valid. */ static int insn_lengths_max_uid; /* Address of insn being processed. Used by `insn_current_length'. */ int insn_current_address; /* Address of insn being processed in previous iteration. */ int insn_last_address; /* known invariant alignment of insn being processed. */ int insn_current_align; /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)] gives the next following alignment insn that increases the known alignment, or NULL_RTX if there is no such insn. For any alignment obtained this way, we can again index uid_align with its uid to obtain the next following align that in turn increases the alignment, till we reach NULL_RTX; the sequence obtained this way for each insn we'll call the alignment chain of this insn in the following comments. */ struct label_alignment { short alignment; short max_skip; }; static rtx *uid_align; static int *uid_shuid; static struct label_alignment *label_align; /* Indicate that branch shortening hasn't yet been done. */ void init_insn_lengths (void) { if (uid_shuid) { free (uid_shuid); uid_shuid = 0; } if (insn_lengths) { free (insn_lengths); insn_lengths = 0; insn_lengths_max_uid = 0; } #ifdef HAVE_ATTR_length INSN_ADDRESSES_FREE (); #endif if (uid_align) { free (uid_align); uid_align = 0; } } /* Obtain the current length of an insn. If branch shortening has been done, get its actual length. Otherwise, use FALLBACK_FN to calculate the length. */ static inline int get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED, int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED) { #ifdef HAVE_ATTR_length rtx body; int i; int length = 0; if (insn_lengths_max_uid > INSN_UID (insn)) return insn_lengths[INSN_UID (insn)]; else switch (GET_CODE (insn)) { case NOTE: case BARRIER: case CODE_LABEL: return 0; case CALL_INSN: length = fallback_fn (insn); break; case JUMP_INSN: body = PATTERN (insn); if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) { /* Alignment is machine-dependent and should be handled by ADDR_VEC_ALIGN. */ } else length = fallback_fn (insn); break; case INSN: body = PATTERN (insn); if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER) return 0; else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) length = asm_insn_count (body) * fallback_fn (insn); else if (GET_CODE (body) == SEQUENCE) for (i = 0; i < XVECLEN (body, 0); i++) length += get_attr_length (XVECEXP (body, 0, i)); else length = fallback_fn (insn); break; default: break; } #ifdef ADJUST_INSN_LENGTH ADJUST_INSN_LENGTH (insn, length); #endif return length; #else /* not HAVE_ATTR_length */ return 0; #define insn_default_length 0 #define insn_min_length 0 #endif /* not HAVE_ATTR_length */ } /* Obtain the current length of an insn. If branch shortening has been done, get its actual length. Otherwise, get its maximum length. */ int get_attr_length (rtx insn) { return get_attr_length_1 (insn, insn_default_length); } /* Obtain the current length of an insn. If branch shortening has been done, get its actual length. Otherwise, get its minimum length. */ int get_attr_min_length (rtx insn) { return get_attr_length_1 (insn, insn_min_length); } /* Code to handle alignment inside shorten_branches. */ /* Here is an explanation how the algorithm in align_fuzz can give proper results: Call a sequence of instructions beginning with alignment point X and continuing until the next alignment point `block X'. When `X' is used in an expression, it means the alignment value of the alignment point. Call the distance between the start of the first insn of block X, and the end of the last insn of block X `IX', for the `inner size of X'. This is clearly the sum of the instruction lengths. Likewise with the next alignment-delimited block following X, which we shall call block Y. Call the distance between the start of the first insn of block X, and the start of the first insn of block Y `OX', for the `outer size of X'. The estimated padding is then OX - IX. OX can be safely estimated as if (X >= Y) OX = round_up(IX, Y) else OX = round_up(IX, X) + Y - X Clearly est(IX) >= real(IX), because that only depends on the instruction lengths, and those being overestimated is a given. Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so we needn't worry about that when thinking about OX. When X >= Y, the alignment provided by Y adds no uncertainty factor for branch ranges starting before X, so we can just round what we have. But when X < Y, we don't know anything about the, so to speak, `middle bits', so we have to assume the worst when aligning up from an address mod X to one mod Y, which is Y - X. */ #ifndef LABEL_ALIGN #define LABEL_ALIGN(LABEL) align_labels_log #endif #ifndef LABEL_ALIGN_MAX_SKIP #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip #endif #ifndef LOOP_ALIGN #define LOOP_ALIGN(LABEL) align_loops_log #endif #ifndef LOOP_ALIGN_MAX_SKIP #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip #endif #ifndef LABEL_ALIGN_AFTER_BARRIER #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0 #endif #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0 #endif #ifndef JUMP_ALIGN #define JUMP_ALIGN(LABEL) align_jumps_log #endif #ifndef JUMP_ALIGN_MAX_SKIP #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip #endif #ifndef ADDR_VEC_ALIGN static int final_addr_vec_align (rtx addr_vec) { int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))); if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT) align = BIGGEST_ALIGNMENT / BITS_PER_UNIT; return exact_log2 (align); } #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC) #endif #ifndef INSN_LENGTH_ALIGNMENT #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log #endif #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)]) static int min_labelno, max_labelno; #define LABEL_TO_ALIGNMENT(LABEL) \ (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment) #define LABEL_TO_MAX_SKIP(LABEL) \ (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip) /* For the benefit of port specific code do this also as a function. */ int label_to_alignment (rtx label) { return LABEL_TO_ALIGNMENT (label); } #ifdef HAVE_ATTR_length /* The differences in addresses between a branch and its target might grow or shrink depending on the alignment the start insn of the range (the branch for a forward branch or the label for a backward branch) starts out on; if these differences are used naively, they can even oscillate infinitely. We therefore want to compute a 'worst case' address difference that is independent of the alignment the start insn of the range end up on, and that is at least as large as the actual difference. The function align_fuzz calculates the amount we have to add to the naively computed difference, by traversing the part of the alignment chain of the start insn of the range that is in front of the end insn of the range, and considering for each alignment the maximum amount that it might contribute to a size increase. For casesi tables, we also want to know worst case minimum amounts of address difference, in case a machine description wants to introduce some common offset that is added to all offsets in a table. For this purpose, align_fuzz with a growth argument of 0 computes the appropriate adjustment. */ /* Compute the maximum delta by which the difference of the addresses of START and END might grow / shrink due to a different address for start which changes the size of alignment insns between START and END. KNOWN_ALIGN_LOG is the alignment known for START. GROWTH should be ~0 if the objective is to compute potential code size increase, and 0 if the objective is to compute potential shrink. The return value is undefined for any other value of GROWTH. */ static int align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth) { int uid = INSN_UID (start); rtx align_label; int known_align = 1 << known_align_log; int end_shuid = INSN_SHUID (end); int fuzz = 0; for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid]) { int align_addr, new_align; uid = INSN_UID (align_label); align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid]; if (uid_shuid[uid] > end_shuid) break; known_align_log = LABEL_TO_ALIGNMENT (align_label); new_align = 1 << known_align_log; if (new_align < known_align) continue; fuzz += (-align_addr ^ growth) & (new_align - known_align); known_align = new_align; } return fuzz; } /* Compute a worst-case reference address of a branch so that it can be safely used in the presence of aligned labels. Since the size of the branch itself is unknown, the size of the branch is not included in the range. I.e. for a forward branch, the reference address is the end address of the branch as known from the previous branch shortening pass, minus a value to account for possible size increase due to alignment. For a backward branch, it is the start address of the branch as known from the current pass, plus a value to account for possible size increase due to alignment. NB.: Therefore, the maximum offset allowed for backward branches needs to exclude the branch size. */ int insn_current_reference_address (rtx branch) { rtx dest, seq; int seq_uid; if (! INSN_ADDRESSES_SET_P ()) return 0; seq = NEXT_INSN (PREV_INSN (branch)); seq_uid = INSN_UID (seq); if (!JUMP_P (branch)) /* This can happen for example on the PA; the objective is to know the offset to address something in front of the start of the function. Thus, we can treat it like a backward branch. We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than any alignment we'd encounter, so we skip the call to align_fuzz. */ return insn_current_address; dest = JUMP_LABEL (branch); /* BRANCH has no proper alignment chain set, so use SEQ. BRANCH also has no INSN_SHUID. */ if (INSN_SHUID (seq) < INSN_SHUID (dest)) { /* Forward branch. */ return (insn_last_address + insn_lengths[seq_uid] - align_fuzz (seq, dest, length_unit_log, ~0)); } else { /* Backward branch. */ return (insn_current_address + align_fuzz (dest, seq, length_unit_log, ~0)); } } #endif /* HAVE_ATTR_length */ /* Compute branch alignments based on frequency information in the CFG. */ static unsigned int compute_alignments (void) { int log, max_skip, max_log; basic_block bb; if (label_align) { free (label_align); label_align = 0; } max_labelno = max_label_num (); min_labelno = get_first_label_num (); label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1); /* If not optimizing or optimizing for size, don't assign any alignments. */ if (! optimize || optimize_size) return 0; FOR_EACH_BB (bb) { rtx label = BB_HEAD (bb); int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0; edge e; edge_iterator ei; if (!LABEL_P (label) || probably_never_executed_bb_p (bb)) continue; max_log = LABEL_ALIGN (label); max_skip = LABEL_ALIGN_MAX_SKIP; FOR_EACH_EDGE (e, ei, bb->preds) { if (e->flags & EDGE_FALLTHRU) has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e); else branch_frequency += EDGE_FREQUENCY (e); } /* There are two purposes to align block with no fallthru incoming edge: 1) to avoid fetch stalls when branch destination is near cache boundary 2) to improve cache efficiency in case the previous block is not executed (so it does not need to be in the cache). We to catch first case, we align frequently executed blocks. To catch the second, we align blocks that are executed more frequently than the predecessor and the predecessor is likely to not be executed when function is called. */ if (!has_fallthru && (branch_frequency > BB_FREQ_MAX / 10 || (bb->frequency > bb->prev_bb->frequency * 10 && (bb->prev_bb->frequency <= ENTRY_BLOCK_PTR->frequency / 2)))) { log = JUMP_ALIGN (label); if (max_log < log) { max_log = log; max_skip = JUMP_ALIGN_MAX_SKIP; } } /* In case block is frequent and reached mostly by non-fallthru edge, align it. It is most likely a first block of loop. */ if (has_fallthru && maybe_hot_bb_p (bb) && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10 && branch_frequency > fallthru_frequency * 2) { log = LOOP_ALIGN (label); if (max_log < log) { max_log = log; max_skip = LOOP_ALIGN_MAX_SKIP; } } LABEL_TO_ALIGNMENT (label) = max_log; LABEL_TO_MAX_SKIP (label) = max_skip; } return 0; } struct tree_opt_pass pass_compute_alignments = { NULL, /* name */ NULL, /* gate */ compute_alignments, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ 0 /* letter */ }; /* Make a pass over all insns and compute their actual lengths by shortening any branches of variable length if possible. */ /* shorten_branches might be called multiple times: for example, the SH port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG. In order to do this, it needs proper length information, which it obtains by calling shorten_branches. This cannot be collapsed with shorten_branches itself into a single pass unless we also want to integrate reorg.c, since the branch splitting exposes new instructions with delay slots. */ void shorten_branches (rtx first ATTRIBUTE_UNUSED) { rtx insn; int max_uid; int i; int max_log; int max_skip; #ifdef HAVE_ATTR_length #define MAX_CODE_ALIGN 16 rtx seq; int something_changed = 1; char *varying_length; rtx body; int uid; rtx align_tab[MAX_CODE_ALIGN]; #endif /* Compute maximum UID and allocate label_align / uid_shuid. */ max_uid = get_max_uid (); /* Free uid_shuid before reallocating it. */ free (uid_shuid); uid_shuid = XNEWVEC (int, max_uid); if (max_labelno != max_label_num ()) { int old = max_labelno; int n_labels; int n_old_labels; max_labelno = max_label_num (); n_labels = max_labelno - min_labelno + 1; n_old_labels = old - min_labelno + 1; label_align = xrealloc (label_align, n_labels * sizeof (struct label_alignment)); /* Range of labels grows monotonically in the function. Failing here means that the initialization of array got lost. */ gcc_assert (n_old_labels <= n_labels); memset (label_align + n_old_labels, 0, (n_labels - n_old_labels) * sizeof (struct label_alignment)); } /* Initialize label_align and set up uid_shuid to be strictly monotonically rising with insn order. */ /* We use max_log here to keep track of the maximum alignment we want to impose on the next CODE_LABEL (or the current one if we are processing the CODE_LABEL itself). */ max_log = 0; max_skip = 0; for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn)) { int log; INSN_SHUID (insn) = i++; if (INSN_P (insn)) continue; if (LABEL_P (insn)) { rtx next; /* Merge in alignments computed by compute_alignments. */ log = LABEL_TO_ALIGNMENT (insn); if (max_log < log) { max_log = log; max_skip = LABEL_TO_MAX_SKIP (insn); } log = LABEL_ALIGN (insn); if (max_log < log) { max_log = log; max_skip = LABEL_ALIGN_MAX_SKIP; } next = next_nonnote_insn (insn); /* ADDR_VECs only take room if read-only data goes into the text section. */ if (JUMP_TABLES_IN_TEXT_SECTION || readonly_data_section == text_section) if (next && JUMP_P (next)) { rtx nextbody = PATTERN (next); if (GET_CODE (nextbody) == ADDR_VEC || GET_CODE (nextbody) == ADDR_DIFF_VEC) { log = ADDR_VEC_ALIGN (next); if (max_log < log) { max_log = log; max_skip = LABEL_ALIGN_MAX_SKIP; } } } LABEL_TO_ALIGNMENT (insn) = max_log; LABEL_TO_MAX_SKIP (insn) = max_skip; max_log = 0; max_skip = 0; } else if (BARRIER_P (insn)) { rtx label; for (label = insn; label && ! INSN_P (label); label = NEXT_INSN (label)) if (LABEL_P (label)) { log = LABEL_ALIGN_AFTER_BARRIER (insn); if (max_log < log) { max_log = log; max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP; } break; } } } #ifdef HAVE_ATTR_length /* Allocate the rest of the arrays. */ insn_lengths = XNEWVEC (int, max_uid); insn_lengths_max_uid = max_uid; /* Syntax errors can lead to labels being outside of the main insn stream. Initialize insn_addresses, so that we get reproducible results. */ INSN_ADDRESSES_ALLOC (max_uid); varying_length = XCNEWVEC (char, max_uid); /* Initialize uid_align. We scan instructions from end to start, and keep in align_tab[n] the last seen insn that does an alignment of at least n+1, i.e. the successor in the alignment chain for an insn that does / has a known alignment of n. */ uid_align = XCNEWVEC (rtx, max_uid); for (i = MAX_CODE_ALIGN; --i >= 0;) align_tab[i] = NULL_RTX; seq = get_last_insn (); for (; seq; seq = PREV_INSN (seq)) { int uid = INSN_UID (seq); int log; log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0); uid_align[uid] = align_tab[0]; if (log) { /* Found an alignment label. */ uid_align[uid] = align_tab[log]; for (i = log - 1; i >= 0; i--) align_tab[i] = seq; } } #ifdef CASE_VECTOR_SHORTEN_MODE if (optimize) { /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum label fields. */ int min_shuid = INSN_SHUID (get_insns ()) - 1; int max_shuid = INSN_SHUID (get_last_insn ()) + 1; int rel; for (insn = first; insn != 0; insn = NEXT_INSN (insn)) { rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat; int len, i, min, max, insn_shuid; int min_align; addr_diff_vec_flags flags; if (!JUMP_P (insn) || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) continue; pat = PATTERN (insn); len = XVECLEN (pat, 1); gcc_assert (len > 0); min_align = MAX_CODE_ALIGN; for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--) { rtx lab = XEXP (XVECEXP (pat, 1, i), 0); int shuid = INSN_SHUID (lab); if (shuid < min) { min = shuid; min_lab = lab; } if (shuid > max) { max = shuid; max_lab = lab; } if (min_align > LABEL_TO_ALIGNMENT (lab)) min_align = LABEL_TO_ALIGNMENT (lab); } XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab); XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab); insn_shuid = INSN_SHUID (insn); rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0)); memset (&flags, 0, sizeof (flags)); flags.min_align = min_align; flags.base_after_vec = rel > insn_shuid; flags.min_after_vec = min > insn_shuid; flags.max_after_vec = max > insn_shuid; flags.min_after_base = min > rel; flags.max_after_base = max > rel; ADDR_DIFF_VEC_FLAGS (pat) = flags; } } #endif /* CASE_VECTOR_SHORTEN_MODE */ /* Compute initial lengths, addresses, and varying flags for each insn. */ for (insn_current_address = 0, insn = first; insn != 0; insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn)) { uid = INSN_UID (insn); insn_lengths[uid] = 0; if (LABEL_P (insn)) { int log = LABEL_TO_ALIGNMENT (insn); if (log) { int align = 1 << log; int new_address = (insn_current_address + align - 1) & -align; insn_lengths[uid] = new_address - insn_current_address; } } INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid]; if (NOTE_P (insn) || BARRIER_P (insn) || LABEL_P (insn)) continue; if (INSN_DELETED_P (insn)) continue; body = PATTERN (insn); if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) { /* This only takes room if read-only data goes into the text section. */ if (JUMP_TABLES_IN_TEXT_SECTION || readonly_data_section == text_section) insn_lengths[uid] = (XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC) * GET_MODE_SIZE (GET_MODE (body))); /* Alignment is handled by ADDR_VEC_ALIGN. */ } else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn); else if (GET_CODE (body) == SEQUENCE) { int i; int const_delay_slots; #ifdef DELAY_SLOTS const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0)); #else const_delay_slots = 0; #endif /* Inside a delay slot sequence, we do not do any branch shortening if the shortening could change the number of delay slots of the branch. */ for (i = 0; i < XVECLEN (body, 0); i++) { rtx inner_insn = XVECEXP (body, 0, i); int inner_uid = INSN_UID (inner_insn); int inner_length; if (GET_CODE (body) == ASM_INPUT || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0) inner_length = (asm_insn_count (PATTERN (inner_insn)) * insn_default_length (inner_insn)); else inner_length = insn_default_length (inner_insn); insn_lengths[inner_uid] = inner_length; if (const_delay_slots) { if ((varying_length[inner_uid] = insn_variable_length_p (inner_insn)) != 0) varying_length[uid] = 1; INSN_ADDRESSES (inner_uid) = (insn_current_address + insn_lengths[uid]); } else varying_length[inner_uid] = 0; insn_lengths[uid] += inner_length; } } else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER) { insn_lengths[uid] = insn_default_length (insn); varying_length[uid] = insn_variable_length_p (insn); } /* If needed, do any adjustment. */ #ifdef ADJUST_INSN_LENGTH ADJUST_INSN_LENGTH (insn, insn_lengths[uid]); if (insn_lengths[uid] < 0) fatal_insn ("negative insn length", insn); #endif } /* Now loop over all the insns finding varying length insns. For each, get the current insn length. If it has changed, reflect the change. When nothing changes for a full pass, we are done. */ while (something_changed) { something_changed = 0; insn_current_align = MAX_CODE_ALIGN - 1; for (insn_current_address = 0, insn = first; insn != 0; insn = NEXT_INSN (insn)) { int new_length; #ifdef ADJUST_INSN_LENGTH int tmp_length; #endif int length_align; uid = INSN_UID (insn); if (LABEL_P (insn)) { int log = LABEL_TO_ALIGNMENT (insn); if (log > insn_current_align) { int align = 1 << log; int new_address= (insn_current_address + align - 1) & -align; insn_lengths[uid] = new_address - insn_current_address; insn_current_align = log; insn_current_address = new_address; } else insn_lengths[uid] = 0; INSN_ADDRESSES (uid) = insn_current_address; continue; } length_align = INSN_LENGTH_ALIGNMENT (insn); if (length_align < insn_current_align) insn_current_align = length_align; insn_last_address = INSN_ADDRESSES (uid); INSN_ADDRESSES (uid) = insn_current_address; #ifdef CASE_VECTOR_SHORTEN_MODE if (optimize && JUMP_P (insn) && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) { rtx body = PATTERN (insn); int old_length = insn_lengths[uid]; rtx rel_lab = XEXP (XEXP (body, 0), 0); rtx min_lab = XEXP (XEXP (body, 2), 0); rtx max_lab = XEXP (XEXP (body, 3), 0); int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab)); int min_addr = INSN_ADDRESSES (INSN_UID (min_lab)); int max_addr = INSN_ADDRESSES (INSN_UID (max_lab)); rtx prev; int rel_align = 0; addr_diff_vec_flags flags; /* Avoid automatic aggregate initialization. */ flags = ADDR_DIFF_VEC_FLAGS (body); /* Try to find a known alignment for rel_lab. */ for (prev = rel_lab; prev && ! insn_lengths[INSN_UID (prev)] && ! (varying_length[INSN_UID (prev)] & 1); prev = PREV_INSN (prev)) if (varying_length[INSN_UID (prev)] & 2) { rel_align = LABEL_TO_ALIGNMENT (prev); break; } /* See the comment on addr_diff_vec_flags in rtl.h for the meaning of the flags values. base: REL_LAB vec: INSN */ /* Anything after INSN has still addresses from the last pass; adjust these so that they reflect our current estimate for this pass. */ if (flags.base_after_vec) rel_addr += insn_current_address - insn_last_address; if (flags.min_after_vec) min_addr += insn_current_address - insn_last_address; if (flags.max_after_vec) max_addr += insn_current_address - insn_last_address; /* We want to know the worst case, i.e. lowest possible value for the offset of MIN_LAB. If MIN_LAB is after REL_LAB, its offset is positive, and we have to be wary of code shrink; otherwise, it is negative, and we have to be vary of code size increase. */ if (flags.min_after_base) { /* If INSN is between REL_LAB and MIN_LAB, the size changes we are about to make can change the alignment within the observed offset, therefore we have to break it up into two parts that are independent. */ if (! flags.base_after_vec && flags.min_after_vec) { min_addr -= align_fuzz (rel_lab, insn, rel_align, 0); min_addr -= align_fuzz (insn, min_lab, 0, 0); } else min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0); } else { if (flags.base_after_vec && ! flags.min_after_vec) { min_addr -= align_fuzz (min_lab, insn, 0, ~0); min_addr -= align_fuzz (insn, rel_lab, 0, ~0); } else min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0); } /* Likewise, determine the highest lowest possible value for the offset of MAX_LAB. */ if (flags.max_after_base) { if (! flags.base_after_vec && flags.max_after_vec) { max_addr += align_fuzz (rel_lab, insn, rel_align, ~0); max_addr += align_fuzz (insn, max_lab, 0, ~0); } else max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0); } else { if (flags.base_after_vec && ! flags.max_after_vec) { max_addr += align_fuzz (max_lab, insn, 0, 0); max_addr += align_fuzz (insn, rel_lab, 0, 0); } else max_addr += align_fuzz (max_lab, rel_lab, 0, 0); } PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr, max_addr - rel_addr, body)); if (JUMP_TABLES_IN_TEXT_SECTION || readonly_data_section == text_section) { insn_lengths[uid] = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body))); insn_current_address += insn_lengths[uid]; if (insn_lengths[uid] != old_length) something_changed = 1; } continue; } #endif /* CASE_VECTOR_SHORTEN_MODE */ if (! (varying_length[uid])) { if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) { int i; body = PATTERN (insn); for (i = 0; i < XVECLEN (body, 0); i++) { rtx inner_insn = XVECEXP (body, 0, i); int inner_uid = INSN_UID (inner_insn); INSN_ADDRESSES (inner_uid) = insn_current_address; insn_current_address += insn_lengths[inner_uid]; } } else insn_current_address += insn_lengths[uid]; continue; } if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) { int i; body = PATTERN (insn); new_length = 0; for (i = 0; i < XVECLEN (body, 0); i++) { rtx inner_insn = XVECEXP (body, 0, i); int inner_uid = INSN_UID (inner_insn); int inner_length; INSN_ADDRESSES (inner_uid) = insn_current_address; /* insn_current_length returns 0 for insns with a non-varying length. */ if (! varying_length[inner_uid]) inner_length = insn_lengths[inner_uid]; else inner_length = insn_current_length (inner_insn); if (inner_length != insn_lengths[inner_uid]) { insn_lengths[inner_uid] = inner_length; something_changed = 1; } insn_current_address += insn_lengths[inner_uid]; new_length += inner_length; } } else { new_length = insn_current_length (insn); insn_current_address += new_length; } #ifdef ADJUST_INSN_LENGTH /* If needed, do any adjustment. */ tmp_length = new_length; ADJUST_INSN_LENGTH (insn, new_length); insn_current_address += (new_length - tmp_length); #endif if (new_length != insn_lengths[uid]) { insn_lengths[uid] = new_length; something_changed = 1; } } /* For a non-optimizing compile, do only a single pass. */ if (!optimize) break; } free (varying_length); #endif /* HAVE_ATTR_length */ } #ifdef HAVE_ATTR_length /* Given the body of an INSN known to be generated by an ASM statement, return the number of machine instructions likely to be generated for this insn. This is used to compute its length. */ static int asm_insn_count (rtx body) { const char *template; int count = 1; if (GET_CODE (body) == ASM_INPUT) template = XSTR (body, 0); else template = decode_asm_operands (body, NULL, NULL, NULL, NULL); for (; *template; template++) if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n') count++; return count; } #endif /* Output assembler code for the start of a function, and initialize some of the variables in this file for the new function. The label for the function and associated assembler pseudo-ops have already been output in `assemble_start_function'. FIRST is the first insn of the rtl for the function being compiled. FILE is the file to write assembler code to. OPTIMIZE is nonzero if we should eliminate redundant test and compare insns. */ void final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file, int optimize ATTRIBUTE_UNUSED) { block_depth = 0; this_is_asm_operands = 0; last_filename = locator_file (prologue_locator); last_linenum = locator_line (prologue_locator); high_block_linenum = high_function_linenum = last_linenum; (*debug_hooks->begin_prologue) (last_linenum, last_filename); #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO) if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG) dwarf2out_begin_prologue (0, NULL); #endif #ifdef LEAF_REG_REMAP if (current_function_uses_only_leaf_regs) leaf_renumber_regs (first); #endif /* The Sun386i and perhaps other machines don't work right if the profiling code comes after the prologue. */ #ifdef PROFILE_BEFORE_PROLOGUE if (current_function_profile) profile_function (file); #endif /* PROFILE_BEFORE_PROLOGUE */ #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue) if (dwarf2out_do_frame ()) dwarf2out_frame_debug (NULL_RTX, false); #endif /* If debugging, assign block numbers to all of the blocks in this function. */ if (write_symbols) { reemit_insn_block_notes (); number_blocks (current_function_decl); /* We never actually put out begin/end notes for the top-level block in the function. But, conceptually, that block is always needed. */ TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1; } /* First output the function prologue: code to set up the stack frame. */ targetm.asm_out.function_prologue (file, get_frame_size ()); /* If the machine represents the prologue as RTL, the profiling code must be emitted when NOTE_INSN_PROLOGUE_END is scanned. */ #ifdef HAVE_prologue if (! HAVE_prologue) #endif profile_after_prologue (file); } static void profile_after_prologue (FILE *file ATTRIBUTE_UNUSED) { #ifndef PROFILE_BEFORE_PROLOGUE if (current_function_profile) profile_function (file); #endif /* not PROFILE_BEFORE_PROLOGUE */ } static void profile_function (FILE *file ATTRIBUTE_UNUSED) { #ifndef NO_PROFILE_COUNTERS # define NO_PROFILE_COUNTERS 0 #endif #if defined(ASM_OUTPUT_REG_PUSH) int sval = current_function_returns_struct; rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1); #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM) int cxt = cfun->static_chain_decl != NULL; #endif #endif /* ASM_OUTPUT_REG_PUSH */ if (! NO_PROFILE_COUNTERS) { int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE); switch_to_section (data_section); ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no); assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1); } switch_to_section (current_function_section ()); #if defined(ASM_OUTPUT_REG_PUSH) if (sval && svrtx != NULL_RTX && REG_P (svrtx)) ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx)); #endif #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) if (cxt) ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM); #else #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) if (cxt) { ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM); } #endif #endif FUNCTION_PROFILER (file, current_function_funcdef_no); #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) if (cxt) ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM); #else #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) if (cxt) { ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM); } #endif #endif #if defined(ASM_OUTPUT_REG_PUSH) if (sval && svrtx != NULL_RTX && REG_P (svrtx)) ASM_OUTPUT_REG_POP (file, REGNO (svrtx)); #endif } /* Output assembler code for the end of a function. For clarity, args are same as those of `final_start_function' even though not all of them are needed. */ void final_end_function (void) { app_disable (); (*debug_hooks->end_function) (high_function_linenum); /* Finally, output the function epilogue: code to restore the stack frame and return to the caller. */ targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ()); /* And debug output. */ (*debug_hooks->end_epilogue) (last_linenum, last_filename); #if defined (DWARF2_UNWIND_INFO) if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG && dwarf2out_do_frame ()) dwarf2out_end_epilogue (last_linenum, last_filename); #endif } /* Output assembler code for some insns: all or part of a function. For description of args, see `final_start_function', above. */ void final (rtx first, FILE *file, int optimize) { rtx insn; int max_uid = 0; int seen = 0; last_ignored_compare = 0; #ifdef SDB_DEBUGGING_INFO /* When producing SDB debugging info, delete troublesome line number notes from inlined functions in other files as well as duplicate line number notes. */ if (write_symbols == SDB_DEBUG) { rtx last = 0; for (insn = first; insn; insn = NEXT_INSN (insn)) if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) { if (last != 0 #ifdef USE_MAPPED_LOCATION && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last) #else && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last) && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last) #endif ) { delete_insn (insn); /* Use delete_note. */ continue; } last = insn; } } #endif for (insn = first; insn; insn = NEXT_INSN (insn)) { if (INSN_UID (insn) > max_uid) /* Find largest UID. */ max_uid = INSN_UID (insn); #ifdef HAVE_cc0 /* If CC tracking across branches is enabled, record the insn which jumps to each branch only reached from one place. */ if (optimize && JUMP_P (insn)) { rtx lab = JUMP_LABEL (insn); if (lab && LABEL_NUSES (lab) == 1) { LABEL_REFS (lab) = insn; } } #endif } init_recog (); CC_STATUS_INIT; /* Output the insns. */ for (insn = NEXT_INSN (first); insn;) { #ifdef HAVE_ATTR_length if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ()) { /* This can be triggered by bugs elsewhere in the compiler if new insns are created after init_insn_lengths is called. */ gcc_assert (NOTE_P (insn)); insn_current_address = -1; } else insn_current_address = INSN_ADDRESSES (INSN_UID (insn)); #endif /* HAVE_ATTR_length */ insn = final_scan_insn (insn, file, optimize, 0, &seen); } } const char * get_insn_template (int code, rtx insn) { switch (insn_data[code].output_format) { case INSN_OUTPUT_FORMAT_SINGLE: return insn_data[code].output.single; case INSN_OUTPUT_FORMAT_MULTI: return insn_data[code].output.multi[which_alternative]; case INSN_OUTPUT_FORMAT_FUNCTION: gcc_assert (insn); return (*insn_data[code].output.function) (recog_data.operand, insn); default: gcc_unreachable (); } } /* Emit the appropriate declaration for an alternate-entry-point symbol represented by INSN, to FILE. INSN is a CODE_LABEL with LABEL_KIND != LABEL_NORMAL. The case fall-through in this function is intentional. */ static void output_alternate_entry_point (FILE *file, rtx insn) { const char *name = LABEL_NAME (insn); switch (LABEL_KIND (insn)) { case LABEL_WEAK_ENTRY: #ifdef ASM_WEAKEN_LABEL ASM_WEAKEN_LABEL (file, name); #endif case LABEL_GLOBAL_ENTRY: targetm.asm_out.globalize_label (file, name); case LABEL_STATIC_ENTRY: #ifdef ASM_OUTPUT_TYPE_DIRECTIVE ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function"); #endif ASM_OUTPUT_LABEL (file, name); break; case LABEL_NORMAL: default: gcc_unreachable (); } } /* The final scan for one insn, INSN. Args are same as in `final', except that INSN is the insn being scanned. Value returned is the next insn to be scanned. NOPEEPHOLES is the flag to disallow peephole processing (currently used for within delayed branch sequence output). SEEN is used to track the end of the prologue, for emitting debug information. We force the emission of a line note after both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or at the beginning of the second basic block, whichever comes first. */ rtx final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED, int nopeepholes ATTRIBUTE_UNUSED, int *seen) { #ifdef HAVE_cc0 rtx set; #endif rtx next; insn_counter++; /* Ignore deleted insns. These can occur when we split insns (due to a template of "#") while not optimizing. */ if (INSN_DELETED_P (insn)) return NEXT_INSN (insn); switch (GET_CODE (insn)) { case NOTE: switch (NOTE_LINE_NUMBER (insn)) { case NOTE_INSN_DELETED: case NOTE_INSN_FUNCTION_END: case NOTE_INSN_REPEATED_LINE_NUMBER: case NOTE_INSN_EXPECTED_VALUE: break; case NOTE_INSN_SWITCH_TEXT_SECTIONS: in_cold_section_p = !in_cold_section_p; (*debug_hooks->switch_text_section) (); switch_to_section (current_function_section ()); break; case NOTE_INSN_BASIC_BLOCK: #ifdef TARGET_UNWIND_INFO targetm.asm_out.unwind_emit (asm_out_file, insn); #endif if (flag_debug_asm) fprintf (asm_out_file, "\t%s basic block %d\n", ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index); if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB) { *seen |= SEEN_EMITTED; force_source_line = true; } else *seen |= SEEN_BB; break; case NOTE_INSN_EH_REGION_BEG: ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB", NOTE_EH_HANDLER (insn)); break; case NOTE_INSN_EH_REGION_END: ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE", NOTE_EH_HANDLER (insn)); break; case NOTE_INSN_PROLOGUE_END: targetm.asm_out.function_end_prologue (file); profile_after_prologue (file); if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) { *seen |= SEEN_EMITTED; force_source_line = true; } else *seen |= SEEN_NOTE; break; case NOTE_INSN_EPILOGUE_BEG: targetm.asm_out.function_begin_epilogue (file); break; case NOTE_INSN_FUNCTION_BEG: app_disable (); (*debug_hooks->end_prologue) (last_linenum, last_filename); if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) { *seen |= SEEN_EMITTED; force_source_line = true; } else *seen |= SEEN_NOTE; break; case NOTE_INSN_BLOCK_BEG: if (debug_info_level == DINFO_LEVEL_NORMAL || debug_info_level == DINFO_LEVEL_VERBOSE || write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG || write_symbols == VMS_DEBUG) { int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); app_disable (); ++block_depth; high_block_linenum = last_linenum; /* Output debugging info about the symbol-block beginning. */ (*debug_hooks->begin_block) (last_linenum, n); /* Mark this block as output. */ TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1; } break; case NOTE_INSN_BLOCK_END: if (debug_info_level == DINFO_LEVEL_NORMAL || debug_info_level == DINFO_LEVEL_VERBOSE || write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG || write_symbols == VMS_DEBUG) { int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); app_disable (); /* End of a symbol-block. */ --block_depth; gcc_assert (block_depth >= 0); (*debug_hooks->end_block) (high_block_linenum, n); } break; case NOTE_INSN_DELETED_LABEL: /* Emit the label. We may have deleted the CODE_LABEL because the label could be proved to be unreachable, though still referenced (in the form of having its address taken. */ ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn)); break; case NOTE_INSN_VAR_LOCATION: (*debug_hooks->var_location) (insn); break; case 0: break; default: gcc_assert (NOTE_LINE_NUMBER (insn) > 0); break; } break; case BARRIER: #if defined (DWARF2_UNWIND_INFO) if (dwarf2out_do_frame ()) dwarf2out_frame_debug (insn, false); #endif break; case CODE_LABEL: /* The target port might emit labels in the output function for some insn, e.g. sh.c output_branchy_insn. */ if (CODE_LABEL_NUMBER (insn) <= max_labelno) { int align = LABEL_TO_ALIGNMENT (insn); #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN int max_skip = LABEL_TO_MAX_SKIP (insn); #endif if (align && NEXT_INSN (insn)) { #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip); #else #ifdef ASM_OUTPUT_ALIGN_WITH_NOP ASM_OUTPUT_ALIGN_WITH_NOP (file, align); #else ASM_OUTPUT_ALIGN (file, align); #endif #endif } } #ifdef HAVE_cc0 CC_STATUS_INIT; /* If this label is reached from only one place, set the condition codes from the instruction just before the branch. */ /* Disabled because some insns set cc_status in the C output code and NOTICE_UPDATE_CC alone can set incorrect status. */ if (0 /* optimize && LABEL_NUSES (insn) == 1*/) { rtx jump = LABEL_REFS (insn); rtx barrier = prev_nonnote_insn (insn); rtx prev; /* If the LABEL_REFS field of this label has been set to point at a branch, the predecessor of the branch is a regular insn, and that branch is the only way to reach this label, set the condition codes based on the branch and its predecessor. */ if (barrier && BARRIER_P (barrier) && jump && JUMP_P (jump) && (prev = prev_nonnote_insn (jump)) && NONJUMP_INSN_P (prev)) { NOTICE_UPDATE_CC (PATTERN (prev), prev); NOTICE_UPDATE_CC (PATTERN (jump), jump); } } #endif if (LABEL_NAME (insn)) (*debug_hooks->label) (insn); if (app_on) { fputs (ASM_APP_OFF, file); app_on = 0; } next = next_nonnote_insn (insn); if (next != 0 && JUMP_P (next)) { rtx nextbody = PATTERN (next); /* If this label is followed by a jump-table, make sure we put the label in the read-only section. Also possibly write the label and jump table together. */ if (GET_CODE (nextbody) == ADDR_VEC || GET_CODE (nextbody) == ADDR_DIFF_VEC) { #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) /* In this case, the case vector is being moved by the target, so don't output the label at all. Leave that to the back end macros. */ #else if (! JUMP_TABLES_IN_TEXT_SECTION) { int log_align; switch_to_section (targetm.asm_out.function_rodata_section (current_function_decl)); #ifdef ADDR_VEC_ALIGN log_align = ADDR_VEC_ALIGN (next); #else log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT); #endif ASM_OUTPUT_ALIGN (file, log_align); } else switch_to_section (current_function_section ()); #ifdef ASM_OUTPUT_CASE_LABEL ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), next); #else targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); #endif #endif break; } } if (LABEL_ALT_ENTRY_P (insn)) output_alternate_entry_point (file, insn); else targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); break; default: { rtx body = PATTERN (insn); int insn_code_number; const char *template; #ifdef HAVE_conditional_execution /* Reset this early so it is correct for ASM statements. */ current_insn_predicate = NULL_RTX; #endif /* An INSN, JUMP_INSN or CALL_INSN. First check for special kinds that recog doesn't recognize. */ if (GET_CODE (body) == USE /* These are just declarations. */ || GET_CODE (body) == CLOBBER) break; #ifdef HAVE_cc0 { /* If there is a REG_CC_SETTER note on this insn, it means that the setting of the condition code was done in the delay slot of the insn that branched here. So recover the cc status from the insn that set it. */ rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); if (note) { NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0)); cc_prev_status = cc_status; } } #endif /* Detect insns that are really jump-tables and output them as such. */ if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) { #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)) int vlen, idx; #endif if (! JUMP_TABLES_IN_TEXT_SECTION) switch_to_section (targetm.asm_out.function_rodata_section (current_function_decl)); else switch_to_section (current_function_section ()); if (app_on) { fputs (ASM_APP_OFF, file); app_on = 0; } #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) if (GET_CODE (body) == ADDR_VEC) { #ifdef ASM_OUTPUT_ADDR_VEC ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body); #else gcc_unreachable (); #endif } else { #ifdef ASM_OUTPUT_ADDR_DIFF_VEC ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body); #else gcc_unreachable (); #endif } #else vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC); for (idx = 0; idx < vlen; idx++) { if (GET_CODE (body) == ADDR_VEC) { #ifdef ASM_OUTPUT_ADDR_VEC_ELT ASM_OUTPUT_ADDR_VEC_ELT (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); #else gcc_unreachable (); #endif } else { #ifdef ASM_OUTPUT_ADDR_DIFF_ELT ASM_OUTPUT_ADDR_DIFF_ELT (file, body, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0))); #else gcc_unreachable (); #endif } } #ifdef ASM_OUTPUT_CASE_END ASM_OUTPUT_CASE_END (file, CODE_LABEL_NUMBER (PREV_INSN (insn)), insn); #endif #endif switch_to_section (current_function_section ()); break; } /* Output this line note if it is the first or the last line note in a row. */ if (notice_source_line (insn)) { (*debug_hooks->source_line) (last_linenum, last_filename); } if (GET_CODE (body) == ASM_INPUT) { const char *string = XSTR (body, 0); /* There's no telling what that did to the condition codes. */ CC_STATUS_INIT; if (string[0]) { if (! app_on) { fputs (ASM_APP_ON, file); app_on = 1; } fprintf (asm_out_file, "\t%s\n", string); } break; } /* Detect `asm' construct with operands. */ if (asm_noperands (body) >= 0) { unsigned int noperands = asm_noperands (body); rtx *ops = alloca (noperands * sizeof (rtx)); const char *string; /* There's no telling what that did to the condition codes. */ CC_STATUS_INIT; /* Get out the operand values. */ string = decode_asm_operands (body, ops, NULL, NULL, NULL); /* Inhibit dieing on what would otherwise be compiler bugs. */ insn_noperands = noperands; this_is_asm_operands = insn; #ifdef FINAL_PRESCAN_INSN FINAL_PRESCAN_INSN (insn, ops, insn_noperands); #endif /* Output the insn using them. */ if (string[0]) { if (! app_on) { fputs (ASM_APP_ON, file); app_on = 1; } output_asm_insn (string, ops); } this_is_asm_operands = 0; break; } if (app_on) { fputs (ASM_APP_OFF, file); app_on = 0; } if (GET_CODE (body) == SEQUENCE) { /* A delayed-branch sequence */ int i; final_sequence = body; /* Record the delay slots' frame information before the branch. This is needed for delayed calls: see execute_cfa_program(). */ #if defined (DWARF2_UNWIND_INFO) if (dwarf2out_do_frame ()) for (i = 1; i < XVECLEN (body, 0); i++) dwarf2out_frame_debug (XVECEXP (body, 0, i), false); #endif /* The first insn in this SEQUENCE might be a JUMP_INSN that will force the restoration of a comparison that was previously thought unnecessary. If that happens, cancel this sequence and cause that insn to be restored. */ next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen); if (next != XVECEXP (body, 0, 1)) { final_sequence = 0; return next; } for (i = 1; i < XVECLEN (body, 0); i++) { rtx insn = XVECEXP (body, 0, i); rtx next = NEXT_INSN (insn); /* We loop in case any instruction in a delay slot gets split. */ do insn = final_scan_insn (insn, file, 0, 1, seen); while (insn != next); } #ifdef DBR_OUTPUT_SEQEND DBR_OUTPUT_SEQEND (file); #endif final_sequence = 0; /* If the insn requiring the delay slot was a CALL_INSN, the insns in the delay slot are actually executed before the called function. Hence we don't preserve any CC-setting actions in these insns and the CC must be marked as being clobbered by the function. */ if (CALL_P (XVECEXP (body, 0, 0))) { CC_STATUS_INIT; } break; } /* We have a real machine instruction as rtl. */ body = PATTERN (insn); #ifdef HAVE_cc0 set = single_set (insn); /* Check for redundant test and compare instructions (when the condition codes are already set up as desired). This is done only when optimizing; if not optimizing, it should be possible for the user to alter a variable with the debugger in between statements and the next statement should reexamine the variable to compute the condition codes. */ if (optimize) { if (set && GET_CODE (SET_DEST (set)) == CC0 && insn != last_ignored_compare) { if (GET_CODE (SET_SRC (set)) == SUBREG) SET_SRC (set) = alter_subreg (&SET_SRC (set)); else if (GET_CODE (SET_SRC (set)) == COMPARE) { if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG) XEXP (SET_SRC (set), 0) = alter_subreg (&XEXP (SET_SRC (set), 0)); if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG) XEXP (SET_SRC (set), 1) = alter_subreg (&XEXP (SET_SRC (set), 1)); } if ((cc_status.value1 != 0 && rtx_equal_p (SET_SRC (set), cc_status.value1)) || (cc_status.value2 != 0 && rtx_equal_p (SET_SRC (set), cc_status.value2))) { /* Don't delete insn if it has an addressing side-effect. */ if (! FIND_REG_INC_NOTE (insn, NULL_RTX) /* or if anything in it is volatile. */ && ! volatile_refs_p (PATTERN (insn))) { /* We don't really delete the insn; just ignore it. */ last_ignored_compare = insn; break; } } } } #endif #ifdef HAVE_cc0 /* If this is a conditional branch, maybe modify it if the cc's are in a nonstandard state so that it accomplishes the same thing that it would do straightforwardly if the cc's were set up normally. */ if (cc_status.flags != 0 && JUMP_P (insn) && GET_CODE (body) == SET && SET_DEST (body) == pc_rtx && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE && COMPARISON_P (XEXP (SET_SRC (body), 0)) && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx) { /* This function may alter the contents of its argument and clear some of the cc_status.flags bits. It may also return 1 meaning condition now always true or -1 meaning condition now always false or 2 meaning condition nontrivial but altered. */ int result = alter_cond (XEXP (SET_SRC (body), 0)); /* If condition now has fixed value, replace the IF_THEN_ELSE with its then-operand or its else-operand. */ if (result == 1) SET_SRC (body) = XEXP (SET_SRC (body), 1); if (result == -1) SET_SRC (body) = XEXP (SET_SRC (body), 2); /* The jump is now either unconditional or a no-op. If it has become a no-op, don't try to output it. (It would not be recognized.) */ if (SET_SRC (body) == pc_rtx) { delete_insn (insn); break; } else if (GET_CODE (SET_SRC (body)) == RETURN) /* Replace (set (pc) (return)) with (return). */ PATTERN (insn) = body = SET_SRC (body); /* Rerecognize the instruction if it has changed. */ if (result != 0) INSN_CODE (insn) = -1; } /* Make same adjustments to instructions that examine the condition codes without jumping and instructions that handle conditional moves (if this machine has either one). */ if (cc_status.flags != 0 && set != 0) { rtx cond_rtx, then_rtx, else_rtx; if (!JUMP_P (insn) && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE) { cond_rtx = XEXP (SET_SRC (set), 0); then_rtx = XEXP (SET_SRC (set), 1); else_rtx = XEXP (SET_SRC (set), 2); } else { cond_rtx = SET_SRC (set); then_rtx = const_true_rtx; else_rtx = const0_rtx; } switch (GET_CODE (cond_rtx)) { case GTU: case GT: case LTU: case LT: case GEU: case GE: case LEU: case LE: case EQ: case NE: { int result; if (XEXP (cond_rtx, 0) != cc0_rtx) break; result = alter_cond (cond_rtx); if (result == 1) validate_change (insn, &SET_SRC (set), then_rtx, 0); else if (result == -1) validate_change (insn, &SET_SRC (set), else_rtx, 0); else if (result == 2) INSN_CODE (insn) = -1; if (SET_DEST (set) == SET_SRC (set)) delete_insn (insn); } break; default: break; } } #endif #ifdef HAVE_peephole /* Do machine-specific peephole optimizations if desired. */ if (optimize && !flag_no_peephole && !nopeepholes) { rtx next = peephole (insn); /* When peepholing, if there were notes within the peephole, emit them before the peephole. */ if (next != 0 && next != NEXT_INSN (insn)) { rtx note, prev = PREV_INSN (insn); for (note = NEXT_INSN (insn); note != next; note = NEXT_INSN (note)) final_scan_insn (note, file, optimize, nopeepholes, seen); /* Put the notes in the proper position for a later rescan. For example, the SH target can do this when generating a far jump in a delayed branch sequence. */ note = NEXT_INSN (insn); PREV_INSN (note) = prev; NEXT_INSN (prev) = note; NEXT_INSN (PREV_INSN (next)) = insn; PREV_INSN (insn) = PREV_INSN (next); NEXT_INSN (insn) = next; PREV_INSN (next) = insn; } /* PEEPHOLE might have changed this. */ body = PATTERN (insn); } #endif /* Try to recognize the instruction. If successful, verify that the operands satisfy the constraints for the instruction. Crash if they don't, since `reload' should have changed them so that they do. */ insn_code_number = recog_memoized (insn); cleanup_subreg_operands (insn); /* Dump the insn in the assembly for debugging. */ if (flag_dump_rtl_in_asm) { print_rtx_head = ASM_COMMENT_START; print_rtl_single (asm_out_file, insn); print_rtx_head = ""; } if (! constrain_operands_cached (1)) fatal_insn_not_found (insn); /* Some target machines need to prescan each insn before it is output. */ #ifdef FINAL_PRESCAN_INSN FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands); #endif #ifdef HAVE_conditional_execution if (GET_CODE (PATTERN (insn)) == COND_EXEC) current_insn_predicate = COND_EXEC_TEST (PATTERN (insn)); #endif #ifdef HAVE_cc0 cc_prev_status = cc_status; /* Update `cc_status' for this instruction. The instruction's output routine may change it further. If the output routine for a jump insn needs to depend on the cc status, it should look at cc_prev_status. */ NOTICE_UPDATE_CC (body, insn); #endif current_output_insn = debug_insn = insn; #if defined (DWARF2_UNWIND_INFO) if (CALL_P (insn) && dwarf2out_do_frame ()) dwarf2out_frame_debug (insn, false); #endif /* Find the proper template for this insn. */ template = get_insn_template (insn_code_number, insn); /* If the C code returns 0, it means that it is a jump insn which follows a deleted test insn, and that test insn needs to be reinserted. */ if (template == 0) { rtx prev; gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare); /* We have already processed the notes between the setter and the user. Make sure we don't process them again, this is particularly important if one of the notes is a block scope note or an EH note. */ for (prev = insn; prev != last_ignored_compare; prev = PREV_INSN (prev)) { if (NOTE_P (prev)) delete_insn (prev); /* Use delete_note. */ } return prev; } /* If the template is the string "#", it means that this insn must be split. */ if (template[0] == '#' && template[1] == '\0') { rtx new = try_split (body, insn, 0); /* If we didn't split the insn, go away. */ if (new == insn && PATTERN (new) == body) fatal_insn ("could not split insn", insn); #ifdef HAVE_ATTR_length /* This instruction should have been split in shorten_branches, to ensure that we would have valid length info for the splitees. */ gcc_unreachable (); #endif return new; } #ifdef TARGET_UNWIND_INFO /* ??? This will put the directives in the wrong place if get_insn_template outputs assembly directly. However calling it before get_insn_template breaks if the insns is split. */ targetm.asm_out.unwind_emit (asm_out_file, insn); #endif /* Output assembler code from the template. */ output_asm_insn (template, recog_data.operand); /* If necessary, report the effect that the instruction has on the unwind info. We've already done this for delay slots and call instructions. */ #if defined (DWARF2_UNWIND_INFO) if (final_sequence == 0 #if !defined (HAVE_prologue) && !ACCUMULATE_OUTGOING_ARGS #endif && dwarf2out_do_frame ()) dwarf2out_frame_debug (insn, true); #endif current_output_insn = debug_insn = 0; } } return NEXT_INSN (insn); } /* Return whether a source line note needs to be emitted before INSN. */ static bool notice_source_line (rtx insn) { const char *filename = insn_file (insn); int linenum = insn_line (insn); if (filename && (force_source_line || filename != last_filename || last_linenum != linenum)) { force_source_line = false; last_filename = filename; last_linenum = linenum; high_block_linenum = MAX (last_linenum, high_block_linenum); high_function_linenum = MAX (last_linenum, high_function_linenum); return true; } return false; } /* For each operand in INSN, simplify (subreg (reg)) so that it refers directly to the desired hard register. */ void cleanup_subreg_operands (rtx insn) { int i; extract_insn_cached (insn); for (i = 0; i < recog_data.n_operands; i++) { /* The following test cannot use recog_data.operand when testing for a SUBREG: the underlying object might have been changed already if we are inside a match_operator expression that matches the else clause. Instead we test the underlying expression directly. */ if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG) recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]); else if (GET_CODE (recog_data.operand[i]) == PLUS || GET_CODE (recog_data.operand[i]) == MULT || MEM_P (recog_data.operand[i])) recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]); } for (i = 0; i < recog_data.n_dups; i++) { if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG) *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]); else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS || GET_CODE (*recog_data.dup_loc[i]) == MULT || MEM_P (*recog_data.dup_loc[i])) *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]); } } /* If X is a SUBREG, replace it with a REG or a MEM, based on the thing it is a subreg of. */ rtx alter_subreg (rtx *xp) { rtx x = *xp; rtx y = SUBREG_REG (x); /* simplify_subreg does not remove subreg from volatile references. We are required to. */ if (MEM_P (y)) { int offset = SUBREG_BYTE (x); /* For paradoxical subregs on big-endian machines, SUBREG_BYTE contains 0 instead of the proper offset. See simplify_subreg. */ if (offset == 0 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x))) { int difference = GET_MODE_SIZE (GET_MODE (y)) - GET_MODE_SIZE (GET_MODE (x)); if (WORDS_BIG_ENDIAN) offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD; if (BYTES_BIG_ENDIAN) offset += difference % UNITS_PER_WORD; } *xp = adjust_address (y, GET_MODE (x), offset); } else { rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y), SUBREG_BYTE (x)); if (new != 0) *xp = new; else if (REG_P (y)) { /* Simplify_subreg can't handle some REG cases, but we have to. */ unsigned int regno = subreg_regno (x); *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x)); } } return *xp; } /* Do alter_subreg on all the SUBREGs contained in X. */ static rtx walk_alter_subreg (rtx *xp) { rtx x = *xp; switch (GET_CODE (x)) { case PLUS: case MULT: case AND: XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0)); XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1)); break; case MEM: case ZERO_EXTEND: XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0)); break; case SUBREG: return alter_subreg (xp); default: break; } return *xp; } #ifdef HAVE_cc0 /* Given BODY, the body of a jump instruction, alter the jump condition as required by the bits that are set in cc_status.flags. Not all of the bits there can be handled at this level in all cases. The value is normally 0. 1 means that the condition has become always true. -1 means that the condition has become always false. 2 means that COND has been altered. */ static int alter_cond (rtx cond) { int value = 0; if (cc_status.flags & CC_REVERSED) { value = 2; PUT_CODE (cond, swap_condition (GET_CODE (cond))); } if (cc_status.flags & CC_INVERTED) { value = 2; PUT_CODE (cond, reverse_condition (GET_CODE (cond))); } if (cc_status.flags & CC_NOT_POSITIVE) switch (GET_CODE (cond)) { case LE: case LEU: case GEU: /* Jump becomes unconditional. */ return 1; case GT: case GTU: case LTU: /* Jump becomes no-op. */ return -1; case GE: PUT_CODE (cond, EQ); value = 2; break; case LT: PUT_CODE (cond, NE); value = 2; break; default: break; } if (cc_status.flags & CC_NOT_NEGATIVE) switch (GET_CODE (cond)) { case GE: case GEU: /* Jump becomes unconditional. */ return 1; case LT: case LTU: /* Jump becomes no-op. */ return -1; case LE: case LEU: PUT_CODE (cond, EQ); value = 2; break; case GT: case GTU: PUT_CODE (cond, NE); value = 2; break; default: break; } if (cc_status.flags & CC_NO_OVERFLOW) switch (GET_CODE (cond)) { case GEU: /* Jump becomes unconditional. */ return 1; case LEU: PUT_CODE (cond, EQ); value = 2; break; case GTU: PUT_CODE (cond, NE); value = 2; break; case LTU: /* Jump becomes no-op. */ return -1; default: break; } if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N)) switch (GET_CODE (cond)) { default: gcc_unreachable (); case NE: PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT); value = 2; break; case EQ: PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE); value = 2; break; } if (cc_status.flags & CC_NOT_SIGNED) /* The flags are valid if signed condition operators are converted to unsigned. */ switch (GET_CODE (cond)) { case LE: PUT_CODE (cond, LEU); value = 2; break; case LT: PUT_CODE (cond, LTU); value = 2; break; case GT: PUT_CODE (cond, GTU); value = 2; break; case GE: PUT_CODE (cond, GEU); value = 2; break; default: break; } return value; } #endif /* Report inconsistency between the assembler template and the operands. In an `asm', it's the user's fault; otherwise, the compiler's fault. */ void output_operand_lossage (const char *cmsgid, ...) { char *fmt_string; char *new_message; const char *pfx_str; va_list ap; va_start (ap, cmsgid); pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: "; asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid)); vasprintf (&new_message, fmt_string, ap); if (this_is_asm_operands) error_for_asm (this_is_asm_operands, "%s", new_message); else internal_error ("%s", new_message); free (fmt_string); free (new_message); va_end (ap); } /* Output of assembler code from a template, and its subroutines. */ /* Annotate the assembly with a comment describing the pattern and alternative used. */ static void output_asm_name (void) { if (debug_insn) { int num = INSN_CODE (debug_insn); fprintf (asm_out_file, "\t%s %d\t%s", ASM_COMMENT_START, INSN_UID (debug_insn), insn_data[num].name); if (insn_data[num].n_alternatives > 1) fprintf (asm_out_file, "/%d", which_alternative + 1); #ifdef HAVE_ATTR_length fprintf (asm_out_file, "\t[length = %d]", get_attr_length (debug_insn)); #endif /* Clear this so only the first assembler insn of any rtl insn will get the special comment for -dp. */ debug_insn = 0; } } /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it or its address, return that expr . Set *PADDRESSP to 1 if the expr corresponds to the address of the object and 0 if to the object. */ static tree get_mem_expr_from_op (rtx op, int *paddressp) { tree expr; int inner_addressp; *paddressp = 0; if (REG_P (op)) return REG_EXPR (op); else if (!MEM_P (op)) return 0; if (MEM_EXPR (op) != 0) return MEM_EXPR (op); /* Otherwise we have an address, so indicate it and look at the address. */ *paddressp = 1; op = XEXP (op, 0); /* First check if we have a decl for the address, then look at the right side if it is a PLUS. Otherwise, strip off arithmetic and keep looking. But don't allow the address to itself be indirect. */ if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp) return expr; else if (GET_CODE (op) == PLUS && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp))) return expr; while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH) op = XEXP (op, 0); expr = get_mem_expr_from_op (op, &inner_addressp); return inner_addressp ? 0 : expr; } /* Output operand names for assembler instructions. OPERANDS is the operand vector, OPORDER is the order to write the operands, and NOPS is the number of operands to write. */ static void output_asm_operand_names (rtx *operands, int *oporder, int nops) { int wrote = 0; int i; for (i = 0; i < nops; i++) { int addressp; rtx op = operands[oporder[i]]; tree expr = get_mem_expr_from_op (op, &addressp); fprintf (asm_out_file, "%c%s", wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START); wrote = 1; if (expr) { fprintf (asm_out_file, "%s", addressp ? "*" : ""); print_mem_expr (asm_out_file, expr); wrote = 1; } else if (REG_P (op) && ORIGINAL_REGNO (op) && ORIGINAL_REGNO (op) != REGNO (op)) fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op)); } } /* Output text from TEMPLATE to the assembler output file, obeying %-directions to substitute operands taken from the vector OPERANDS. %N (for N a digit) means print operand N in usual manner. %lN means require operand N to be a CODE_LABEL or LABEL_REF and print the label name with no punctuation. %cN means require operand N to be a constant and print the constant expression with no punctuation. %aN means expect operand N to be a memory address (not a memory reference!) and print a reference to that address. %nN means expect operand N to be a constant and print a constant expression for minus the value of the operand, with no other punctuation. */ void output_asm_insn (const char *template, rtx *operands) { const char *p; int c; #ifdef ASSEMBLER_DIALECT int dialect = 0; #endif int oporder[MAX_RECOG_OPERANDS]; char opoutput[MAX_RECOG_OPERANDS]; int ops = 0; /* An insn may return a null string template in a case where no assembler code is needed. */ if (*template == 0) return; memset (opoutput, 0, sizeof opoutput); p = template; putc ('\t', asm_out_file); #ifdef ASM_OUTPUT_OPCODE ASM_OUTPUT_OPCODE (asm_out_file, p); #endif while ((c = *p++)) switch (c) { case '\n': if (flag_verbose_asm) output_asm_operand_names (operands, oporder, ops); if (flag_print_asm_name) output_asm_name (); ops = 0; memset (opoutput, 0, sizeof opoutput); putc (c, asm_out_file); #ifdef ASM_OUTPUT_OPCODE while ((c = *p) == '\t') { putc (c, asm_out_file); p++; } ASM_OUTPUT_OPCODE (asm_out_file, p); #endif break; #ifdef ASSEMBLER_DIALECT case '{': { int i; if (dialect) output_operand_lossage ("nested assembly dialect alternatives"); else dialect = 1; /* If we want the first dialect, do nothing. Otherwise, skip DIALECT_NUMBER of strings ending with '|'. */ for (i = 0; i < dialect_number; i++) { while (*p && *p != '}' && *p++ != '|') ; if (*p == '}') break; if (*p == '|') p++; } if (*p == '\0') output_operand_lossage ("unterminated assembly dialect alternative"); } break; case '|': if (dialect) { /* Skip to close brace. */ do { if (*p == '\0') { output_operand_lossage ("unterminated assembly dialect alternative"); break; } } while (*p++ != '}'); dialect = 0; } else putc (c, asm_out_file); break; case '}': if (! dialect) putc (c, asm_out_file); dialect = 0; break; #endif case '%': /* %% outputs a single %. */ if (*p == '%') { p++; putc (c, asm_out_file); } /* %= outputs a number which is unique to each insn in the entire compilation. This is useful for making local labels that are referred to more than once in a given insn. */ else if (*p == '=') { p++; fprintf (asm_out_file, "%d", insn_counter); } /* % followed by a letter and some digits outputs an operand in a special way depending on the letter. Letters `acln' are implemented directly. Other letters are passed to `output_operand' so that the PRINT_OPERAND macro can define them. */ else if (ISALPHA (*p)) { int letter = *p++; unsigned long opnum; char *endptr; opnum = strtoul (p, &endptr, 10); if (endptr == p) output_operand_lossage ("operand number missing " "after %%-letter"); else if (this_is_asm_operands && opnum >= insn_noperands) output_operand_lossage ("operand number out of range"); else if (letter == 'l') output_asm_label (operands[opnum]); else if (letter == 'a') output_address (operands[opnum]); else if (letter == 'c') { if (CONSTANT_ADDRESS_P (operands[opnum])) output_addr_const (asm_out_file, operands[opnum]); else output_operand (operands[opnum], 'c'); } else if (letter == 'n') { if (GET_CODE (operands[opnum]) == CONST_INT) fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, - INTVAL (operands[opnum])); else { putc ('-', asm_out_file); output_addr_const (asm_out_file, operands[opnum]); } } else output_operand (operands[opnum], letter); if (!opoutput[opnum]) oporder[ops++] = opnum; opoutput[opnum] = 1; p = endptr; c = *p; } /* % followed by a digit outputs an operand the default way. */ else if (ISDIGIT (*p)) { unsigned long opnum; char *endptr; opnum = strtoul (p, &endptr, 10); if (this_is_asm_operands && opnum >= insn_noperands) output_operand_lossage ("operand number out of range"); else output_operand (operands[opnum], 0); if (!opoutput[opnum]) oporder[ops++] = opnum; opoutput[opnum] = 1; p = endptr; c = *p; } /* % followed by punctuation: output something for that punctuation character alone, with no operand. The PRINT_OPERAND macro decides what is actually done. */ #ifdef PRINT_OPERAND_PUNCT_VALID_P else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p)) output_operand (NULL_RTX, *p++); #endif else output_operand_lossage ("invalid %%-code"); break; default: putc (c, asm_out_file); } /* Write out the variable names for operands, if we know them. */ if (flag_verbose_asm) output_asm_operand_names (operands, oporder, ops); if (flag_print_asm_name) output_asm_name (); putc ('\n', asm_out_file); } /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */ void output_asm_label (rtx x) { char buf[256]; if (GET_CODE (x) == LABEL_REF) x = XEXP (x, 0); if (LABEL_P (x) || (NOTE_P (x) && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL)) ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); else output_operand_lossage ("'%%l' operand isn't a label"); assemble_name (asm_out_file, buf); } /* Print operand X using machine-dependent assembler syntax. The macro PRINT_OPERAND is defined just to control this function. CODE is a non-digit that preceded the operand-number in the % spec, such as 'z' if the spec was `%z3'. CODE is 0 if there was no char between the % and the digits. When CODE is a non-letter, X is 0. The meanings of the letters are machine-dependent and controlled by PRINT_OPERAND. */ static void output_operand (rtx x, int code ATTRIBUTE_UNUSED) { if (x && GET_CODE (x) == SUBREG) x = alter_subreg (&x); /* X must not be a pseudo reg. */ gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER); PRINT_OPERAND (asm_out_file, x, code); } /* Print a memory reference operand for address X using machine-dependent assembler syntax. The macro PRINT_OPERAND_ADDRESS exists just to control this function. */ void output_address (rtx x) { walk_alter_subreg (&x); PRINT_OPERAND_ADDRESS (asm_out_file, x); } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. */ void output_addr_const (FILE *file, rtx x) { char buf[256]; restart: switch (GET_CODE (x)) { case PC: putc ('.', file); break; case SYMBOL_REF: if (SYMBOL_REF_DECL (x)) mark_decl_referenced (SYMBOL_REF_DECL (x)); #ifdef ASM_OUTPUT_SYMBOL_REF ASM_OUTPUT_SYMBOL_REF (file, x); #else assemble_name (file, XSTR (x, 0)); #endif break; case LABEL_REF: x = XEXP (x, 0); /* Fall through. */ case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); #ifdef ASM_OUTPUT_LABEL_REF ASM_OUTPUT_LABEL_REF (file, buf); #else assemble_name (file, buf); #endif break; case CONST_INT: fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_addr_const (file, XEXP (x, 0)); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is one word and positive. */ if (CONST_DOUBLE_HIGH (x)) fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX, CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x)); else if (CONST_DOUBLE_LOW (x) < 0) fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x)); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); } else /* We can't handle floating point constants; PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear last (eg masm). */ if (GET_CODE (XEXP (x, 0)) == CONST_INT) { output_addr_const (file, XEXP (x, 1)); if (INTVAL (XEXP (x, 0)) >= 0) fprintf (file, "+"); output_addr_const (file, XEXP (x, 0)); } else { output_addr_const (file, XEXP (x, 0)); if (GET_CODE (XEXP (x, 1)) != CONST_INT || INTVAL (XEXP (x, 1)) >= 0) fprintf (file, "+"); output_addr_const (file, XEXP (x, 1)); } break; case MINUS: /* Avoid outputting things like x-x or x+5-x, since some assemblers can't handle that. */ x = simplify_subtraction (x); if (GET_CODE (x) != MINUS) goto restart; output_addr_const (file, XEXP (x, 0)); fprintf (file, "-"); if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0) || GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 1)) == SYMBOL_REF) output_addr_const (file, XEXP (x, 1)); else { fputs (targetm.asm_out.open_paren, file); output_addr_const (file, XEXP (x, 1)); fputs (targetm.asm_out.close_paren, file); } break; case ZERO_EXTEND: case SIGN_EXTEND: case SUBREG: output_addr_const (file, XEXP (x, 0)); break; default: #ifdef OUTPUT_ADDR_CONST_EXTRA OUTPUT_ADDR_CONST_EXTRA (file, x, fail); break; fail: #endif output_operand_lossage ("invalid expression as operand"); } } /* A poor man's fprintf, with the added features of %I, %R, %L, and %U. %R prints the value of REGISTER_PREFIX. %L prints the value of LOCAL_LABEL_PREFIX. %U prints the value of USER_LABEL_PREFIX. %I prints the value of IMMEDIATE_PREFIX. %O runs ASM_OUTPUT_OPCODE to transform what follows in the string. Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%. We handle alternate assembler dialects here, just like output_asm_insn. */ void asm_fprintf (FILE *file, const char *p, ...) { char buf[10]; char *q, c; va_list argptr; va_start (argptr, p); buf[0] = '%'; while ((c = *p++)) switch (c) { #ifdef ASSEMBLER_DIALECT case '{': { int i; /* If we want the first dialect, do nothing. Otherwise, skip DIALECT_NUMBER of strings ending with '|'. */ for (i = 0; i < dialect_number; i++) { while (*p && *p++ != '|') ; if (*p == '|') p++; } } break; case '|': /* Skip to close brace. */ while (*p && *p++ != '}') ; break; case '}': break; #endif case '%': c = *p++; q = &buf[1]; while (strchr ("-+ #0", c)) { *q++ = c; c = *p++; } while (ISDIGIT (c) || c == '.') { *q++ = c; c = *p++; } switch (c) { case '%': putc ('%', file); break; case 'd': case 'i': case 'u': case 'x': case 'X': case 'o': case 'c': *q++ = c; *q = 0; fprintf (file, buf, va_arg (argptr, int)); break; case 'w': /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and 'o' cases, but we do not check for those cases. It means that the value is a HOST_WIDE_INT, which may be either `long' or `long long'. */ memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT)); q += strlen (HOST_WIDE_INT_PRINT); *q++ = *p++; *q = 0; fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT)); break; case 'l': *q++ = c; #ifdef HAVE_LONG_LONG if (*p == 'l') { *q++ = *p++; *q++ = *p++; *q = 0; fprintf (file, buf, va_arg (argptr, long long)); } else #endif { *q++ = *p++; *q = 0; fprintf (file, buf, va_arg (argptr, long)); } break; case 's': *q++ = c; *q = 0; fprintf (file, buf, va_arg (argptr, char *)); break; case 'O': #ifdef ASM_OUTPUT_OPCODE ASM_OUTPUT_OPCODE (asm_out_file, p); #endif break; case 'R': #ifdef REGISTER_PREFIX fprintf (file, "%s", REGISTER_PREFIX); #endif break; case 'I': #ifdef IMMEDIATE_PREFIX fprintf (file, "%s", IMMEDIATE_PREFIX); #endif break; case 'L': #ifdef LOCAL_LABEL_PREFIX fprintf (file, "%s", LOCAL_LABEL_PREFIX); #endif break; case 'U': fputs (user_label_prefix, file); break; #ifdef ASM_FPRINTF_EXTENSIONS /* Uppercase letters are reserved for general use by asm_fprintf and so are not available to target specific code. In order to prevent the ASM_FPRINTF_EXTENSIONS macro from using them then, they are defined here. As they get turned into real extensions to asm_fprintf they should be removed from this list. */ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'J': case 'K': case 'M': case 'N': case 'P': case 'Q': case 'S': case 'T': case 'V': case 'W': case 'Y': case 'Z': break; ASM_FPRINTF_EXTENSIONS (file, argptr, p) #endif default: gcc_unreachable (); } break; default: putc (c, file); } va_end (argptr); } /* Split up a CONST_DOUBLE or integer constant rtx into two rtx's for single words, storing in *FIRST the word that comes first in memory in the target and in *SECOND the other. */ void split_double (rtx value, rtx *first, rtx *second) { if (GET_CODE (value) == CONST_INT) { if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD)) { /* In this case the CONST_INT holds both target words. Extract the bits from it into two word-sized pieces. Sign extend each half to HOST_WIDE_INT. */ unsigned HOST_WIDE_INT low, high; unsigned HOST_WIDE_INT mask, sign_bit, sign_extend; /* Set sign_bit to the most significant bit of a word. */ sign_bit = 1; sign_bit <<= BITS_PER_WORD - 1; /* Set mask so that all bits of the word are set. We could have used 1 << BITS_PER_WORD instead of basing the calculation on sign_bit. However, on machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a compiler warning, even though the code would never be executed. */ mask = sign_bit << 1; mask--; /* Set sign_extend as any remaining bits. */ sign_extend = ~mask; /* Pick the lower word and sign-extend it. */ low = INTVAL (value); low &= mask; if (low & sign_bit) low |= sign_extend; /* Pick the higher word, shifted to the least significant bits, and sign-extend it. */ high = INTVAL (value); high >>= BITS_PER_WORD - 1; high >>= 1; high &= mask; if (high & sign_bit) high |= sign_extend; /* Store the words in the target machine order. */ if (WORDS_BIG_ENDIAN) { *first = GEN_INT (high); *second = GEN_INT (low); } else { *first = GEN_INT (low); *second = GEN_INT (high); } } else { /* The rule for using CONST_INT for a wider mode is that we regard the value as signed. So sign-extend it. */ rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx); if (WORDS_BIG_ENDIAN) { *first = high; *second = value; } else { *first = value; *second = high; } } } else if (GET_CODE (value) != CONST_DOUBLE) { if (WORDS_BIG_ENDIAN) { *first = const0_rtx; *second = value; } else { *first = value; *second = const0_rtx; } } else if (GET_MODE (value) == VOIDmode /* This is the old way we did CONST_DOUBLE integers. */ || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT) { /* In an integer, the words are defined as most and least significant. So order them by the target's convention. */ if (WORDS_BIG_ENDIAN) { *first = GEN_INT (CONST_DOUBLE_HIGH (value)); *second = GEN_INT (CONST_DOUBLE_LOW (value)); } else { *first = GEN_INT (CONST_DOUBLE_LOW (value)); *second = GEN_INT (CONST_DOUBLE_HIGH (value)); } } else { REAL_VALUE_TYPE r; long l[2]; REAL_VALUE_FROM_CONST_DOUBLE (r, value); /* Note, this converts the REAL_VALUE_TYPE to the target's format, splits up the floating point double and outputs exactly 32 bits of it into each of l[0] and l[1] -- not necessarily BITS_PER_WORD bits. */ REAL_VALUE_TO_TARGET_DOUBLE (r, l); /* If 32 bits is an entire word for the target, but not for the host, then sign-extend on the host so that the number will look the same way on the host that it would on the target. See for instance simplify_unary_operation. The #if is needed to avoid compiler warnings. */ #if HOST_BITS_PER_LONG > 32 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32) { if (l[0] & ((long) 1 << 31)) l[0] |= ((long) (-1) << 32); if (l[1] & ((long) 1 << 31)) l[1] |= ((long) (-1) << 32); } #endif *first = GEN_INT (l[0]); *second = GEN_INT (l[1]); } } /* Return nonzero if this function has no function calls. */ int leaf_function_p (void) { rtx insn; rtx link; if (current_function_profile || profile_arc_flag) return 0; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (CALL_P (insn) && ! SIBLING_CALL_P (insn)) return 0; if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE && CALL_P (XVECEXP (PATTERN (insn), 0, 0)) && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0))) return 0; } for (link = current_function_epilogue_delay_list; link; link = XEXP (link, 1)) { insn = XEXP (link, 0); if (CALL_P (insn) && ! SIBLING_CALL_P (insn)) return 0; if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE && CALL_P (XVECEXP (PATTERN (insn), 0, 0)) && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0))) return 0; } return 1; } /* Return 1 if branch is a forward branch. Uses insn_shuid array, so it works only in the final pass. May be used by output templates to customary add branch prediction hints. */ int final_forward_branch_p (rtx insn) { int insn_id, label_id; gcc_assert (uid_shuid); insn_id = INSN_SHUID (insn); label_id = INSN_SHUID (JUMP_LABEL (insn)); /* We've hit some insns that does not have id information available. */ gcc_assert (insn_id && label_id); return insn_id < label_id; } /* On some machines, a function with no call insns can run faster if it doesn't create its own register window. When output, the leaf function should use only the "output" registers. Ordinarily, the function would be compiled to use the "input" registers to find its arguments; it is a candidate for leaf treatment if it uses only the "input" registers. Leaf function treatment means renumbering so the function uses the "output" registers instead. */ #ifdef LEAF_REGISTERS /* Return 1 if this function uses only the registers that can be safely renumbered. */ int only_leaf_regs_used (void) { int i; const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if ((regs_ever_live[i] || global_regs[i]) && ! permitted_reg_in_leaf_functions[i]) return 0; if (current_function_uses_pic_offset_table && pic_offset_table_rtx != 0 && REG_P (pic_offset_table_rtx) && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)]) return 0; return 1; } /* Scan all instructions and renumber all registers into those available in leaf functions. */ static void leaf_renumber_regs (rtx first) { rtx insn; /* Renumber only the actual patterns. The reg-notes can contain frame pointer refs, and renumbering them could crash, and should not be needed. */ for (insn = first; insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) leaf_renumber_regs_insn (PATTERN (insn)); for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1)) if (INSN_P (XEXP (insn, 0))) leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0))); } /* Scan IN_RTX and its subexpressions, and renumber all regs into those available in leaf functions. */ void leaf_renumber_regs_insn (rtx in_rtx) { int i, j; const char *format_ptr; if (in_rtx == 0) return; /* Renumber all input-registers into output-registers. renumbered_regs would be 1 for an output-register; they */ if (REG_P (in_rtx)) { int newreg; /* Don't renumber the same reg twice. */ if (in_rtx->used) return; newreg = REGNO (in_rtx); /* Don't try to renumber pseudo regs. It is possible for a pseudo reg to reach here as part of a REG_NOTE. */ if (newreg >= FIRST_PSEUDO_REGISTER) { in_rtx->used = 1; return; } newreg = LEAF_REG_REMAP (newreg); gcc_assert (newreg >= 0); regs_ever_live[REGNO (in_rtx)] = 0; regs_ever_live[newreg] = 1; REGNO (in_rtx) = newreg; in_rtx->used = 1; } if (INSN_P (in_rtx)) { /* Inside a SEQUENCE, we find insns. Renumber just the patterns of these insns, just as we do for the top-level insns. */ leaf_renumber_regs_insn (PATTERN (in_rtx)); return; } format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++) switch (*format_ptr++) { case 'e': leaf_renumber_regs_insn (XEXP (in_rtx, i)); break; case 'E': if (NULL != XVEC (in_rtx, i)) { for (j = 0; j < XVECLEN (in_rtx, i); j++) leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j)); } break; case 'S': case 's': case '0': case 'i': case 'w': case 'n': case 'u': break; default: gcc_unreachable (); } } #endif /* When -gused is used, emit debug info for only used symbols. But in addition to the standard intercepted debug_hooks there are some direct calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params. Those routines may also be called from a higher level intercepted routine. So to prevent recording data for an inner call to one of these for an intercept, we maintain an intercept nesting counter (debug_nesting). We only save the intercepted arguments if the nesting is 1. */ int debug_nesting = 0; static tree *symbol_queue; int symbol_queue_index = 0; static int symbol_queue_size = 0; /* Generate the symbols for any queued up type symbols we encountered while generating the type info for some originally used symbol. This might generate additional entries in the queue. Only when the nesting depth goes to 0 is this routine called. */ void debug_flush_symbol_queue (void) { int i; /* Make sure that additionally queued items are not flushed prematurely. */ ++debug_nesting; for (i = 0; i < symbol_queue_index; ++i) { /* If we pushed queued symbols then such symbols must be output no matter what anyone else says. Specifically, we need to make sure dbxout_symbol() thinks the symbol was used and also we need to override TYPE_DECL_SUPPRESS_DEBUG which may be set for outside reasons. */ int saved_tree_used = TREE_USED (symbol_queue[i]); int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]); TREE_USED (symbol_queue[i]) = 1; TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0; #ifdef DBX_DEBUGGING_INFO dbxout_symbol (symbol_queue[i], 0); #endif TREE_USED (symbol_queue[i]) = saved_tree_used; TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug; } symbol_queue_index = 0; --debug_nesting; } /* Queue a type symbol needed as part of the definition of a decl symbol. These symbols are generated when debug_flush_symbol_queue() is called. */ void debug_queue_symbol (tree decl) { if (symbol_queue_index >= symbol_queue_size) { symbol_queue_size += 10; symbol_queue = xrealloc (symbol_queue, symbol_queue_size * sizeof (tree)); } symbol_queue[symbol_queue_index++] = decl; } /* Free symbol queue. */ void debug_free_queue (void) { if (symbol_queue) { free (symbol_queue); symbol_queue = NULL; symbol_queue_size = 0; } } /* Turn the RTL into assembly. */ static unsigned int rest_of_handle_final (void) { rtx x; const char *fnname; /* Get the function's name, as described by its RTL. This may be different from the DECL_NAME name used in the source file. */ x = DECL_RTL (current_function_decl); gcc_assert (MEM_P (x)); x = XEXP (x, 0); gcc_assert (GET_CODE (x) == SYMBOL_REF); fnname = XSTR (x, 0); assemble_start_function (current_function_decl, fnname); final_start_function (get_insns (), asm_out_file, optimize); final (get_insns (), asm_out_file, optimize); final_end_function (); #ifdef TARGET_UNWIND_INFO /* ??? The IA-64 ".handlerdata" directive must be issued before the ".endp" directive that closes the procedure descriptor. */ output_function_exception_table (); #endif assemble_end_function (current_function_decl, fnname); #ifndef TARGET_UNWIND_INFO /* Otherwise, it feels unclean to switch sections in the middle. */ output_function_exception_table (); #endif user_defined_section_attribute = false; if (! quiet_flag) fflush (asm_out_file); /* Release all memory allocated by flow. */ free_basic_block_vars (); /* Write DBX symbols if requested. */ /* Note that for those inline functions where we don't initially know for certain that we will be generating an out-of-line copy, the first invocation of this routine (rest_of_compilation) will skip over this code by doing a `goto exit_rest_of_compilation;'. Later on, wrapup_global_declarations will (indirectly) call rest_of_compilation again for those inline functions that need to have out-of-line copies generated. During that call, we *will* be routed past here. */ timevar_push (TV_SYMOUT); (*debug_hooks->function_decl) (current_function_decl); timevar_pop (TV_SYMOUT); return 0; } struct tree_opt_pass pass_final = { NULL, /* name */ NULL, /* gate */ rest_of_handle_final, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_FINAL, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect, /* todo_flags_finish */ 0 /* letter */ }; static unsigned int rest_of_handle_shorten_branches (void) { /* Shorten branches. */ shorten_branches (get_insns ()); return 0; } struct tree_opt_pass pass_shorten_branches = { "shorten", /* name */ NULL, /* gate */ rest_of_handle_shorten_branches, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_FINAL, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func, /* todo_flags_finish */ 0 /* letter */ }; static unsigned int rest_of_clean_state (void) { rtx insn, next; /* It is very important to decompose the RTL instruction chain here: debug information keeps pointing into CODE_LABEL insns inside the function body. If these remain pointing to the other insns, we end up preserving whole RTL chain and attached detailed debug info in memory. */ for (insn = get_insns (); insn; insn = next) { next = NEXT_INSN (insn); NEXT_INSN (insn) = NULL; PREV_INSN (insn) = NULL; } /* In case the function was not output, don't leave any temporary anonymous types queued up for sdb output. */ #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG) sdbout_types (NULL_TREE); #endif reload_completed = 0; epilogue_completed = 0; flow2_completed = 0; no_new_pseudos = 0; #ifdef STACK_REGS regstack_completed = 0; #endif /* Clear out the insn_length contents now that they are no longer valid. */ init_insn_lengths (); /* Show no temporary slots allocated. */ init_temp_slots (); free_basic_block_vars (); free_bb_for_insn (); if (targetm.binds_local_p (current_function_decl)) { int pref = cfun->preferred_stack_boundary; if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary) pref = cfun->stack_alignment_needed; cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary = pref; } /* Make sure volatile mem refs aren't considered valid operands for arithmetic insns. We must call this here if this is a nested inline function, since the above code leaves us in the init_recog state, and the function context push/pop code does not save/restore volatile_ok. ??? Maybe it isn't necessary for expand_start_function to call this anymore if we do it here? */ init_recog_no_volatile (); /* We're done with this function. Free up memory if we can. */ free_after_parsing (cfun); free_after_compilation (cfun); return 0; } struct tree_opt_pass pass_clean_state = { NULL, /* name */ NULL, /* gate */ rest_of_clean_state, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_FINAL, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ PROP_rtl, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ 0 /* letter */ };