Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcc/sbitmap.c |
/* Simple bitmaps. Copyright (C) 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "flags.h" #include "hard-reg-set.h" #include "obstack.h" #include "basic-block.h" /* Bitmap manipulation routines. */ /* Allocate a simple bitmap of N_ELMS bits. */ sbitmap sbitmap_alloc (unsigned int n_elms) { unsigned int bytes, size, amt; sbitmap bmap; size = SBITMAP_SET_SIZE (n_elms); bytes = size * sizeof (SBITMAP_ELT_TYPE); amt = (sizeof (struct simple_bitmap_def) + bytes - sizeof (SBITMAP_ELT_TYPE)); bmap = xmalloc (amt); bmap->n_bits = n_elms; bmap->size = size; bmap->bytes = bytes; return bmap; } /* Resize a simple bitmap BMAP to N_ELMS bits. If increasing the size of BMAP, clear the new bits to zero if the DEF argument is zero, and set them to one otherwise. */ sbitmap sbitmap_resize (sbitmap bmap, unsigned int n_elms, int def) { unsigned int bytes, size, amt; unsigned int last_bit; size = SBITMAP_SET_SIZE (n_elms); bytes = size * sizeof (SBITMAP_ELT_TYPE); if (bytes > bmap->bytes) { amt = (sizeof (struct simple_bitmap_def) + bytes - sizeof (SBITMAP_ELT_TYPE)); bmap = xrealloc (bmap, amt); } if (n_elms > bmap->n_bits) { if (def) { memset (bmap->elms + bmap->size, -1, bytes - bmap->bytes); /* Set the new bits if the original last element. */ last_bit = bmap->n_bits % SBITMAP_ELT_BITS; if (last_bit) bmap->elms[bmap->size - 1] |= ~((SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit)); /* Clear the unused bit in the new last element. */ last_bit = n_elms % SBITMAP_ELT_BITS; if (last_bit) bmap->elms[size - 1] &= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit); } else memset (bmap->elms + bmap->size, 0, bytes - bmap->bytes); } else if (n_elms < bmap->n_bits) { /* Clear the surplus bits in the last word. */ last_bit = n_elms % SBITMAP_ELT_BITS; if (last_bit) bmap->elms[size - 1] &= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit); } bmap->n_bits = n_elms; bmap->size = size; bmap->bytes = bytes; return bmap; } /* Re-allocate a simple bitmap of N_ELMS bits. New storage is uninitialized. */ sbitmap sbitmap_realloc (sbitmap src, unsigned int n_elms) { unsigned int bytes, size, amt; sbitmap bmap; size = SBITMAP_SET_SIZE (n_elms); bytes = size * sizeof (SBITMAP_ELT_TYPE); amt = (sizeof (struct simple_bitmap_def) + bytes - sizeof (SBITMAP_ELT_TYPE)); if (src->bytes >= bytes) { src->n_bits = n_elms; return src; } bmap = (sbitmap) xrealloc (src, amt); bmap->n_bits = n_elms; bmap->size = size; bmap->bytes = bytes; return bmap; } /* Allocate a vector of N_VECS bitmaps of N_ELMS bits. */ sbitmap * sbitmap_vector_alloc (unsigned int n_vecs, unsigned int n_elms) { unsigned int i, bytes, offset, elm_bytes, size, amt, vector_bytes; sbitmap *bitmap_vector; size = SBITMAP_SET_SIZE (n_elms); bytes = size * sizeof (SBITMAP_ELT_TYPE); elm_bytes = (sizeof (struct simple_bitmap_def) + bytes - sizeof (SBITMAP_ELT_TYPE)); vector_bytes = n_vecs * sizeof (sbitmap *); /* Round up `vector_bytes' to account for the alignment requirements of an sbitmap. One could allocate the vector-table and set of sbitmaps separately, but that requires maintaining two pointers or creating a cover struct to hold both pointers (so our result is still just one pointer). Neither is a bad idea, but this is simpler for now. */ { /* Based on DEFAULT_ALIGNMENT computation in obstack.c. */ struct { char x; SBITMAP_ELT_TYPE y; } align; int alignment = (char *) & align.y - & align.x; vector_bytes = (vector_bytes + alignment - 1) & ~ (alignment - 1); } amt = vector_bytes + (n_vecs * elm_bytes); bitmap_vector = xmalloc (amt); for (i = 0, offset = vector_bytes; i < n_vecs; i++, offset += elm_bytes) { sbitmap b = (sbitmap) ((char *) bitmap_vector + offset); bitmap_vector[i] = b; b->n_bits = n_elms; b->size = size; b->bytes = bytes; } return bitmap_vector; } /* Copy sbitmap SRC to DST. */ void sbitmap_copy (sbitmap dst, sbitmap src) { memcpy (dst->elms, src->elms, sizeof (SBITMAP_ELT_TYPE) * dst->size); } /* Determine if a == b. */ int sbitmap_equal (sbitmap a, sbitmap b) { return !memcmp (a->elms, b->elms, sizeof (SBITMAP_ELT_TYPE) * a->size); } /* Zero all elements in a bitmap. */ void sbitmap_zero (sbitmap bmap) { memset (bmap->elms, 0, bmap->bytes); } /* Set all elements in a bitmap to ones. */ void sbitmap_ones (sbitmap bmap) { unsigned int last_bit; memset (bmap->elms, -1, bmap->bytes); last_bit = bmap->n_bits % SBITMAP_ELT_BITS; if (last_bit) bmap->elms[bmap->size - 1] = (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit); } /* Zero a vector of N_VECS bitmaps. */ void sbitmap_vector_zero (sbitmap *bmap, unsigned int n_vecs) { unsigned int i; for (i = 0; i < n_vecs; i++) sbitmap_zero (bmap[i]); } /* Set a vector of N_VECS bitmaps to ones. */ void sbitmap_vector_ones (sbitmap *bmap, unsigned int n_vecs) { unsigned int i; for (i = 0; i < n_vecs; i++) sbitmap_ones (bmap[i]); } /* Set DST to be A union (B - C). DST = A | (B & ~C). Returns true if any change is made. */ bool sbitmap_union_of_diff_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; sbitmap_ptr cp = c->elms; SBITMAP_ELT_TYPE changed = 0; for (i = 0; i < n; i++) { SBITMAP_ELT_TYPE tmp = *ap++ | (*bp++ & ~*cp++); changed |= *dstp ^ tmp; *dstp++ = tmp; } return changed != 0; } void sbitmap_union_of_diff (sbitmap dst, sbitmap a, sbitmap b, sbitmap c) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; sbitmap_ptr cp = c->elms; for (i = 0; i < n; i++) *dstp++ = *ap++ | (*bp++ & ~*cp++); } /* Set bitmap DST to the bitwise negation of the bitmap SRC. */ void sbitmap_not (sbitmap dst, sbitmap src) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr srcp = src->elms; unsigned int last_bit; for (i = 0; i < n; i++) *dstp++ = ~*srcp++; /* Zero all bits past n_bits, by ANDing dst with sbitmap_ones. */ last_bit = src->n_bits % SBITMAP_ELT_BITS; if (last_bit) dst->elms[n-1] = dst->elms[n-1] & ((SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit)); } /* Set the bits in DST to be the difference between the bits in A and the bits in B. i.e. dst = a & (~b). */ void sbitmap_difference (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, dst_size = dst->size; unsigned int min_size = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; /* A should be at least as large as DEST, to have a defined source. */ gcc_assert (a->size >= dst_size); /* If minuend is smaller, we simply pretend it to be zero bits, i.e. only copy the subtrahend into dest. */ if (b->size < min_size) min_size = b->size; for (i = 0; i < min_size; i++) *dstp++ = *ap++ & (~*bp++); /* Now fill the rest of dest from A, if B was too short. This makes sense only when destination and A differ. */ if (dst != a && i != dst_size) for (; i < dst_size; i++) *dstp++ = *ap++; } /* Return true if there are any bits set in A are also set in B. Return false otherwise. */ bool sbitmap_any_common_bits (sbitmap a, sbitmap b) { sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; unsigned int i, n; n = MIN (a->size, b->size); for (i = 0; i < n; i++) if ((*ap++ & *bp++) != 0) return true; return false; } /* Set DST to be (A and B). Return nonzero if any change is made. */ bool sbitmap_a_and_b_cg (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; SBITMAP_ELT_TYPE changed = 0; for (i = 0; i < n; i++) { SBITMAP_ELT_TYPE tmp = *ap++ & *bp++; changed |= *dstp ^ tmp; *dstp++ = tmp; } return changed != 0; } void sbitmap_a_and_b (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; for (i = 0; i < n; i++) *dstp++ = *ap++ & *bp++; } /* Set DST to be (A xor B)). Return nonzero if any change is made. */ bool sbitmap_a_xor_b_cg (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; SBITMAP_ELT_TYPE changed = 0; for (i = 0; i < n; i++) { SBITMAP_ELT_TYPE tmp = *ap++ ^ *bp++; changed |= *dstp ^ tmp; *dstp++ = tmp; } return changed != 0; } void sbitmap_a_xor_b (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; for (i = 0; i < n; i++) *dstp++ = *ap++ ^ *bp++; } /* Set DST to be (A or B)). Return nonzero if any change is made. */ bool sbitmap_a_or_b_cg (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; SBITMAP_ELT_TYPE changed = 0; for (i = 0; i < n; i++) { SBITMAP_ELT_TYPE tmp = *ap++ | *bp++; changed |= *dstp ^ tmp; *dstp++ = tmp; } return changed != 0; } void sbitmap_a_or_b (sbitmap dst, sbitmap a, sbitmap b) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; for (i = 0; i < n; i++) *dstp++ = *ap++ | *bp++; } /* Return nonzero if A is a subset of B. */ bool sbitmap_a_subset_b_p (sbitmap a, sbitmap b) { unsigned int i, n = a->size; sbitmap_ptr ap, bp; for (ap = a->elms, bp = b->elms, i = 0; i < n; i++, ap++, bp++) if ((*ap | *bp) != *bp) return false; return true; } /* Set DST to be (A or (B and C)). Return nonzero if any change is made. */ bool sbitmap_a_or_b_and_c_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; sbitmap_ptr cp = c->elms; SBITMAP_ELT_TYPE changed = 0; for (i = 0; i < n; i++) { SBITMAP_ELT_TYPE tmp = *ap++ | (*bp++ & *cp++); changed |= *dstp ^ tmp; *dstp++ = tmp; } return changed != 0; } void sbitmap_a_or_b_and_c (sbitmap dst, sbitmap a, sbitmap b, sbitmap c) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; sbitmap_ptr cp = c->elms; for (i = 0; i < n; i++) *dstp++ = *ap++ | (*bp++ & *cp++); } /* Set DST to be (A and (B or C)). Return nonzero if any change is made. */ bool sbitmap_a_and_b_or_c_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; sbitmap_ptr cp = c->elms; SBITMAP_ELT_TYPE changed = 0; for (i = 0; i < n; i++) { SBITMAP_ELT_TYPE tmp = *ap++ & (*bp++ | *cp++); changed |= *dstp ^ tmp; *dstp++ = tmp; } return changed != 0; } void sbitmap_a_and_b_or_c (sbitmap dst, sbitmap a, sbitmap b, sbitmap c) { unsigned int i, n = dst->size; sbitmap_ptr dstp = dst->elms; sbitmap_ptr ap = a->elms; sbitmap_ptr bp = b->elms; sbitmap_ptr cp = c->elms; for (i = 0; i < n; i++) *dstp++ = *ap++ & (*bp++ | *cp++); } #ifdef IN_GCC /* Set the bitmap DST to the intersection of SRC of successors of block number BB, using the new flow graph structures. */ void sbitmap_intersection_of_succs (sbitmap dst, sbitmap *src, int bb) { basic_block b = BASIC_BLOCK (bb); unsigned int set_size = dst->size; edge e; unsigned ix; for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++) { e = EDGE_SUCC (b, ix); if (e->dest == EXIT_BLOCK_PTR) continue; sbitmap_copy (dst, src[e->dest->index]); break; } if (e == 0) sbitmap_ones (dst); else for (++ix; ix < EDGE_COUNT (b->succs); ix++) { unsigned int i; sbitmap_ptr p, r; e = EDGE_SUCC (b, ix); if (e->dest == EXIT_BLOCK_PTR) continue; p = src[e->dest->index]->elms; r = dst->elms; for (i = 0; i < set_size; i++) *r++ &= *p++; } } /* Set the bitmap DST to the intersection of SRC of predecessors of block number BB, using the new flow graph structures. */ void sbitmap_intersection_of_preds (sbitmap dst, sbitmap *src, int bb) { basic_block b = BASIC_BLOCK (bb); unsigned int set_size = dst->size; edge e; unsigned ix; for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++) { e = EDGE_PRED (b, ix); if (e->src == ENTRY_BLOCK_PTR) continue; sbitmap_copy (dst, src[e->src->index]); break; } if (e == 0) sbitmap_ones (dst); else for (++ix; ix < EDGE_COUNT (b->preds); ix++) { unsigned int i; sbitmap_ptr p, r; e = EDGE_PRED (b, ix); if (e->src == ENTRY_BLOCK_PTR) continue; p = src[e->src->index]->elms; r = dst->elms; for (i = 0; i < set_size; i++) *r++ &= *p++; } } /* Set the bitmap DST to the union of SRC of successors of block number BB, using the new flow graph structures. */ void sbitmap_union_of_succs (sbitmap dst, sbitmap *src, int bb) { basic_block b = BASIC_BLOCK (bb); unsigned int set_size = dst->size; edge e; unsigned ix; for (ix = 0; ix < EDGE_COUNT (b->succs); ix++) { e = EDGE_SUCC (b, ix); if (e->dest == EXIT_BLOCK_PTR) continue; sbitmap_copy (dst, src[e->dest->index]); break; } if (ix == EDGE_COUNT (b->succs)) sbitmap_zero (dst); else for (ix++; ix < EDGE_COUNT (b->succs); ix++) { unsigned int i; sbitmap_ptr p, r; e = EDGE_SUCC (b, ix); if (e->dest == EXIT_BLOCK_PTR) continue; p = src[e->dest->index]->elms; r = dst->elms; for (i = 0; i < set_size; i++) *r++ |= *p++; } } /* Set the bitmap DST to the union of SRC of predecessors of block number BB, using the new flow graph structures. */ void sbitmap_union_of_preds (sbitmap dst, sbitmap *src, int bb) { basic_block b = BASIC_BLOCK (bb); unsigned int set_size = dst->size; edge e; unsigned ix; for (ix = 0; ix < EDGE_COUNT (b->preds); ix++) { e = EDGE_PRED (b, ix); if (e->src== ENTRY_BLOCK_PTR) continue; sbitmap_copy (dst, src[e->src->index]); break; } if (ix == EDGE_COUNT (b->preds)) sbitmap_zero (dst); else for (ix++; ix < EDGE_COUNT (b->preds); ix++) { unsigned int i; sbitmap_ptr p, r; e = EDGE_PRED (b, ix); if (e->src == ENTRY_BLOCK_PTR) continue; p = src[e->src->index]->elms; r = dst->elms; for (i = 0; i < set_size; i++) *r++ |= *p++; } } #endif /* Return number of first bit set in the bitmap, -1 if none. */ int sbitmap_first_set_bit (sbitmap bmap) { unsigned int n = 0; sbitmap_iterator sbi; EXECUTE_IF_SET_IN_SBITMAP (bmap, 0, n, sbi) return n; return -1; } /* Return number of last bit set in the bitmap, -1 if none. */ int sbitmap_last_set_bit (sbitmap bmap) { int i; SBITMAP_ELT_TYPE *ptr = bmap->elms; for (i = bmap->size - 1; i >= 0; i--) { SBITMAP_ELT_TYPE word = ptr[i]; if (word != 0) { unsigned int index = (i + 1) * SBITMAP_ELT_BITS - 1; SBITMAP_ELT_TYPE mask = (SBITMAP_ELT_TYPE) 1 << (SBITMAP_ELT_BITS - 1); while (1) { if ((word & mask) != 0) return index; mask >>= 1; index--; } } } return -1; } void dump_sbitmap (FILE *file, sbitmap bmap) { unsigned int i, n, j; unsigned int set_size = bmap->size; unsigned int total_bits = bmap->n_bits; fprintf (file, " "); for (i = n = 0; i < set_size && n < total_bits; i++) for (j = 0; j < SBITMAP_ELT_BITS && n < total_bits; j++, n++) { if (n != 0 && n % 10 == 0) fprintf (file, " "); fprintf (file, "%d", (bmap->elms[i] & ((SBITMAP_ELT_TYPE) 1 << j)) != 0); } fprintf (file, "\n"); } void dump_sbitmap_file (FILE *file, sbitmap bmap) { unsigned int i, pos; fprintf (file, "n_bits = %d, set = {", bmap->n_bits); for (pos = 30, i = 0; i < bmap->n_bits; i++) if (TEST_BIT (bmap, i)) { if (pos > 70) { fprintf (file, "\n "); pos = 0; } fprintf (file, "%d ", i); pos += 2 + (i >= 10) + (i >= 100) + (i >= 1000); } fprintf (file, "}\n"); } void debug_sbitmap (sbitmap bmap) { dump_sbitmap_file (stderr, bmap); } void dump_sbitmap_vector (FILE *file, const char *title, const char *subtitle, sbitmap *bmaps, int n_maps) { int bb; fprintf (file, "%s\n", title); for (bb = 0; bb < n_maps; bb++) { fprintf (file, "%s %d\n", subtitle, bb); dump_sbitmap (file, bmaps[bb]); } fprintf (file, "\n"); }