Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcc/gthr-win32.h |
/* Threads compatibility routines for libgcc2 and libobjc. */ /* Compile this one with gcc. */ /* Copyright (C) 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Contributed by Mumit Khan <khan@xraylith.wisc.edu>. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* As a special exception, if you link this library with other files, some of which are compiled with GCC, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef GCC_GTHR_WIN32_H #define GCC_GTHR_WIN32_H /* Windows32 threads specific definitions. The windows32 threading model does not map well into pthread-inspired gcc's threading model, and so there are caveats one needs to be aware of. 1. The destructor supplied to __gthread_key_create is ignored for generic x86-win32 ports. This will certainly cause memory leaks due to unreclaimed eh contexts (sizeof (eh_context) is at least 24 bytes for x86 currently). This memory leak may be significant for long-running applications that make heavy use of C++ EH. However, Mingw runtime (version 0.3 or newer) provides a mechanism to emulate pthreads key dtors; the runtime provides a special DLL, linked in if -mthreads option is specified, that runs the dtors in the reverse order of registration when each thread exits. If -mthreads option is not given, a stub is linked in instead of the DLL, which results in memory leak. Other x86-win32 ports can use the same technique of course to avoid the leak. 2. The error codes returned are non-POSIX like, and cast into ints. This may cause incorrect error return due to truncation values on hw where sizeof (DWORD) > sizeof (int). 3. We are currently using a special mutex instead of the Critical Sections, since Win9x does not support TryEnterCriticalSection (while NT does). The basic framework should work well enough. In the long term, GCC needs to use Structured Exception Handling on Windows32. */ #define __GTHREADS 1 #include <errno.h> #ifdef __MINGW32__ #include <_mingw.h> #endif #ifdef _LIBOBJC /* This is necessary to prevent windef.h (included from windows.h) from defining its own BOOL as a typedef. */ #ifndef __OBJC__ #define __OBJC__ #endif #include <windows.h> /* Now undef the windows BOOL. */ #undef BOOL /* Key structure for maintaining thread specific storage */ static DWORD __gthread_objc_data_tls = (DWORD) -1; /* Backend initialization functions */ /* Initialize the threads subsystem. */ int __gthread_objc_init_thread_system (void) { /* Initialize the thread storage key. */ if ((__gthread_objc_data_tls = TlsAlloc ()) != (DWORD) -1) return 0; else return -1; } /* Close the threads subsystem. */ int __gthread_objc_close_thread_system (void) { if (__gthread_objc_data_tls != (DWORD) -1) TlsFree (__gthread_objc_data_tls); return 0; } /* Backend thread functions */ /* Create a new thread of execution. */ objc_thread_t __gthread_objc_thread_detach (void (*func)(void *arg), void *arg) { DWORD thread_id = 0; HANDLE win32_handle; if (!(win32_handle = CreateThread (NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, &thread_id))) thread_id = 0; return (objc_thread_t) thread_id; } /* Set the current thread's priority. */ int __gthread_objc_thread_set_priority (int priority) { int sys_priority = 0; switch (priority) { case OBJC_THREAD_INTERACTIVE_PRIORITY: sys_priority = THREAD_PRIORITY_NORMAL; break; default: case OBJC_THREAD_BACKGROUND_PRIORITY: sys_priority = THREAD_PRIORITY_BELOW_NORMAL; break; case OBJC_THREAD_LOW_PRIORITY: sys_priority = THREAD_PRIORITY_LOWEST; break; } /* Change priority */ if (SetThreadPriority (GetCurrentThread (), sys_priority)) return 0; else return -1; } /* Return the current thread's priority. */ int __gthread_objc_thread_get_priority (void) { int sys_priority; sys_priority = GetThreadPriority (GetCurrentThread ()); switch (sys_priority) { case THREAD_PRIORITY_HIGHEST: case THREAD_PRIORITY_TIME_CRITICAL: case THREAD_PRIORITY_ABOVE_NORMAL: case THREAD_PRIORITY_NORMAL: return OBJC_THREAD_INTERACTIVE_PRIORITY; default: case THREAD_PRIORITY_BELOW_NORMAL: return OBJC_THREAD_BACKGROUND_PRIORITY; case THREAD_PRIORITY_IDLE: case THREAD_PRIORITY_LOWEST: return OBJC_THREAD_LOW_PRIORITY; } /* Couldn't get priority. */ return -1; } /* Yield our process time to another thread. */ void __gthread_objc_thread_yield (void) { Sleep (0); } /* Terminate the current thread. */ int __gthread_objc_thread_exit (void) { /* exit the thread */ ExitThread (__objc_thread_exit_status); /* Failed if we reached here */ return -1; } /* Returns an integer value which uniquely describes a thread. */ objc_thread_t __gthread_objc_thread_id (void) { return (objc_thread_t) GetCurrentThreadId (); } /* Sets the thread's local storage pointer. */ int __gthread_objc_thread_set_data (void *value) { if (TlsSetValue (__gthread_objc_data_tls, value)) return 0; else return -1; } /* Returns the thread's local storage pointer. */ void * __gthread_objc_thread_get_data (void) { DWORD lasterror; void *ptr; lasterror = GetLastError (); ptr = TlsGetValue (__gthread_objc_data_tls); /* Return thread data. */ SetLastError (lasterror); return ptr; } /* Backend mutex functions */ /* Allocate a mutex. */ int __gthread_objc_mutex_allocate (objc_mutex_t mutex) { if ((mutex->backend = (void *) CreateMutex (NULL, 0, NULL)) == NULL) return -1; else return 0; } /* Deallocate a mutex. */ int __gthread_objc_mutex_deallocate (objc_mutex_t mutex) { CloseHandle ((HANDLE) (mutex->backend)); return 0; } /* Grab a lock on a mutex. */ int __gthread_objc_mutex_lock (objc_mutex_t mutex) { int status; status = WaitForSingleObject ((HANDLE) (mutex->backend), INFINITE); if (status != WAIT_OBJECT_0 && status != WAIT_ABANDONED) return -1; else return 0; } /* Try to grab a lock on a mutex. */ int __gthread_objc_mutex_trylock (objc_mutex_t mutex) { int status; status = WaitForSingleObject ((HANDLE) (mutex->backend), 0); if (status != WAIT_OBJECT_0 && status != WAIT_ABANDONED) return -1; else return 0; } /* Unlock the mutex */ int __gthread_objc_mutex_unlock (objc_mutex_t mutex) { if (ReleaseMutex ((HANDLE) (mutex->backend)) == 0) return -1; else return 0; } /* Backend condition mutex functions */ /* Allocate a condition. */ int __gthread_objc_condition_allocate (objc_condition_t condition) { /* Unimplemented. */ return -1; } /* Deallocate a condition. */ int __gthread_objc_condition_deallocate (objc_condition_t condition) { /* Unimplemented. */ return -1; } /* Wait on the condition */ int __gthread_objc_condition_wait (objc_condition_t condition, objc_mutex_t mutex) { /* Unimplemented. */ return -1; } /* Wake up all threads waiting on this condition. */ int __gthread_objc_condition_broadcast (objc_condition_t condition) { /* Unimplemented. */ return -1; } /* Wake up one thread waiting on this condition. */ int __gthread_objc_condition_signal (objc_condition_t condition) { /* Unimplemented. */ return -1; } #else /* _LIBOBJC */ #ifdef __cplusplus extern "C" { #endif typedef unsigned long __gthread_key_t; typedef struct { int done; long started; } __gthread_once_t; typedef struct { long counter; void *sema; } __gthread_mutex_t; typedef struct { long counter; long depth; unsigned long owner; void *sema; } __gthread_recursive_mutex_t; #define __GTHREAD_ONCE_INIT {0, -1} #define __GTHREAD_MUTEX_INIT_FUNCTION __gthread_mutex_init_function #define __GTHREAD_MUTEX_INIT_DEFAULT {-1, 0} #define __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION \ __gthread_recursive_mutex_init_function #define __GTHREAD_RECURSIVE_MUTEX_INIT_DEFAULT {-1, 0, 0, 0} #if __MINGW32_MAJOR_VERSION >= 1 || \ (__MINGW32_MAJOR_VERSION == 0 && __MINGW32_MINOR_VERSION > 2) #define MINGW32_SUPPORTS_MT_EH 1 /* Mingw runtime >= v0.3 provides a magic variable that is set to nonzero if -mthreads option was specified, or 0 otherwise. This is to get around the lack of weak symbols in PE-COFF. */ extern int _CRT_MT; extern int __mingwthr_key_dtor (unsigned long, void (*) (void *)); #endif /* __MINGW32__ version */ /* The Windows95 kernel does not export InterlockedCompareExchange. This provides a substitute. When building apps that reference gthread_mutex_try_lock, the __GTHREAD_I486_INLINE_LOCK_PRIMITIVES macro must be defined if Windows95 is a target. Currently gthread_mutex_try_lock is not referenced by libgcc or libstdc++. */ #ifdef __GTHREAD_I486_INLINE_LOCK_PRIMITIVES static inline long __gthr_i486_lock_cmp_xchg(long *dest, long xchg, long comperand) { long result; __asm__ __volatile__ ("\n\ lock\n\ cmpxchg{l} {%4, %1|%1, %4}\n" : "=a" (result), "=m" (*dest) : "0" (comperand), "m" (*dest), "r" (xchg) : "cc"); return result; } #define __GTHR_W32_InterlockedCompareExchange __gthr_i486_lock_cmp_xchg #else /* __GTHREAD_I486_INLINE_LOCK_PRIMITIVES */ #define __GTHR_W32_InterlockedCompareExchange InterlockedCompareExchange #endif /* __GTHREAD_I486_INLINE_LOCK_PRIMITIVES */ static inline int __gthread_active_p (void) { #ifdef MINGW32_SUPPORTS_MT_EH return _CRT_MT; #else return 1; #endif } #if __GTHREAD_HIDE_WIN32API /* The implementations are in config/i386/gthr-win32.c in libgcc.a. Only stubs are exposed to avoid polluting the C++ namespace with windows api definitions. */ extern int __gthr_win32_once (__gthread_once_t *, void (*) (void)); extern int __gthr_win32_key_create (__gthread_key_t *, void (*) (void*)); extern int __gthr_win32_key_delete (__gthread_key_t); extern void * __gthr_win32_getspecific (__gthread_key_t); extern int __gthr_win32_setspecific (__gthread_key_t, const void *); extern void __gthr_win32_mutex_init_function (__gthread_mutex_t *); extern int __gthr_win32_mutex_lock (__gthread_mutex_t *); extern int __gthr_win32_mutex_trylock (__gthread_mutex_t *); extern int __gthr_win32_mutex_unlock (__gthread_mutex_t *); extern void __gthr_win32_recursive_mutex_init_function (__gthread_recursive_mutex_t *); extern int __gthr_win32_recursive_mutex_lock (__gthread_recursive_mutex_t *); extern int __gthr_win32_recursive_mutex_trylock (__gthread_recursive_mutex_t *); extern int __gthr_win32_recursive_mutex_unlock (__gthread_recursive_mutex_t *); static inline int __gthread_once (__gthread_once_t *once, void (*func) (void)) { if (__gthread_active_p ()) return __gthr_win32_once (once, func); else return -1; } static inline int __gthread_key_create (__gthread_key_t *key, void (*dtor) (void *)) { return __gthr_win32_key_create (key, dtor); } static inline int __gthread_key_delete (__gthread_key_t key) { return __gthr_win32_key_delete (key); } static inline void * __gthread_getspecific (__gthread_key_t key) { return __gthr_win32_getspecific (key); } static inline int __gthread_setspecific (__gthread_key_t key, const void *ptr) { return __gthr_win32_setspecific (key, ptr); } static inline void __gthread_mutex_init_function (__gthread_mutex_t *mutex) { __gthr_win32_mutex_init_function (mutex); } static inline int __gthread_mutex_lock (__gthread_mutex_t *mutex) { if (__gthread_active_p ()) return __gthr_win32_mutex_lock (mutex); else return 0; } static inline int __gthread_mutex_trylock (__gthread_mutex_t *mutex) { if (__gthread_active_p ()) return __gthr_win32_mutex_trylock (mutex); else return 0; } static inline int __gthread_mutex_unlock (__gthread_mutex_t *mutex) { if (__gthread_active_p ()) return __gthr_win32_mutex_unlock (mutex); else return 0; } static inline void __gthread_recursive_mutex_init_function (__gthread_recursive_mutex_t *mutex) { __gthr_win32_recursive_mutex_init_function (mutex); } static inline int __gthread_recursive_mutex_lock (__gthread_recursive_mutex_t *mutex) { if (__gthread_active_p ()) return __gthr_win32_recursive_mutex_lock (mutex); else return 0; } static inline int __gthread_recursive_mutex_trylock (__gthread_recursive_mutex_t *mutex) { if (__gthread_active_p ()) return __gthr_win32_recursive_mutex_trylock (mutex); else return 0; } static inline int __gthread_recursive_mutex_unlock (__gthread_recursive_mutex_t *mutex) { if (__gthread_active_p ()) return __gthr_win32_recursive_mutex_unlock (mutex); else return 0; } #else /* ! __GTHREAD_HIDE_WIN32API */ #include <windows.h> #include <errno.h> static inline int __gthread_once (__gthread_once_t *once, void (*func) (void)) { if (! __gthread_active_p ()) return -1; else if (once == NULL || func == NULL) return EINVAL; if (! once->done) { if (InterlockedIncrement (&(once->started)) == 0) { (*func) (); once->done = TRUE; } else { /* Another thread is currently executing the code, so wait for it to finish; yield the CPU in the meantime. If performance does become an issue, the solution is to use an Event that we wait on here (and set above), but that implies a place to create the event before this routine is called. */ while (! once->done) Sleep (0); } } return 0; } /* Windows32 thread local keys don't support destructors; this leads to leaks, especially in threaded applications making extensive use of C++ EH. Mingw uses a thread-support DLL to work-around this problem. */ static inline int __gthread_key_create (__gthread_key_t *key, void (*dtor) (void *)) { int status = 0; DWORD tls_index = TlsAlloc (); if (tls_index != 0xFFFFFFFF) { *key = tls_index; #ifdef MINGW32_SUPPORTS_MT_EH /* Mingw runtime will run the dtors in reverse order for each thread when the thread exits. */ status = __mingwthr_key_dtor (*key, dtor); #endif } else status = (int) GetLastError (); return status; } static inline int __gthread_key_delete (__gthread_key_t key) { return (TlsFree (key) != 0) ? 0 : (int) GetLastError (); } static inline void * __gthread_getspecific (__gthread_key_t key) { DWORD lasterror; void *ptr; lasterror = GetLastError (); ptr = TlsGetValue (key); SetLastError (lasterror); return ptr; } static inline int __gthread_setspecific (__gthread_key_t key, const void *ptr) { return (TlsSetValue (key, (void*) ptr) != 0) ? 0 : (int) GetLastError (); } static inline void __gthread_mutex_init_function (__gthread_mutex_t *mutex) { mutex->counter = -1; mutex->sema = CreateSemaphore (NULL, 0, 65535, NULL); } static inline int __gthread_mutex_lock (__gthread_mutex_t *mutex) { int status = 0; if (__gthread_active_p ()) { if (InterlockedIncrement (&mutex->counter) == 0 || WaitForSingleObject (mutex->sema, INFINITE) == WAIT_OBJECT_0) status = 0; else { /* WaitForSingleObject returns WAIT_FAILED, and we can only do some best-effort cleanup here. */ InterlockedDecrement (&mutex->counter); status = 1; } } return status; } static inline int __gthread_mutex_trylock (__gthread_mutex_t *mutex) { int status = 0; if (__gthread_active_p ()) { if (__GTHR_W32_InterlockedCompareExchange (&mutex->counter, 0, -1) < 0) status = 0; else status = 1; } return status; } static inline int __gthread_mutex_unlock (__gthread_mutex_t *mutex) { if (__gthread_active_p ()) { if (InterlockedDecrement (&mutex->counter) >= 0) return ReleaseSemaphore (mutex->sema, 1, NULL) ? 0 : 1; } return 0; } static inline void __gthread_recursive_mutex_init_function (__gthread_recursive_mutex_t *mutex) { mutex->counter = -1; mutex->depth = 0; mutex->owner = 0; mutex->sema = CreateSemaphore (NULL, 0, 65535, NULL); } static inline int __gthread_recursive_mutex_lock (__gthread_recursive_mutex_t *mutex) { if (__gthread_active_p ()) { DWORD me = GetCurrentThreadId(); if (InterlockedIncrement (&mutex->counter) == 0) { mutex->depth = 1; mutex->owner = me; } else if (mutex->owner == me) { InterlockedDecrement (&mutex->counter); ++(mutex->depth); } else if (WaitForSingleObject (mutex->sema, INFINITE) == WAIT_OBJECT_0) { mutex->depth = 1; mutex->owner = me; } else { /* WaitForSingleObject returns WAIT_FAILED, and we can only do some best-effort cleanup here. */ InterlockedDecrement (&mutex->counter); return 1; } } return 0; } static inline int __gthread_recursive_mutex_trylock (__gthread_recursive_mutex_t *mutex) { if (__gthread_active_p ()) { DWORD me = GetCurrentThreadId(); if (__GTHR_W32_InterlockedCompareExchange (&mutex->counter, 0, -1) < 0) { mutex->depth = 1; mutex->owner = me; } else if (mutex->owner == me) ++(mutex->depth); else return 1; } return 0; } static inline int __gthread_recursive_mutex_unlock (__gthread_recursive_mutex_t *mutex) { if (__gthread_active_p ()) { --(mutex->depth); if (mutex->depth == 0) { mutex->owner = 0; if (InterlockedDecrement (&mutex->counter) >= 0) return ReleaseSemaphore (mutex->sema, 1, NULL) ? 0 : 1; } } return 0; } #endif /* __GTHREAD_HIDE_WIN32API */ #ifdef __cplusplus } #endif #endif /* _LIBOBJC */ #endif /* ! GCC_GTHR_WIN32_H */