Current Path : /compat/linux/proc/self/root/usr/src/contrib/gcclibs/libcpp/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gcclibs/libcpp/symtab.c |
/* Hash tables. Copyright (C) 2000, 2001, 2003, 2004 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. In other words, you are welcome to use, share and improve this program. You are forbidden to forbid anyone else to use, share and improve what you give them. Help stamp out software-hoarding! */ #include "config.h" #include "system.h" #include "symtab.h" /* The code below is a specialization of Vladimir Makarov's expandable hash tables (see libiberty/hashtab.c). The abstraction penalty was too high to continue using the generic form. This code knows intrinsically how to calculate a hash value, and how to compare an existing entry with a potential new one. Also, the ability to delete members from the table has been removed. */ static unsigned int calc_hash (const unsigned char *, size_t); static void ht_expand (hash_table *); static double approx_sqrt (double); /* Calculate the hash of the string STR of length LEN. */ static unsigned int calc_hash (const unsigned char *str, size_t len) { size_t n = len; unsigned int r = 0; while (n--) r = HT_HASHSTEP (r, *str++); return HT_HASHFINISH (r, len); } /* Initialize an identifier hashtable. */ hash_table * ht_create (unsigned int order) { unsigned int nslots = 1 << order; hash_table *table; table = XCNEW (hash_table); /* Strings need no alignment. */ _obstack_begin (&table->stack, 0, 0, (void *(*) (long)) xmalloc, (void (*) (void *)) free); obstack_alignment_mask (&table->stack) = 0; table->entries = XCNEWVEC (hashnode, nslots); table->entries_owned = true; table->nslots = nslots; return table; } /* Frees all memory associated with a hash table. */ void ht_destroy (hash_table *table) { obstack_free (&table->stack, NULL); if (table->entries_owned) free (table->entries); free (table); } /* Returns the hash entry for the a STR of length LEN. If that string already exists in the table, returns the existing entry, and, if INSERT is CPP_ALLOCED, frees the last obstack object. If the identifier hasn't been seen before, and INSERT is CPP_NO_INSERT, returns NULL. Otherwise insert and returns a new entry. A new string is alloced if INSERT is CPP_ALLOC, otherwise INSERT is CPP_ALLOCED and the item is assumed to be at the top of the obstack. */ hashnode ht_lookup (hash_table *table, const unsigned char *str, size_t len, enum ht_lookup_option insert) { return ht_lookup_with_hash (table, str, len, calc_hash (str, len), insert); } hashnode ht_lookup_with_hash (hash_table *table, const unsigned char *str, size_t len, unsigned int hash, enum ht_lookup_option insert) { unsigned int hash2; unsigned int index; size_t sizemask; hashnode node; sizemask = table->nslots - 1; index = hash & sizemask; table->searches++; node = table->entries[index]; if (node != NULL) { if (node->hash_value == hash && HT_LEN (node) == (unsigned int) len && !memcmp (HT_STR (node), str, len)) { if (insert == HT_ALLOCED) /* The string we search for was placed at the end of the obstack. Release it. */ obstack_free (&table->stack, (void *) str); return node; } /* hash2 must be odd, so we're guaranteed to visit every possible location in the table during rehashing. */ hash2 = ((hash * 17) & sizemask) | 1; for (;;) { table->collisions++; index = (index + hash2) & sizemask; node = table->entries[index]; if (node == NULL) break; if (node->hash_value == hash && HT_LEN (node) == (unsigned int) len && !memcmp (HT_STR (node), str, len)) { if (insert == HT_ALLOCED) /* The string we search for was placed at the end of the obstack. Release it. */ obstack_free (&table->stack, (void *) str); return node; } } } if (insert == HT_NO_INSERT) return NULL; node = (*table->alloc_node) (table); table->entries[index] = node; HT_LEN (node) = (unsigned int) len; node->hash_value = hash; if (insert == HT_ALLOC) HT_STR (node) = (const unsigned char *) obstack_copy0 (&table->stack, str, len); else HT_STR (node) = str; if (++table->nelements * 4 >= table->nslots * 3) /* Must expand the string table. */ ht_expand (table); return node; } /* Double the size of a hash table, re-hashing existing entries. */ static void ht_expand (hash_table *table) { hashnode *nentries, *p, *limit; unsigned int size, sizemask; size = table->nslots * 2; nentries = XCNEWVEC (hashnode, size); sizemask = size - 1; p = table->entries; limit = p + table->nslots; do if (*p) { unsigned int index, hash, hash2; hash = (*p)->hash_value; index = hash & sizemask; if (nentries[index]) { hash2 = ((hash * 17) & sizemask) | 1; do { index = (index + hash2) & sizemask; } while (nentries[index]); } nentries[index] = *p; } while (++p < limit); if (table->entries_owned) free (table->entries); table->entries_owned = true; table->entries = nentries; table->nslots = size; } /* For all nodes in TABLE, callback CB with parameters TABLE->PFILE, the node, and V. */ void ht_forall (hash_table *table, ht_cb cb, const void *v) { hashnode *p, *limit; p = table->entries; limit = p + table->nslots; do if (*p) { if ((*cb) (table->pfile, *p, v) == 0) break; } while (++p < limit); } /* Restore the hash table. */ void ht_load (hash_table *ht, hashnode *entries, unsigned int nslots, unsigned int nelements, bool own) { if (ht->entries_owned) free (ht->entries); ht->entries = entries; ht->nslots = nslots; ht->nelements = nelements; ht->entries_owned = own; } /* Dump allocation statistics to stderr. */ void ht_dump_statistics (hash_table *table) { size_t nelts, nids, overhead, headers; size_t total_bytes, longest; double sum_of_squares, exp_len, exp_len2, exp2_len; hashnode *p, *limit; #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ ? (x) \ : ((x) < 1024*1024*10 \ ? (x) / 1024 \ : (x) / (1024*1024)))) #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) total_bytes = longest = sum_of_squares = nids = 0; p = table->entries; limit = p + table->nslots; do if (*p) { size_t n = HT_LEN (*p); total_bytes += n; sum_of_squares += (double) n * n; if (n > longest) longest = n; nids++; } while (++p < limit); nelts = table->nelements; overhead = obstack_memory_used (&table->stack) - total_bytes; headers = table->nslots * sizeof (hashnode); fprintf (stderr, "\nString pool\nentries\t\t%lu\n", (unsigned long) nelts); fprintf (stderr, "identifiers\t%lu (%.2f%%)\n", (unsigned long) nids, nids * 100.0 / nelts); fprintf (stderr, "slots\t\t%lu\n", (unsigned long) table->nslots); fprintf (stderr, "bytes\t\t%lu%c (%lu%c overhead)\n", SCALE (total_bytes), LABEL (total_bytes), SCALE (overhead), LABEL (overhead)); fprintf (stderr, "table size\t%lu%c\n", SCALE (headers), LABEL (headers)); exp_len = (double)total_bytes / (double)nelts; exp2_len = exp_len * exp_len; exp_len2 = (double) sum_of_squares / (double) nelts; fprintf (stderr, "coll/search\t%.4f\n", (double) table->collisions / (double) table->searches); fprintf (stderr, "ins/search\t%.4f\n", (double) nelts / (double) table->searches); fprintf (stderr, "avg. entry\t%.2f bytes (+/- %.2f)\n", exp_len, approx_sqrt (exp_len2 - exp2_len)); fprintf (stderr, "longest entry\t%lu\n", (unsigned long) longest); #undef SCALE #undef LABEL } /* Return the approximate positive square root of a number N. This is for statistical reports, not code generation. */ static double approx_sqrt (double x) { double s, d; if (x < 0) abort (); if (x == 0) return 0; s = x; do { d = (s * s - x) / (2 * s); s -= d; } while (d > .0001); return s; }