Current Path : /compat/linux/proc/self/root/usr/src/contrib/gdb/gdb/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/gdb/gdb/ia64-tdep.c |
/* Target-dependent code for the IA-64 for GDB, the GNU debugger. Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "arch-utils.h" #include "floatformat.h" #include "regcache.h" #include "reggroups.h" #include "frame.h" #include "frame-base.h" #include "frame-unwind.h" #include "doublest.h" #include "value.h" #include "gdb_assert.h" #include "objfiles.h" #include "elf/common.h" /* for DT_PLTGOT value */ #include "elf-bfd.h" #include "elf.h" /* for PT_IA64_UNWIND value */ #include "dis-asm.h" #include "ia64-tdep.h" #ifdef HAVE_LIBUNWIND_IA64_H #include "libunwind-frame.h" #include "libunwind-ia64.h" #endif /* An enumeration of the different IA-64 instruction types. */ typedef enum instruction_type { A, /* Integer ALU ; I-unit or M-unit */ I, /* Non-ALU integer; I-unit */ M, /* Memory ; M-unit */ F, /* Floating-point ; F-unit */ B, /* Branch ; B-unit */ L, /* Extended (L+X) ; I-unit */ X, /* Extended (L+X) ; I-unit */ undefined /* undefined or reserved */ } instruction_type; /* We represent IA-64 PC addresses as the value of the instruction pointer or'd with some bit combination in the low nibble which represents the slot number in the bundle addressed by the instruction pointer. The problem is that the Linux kernel multiplies its slot numbers (for exceptions) by one while the disassembler multiplies its slot numbers by 6. In addition, I've heard it said that the simulator uses 1 as the multiplier. I've fixed the disassembler so that the bytes_per_line field will be the slot multiplier. If bytes_per_line comes in as zero, it is set to six (which is how it was set up initially). -- objdump displays pretty disassembly dumps with this value. For our purposes, we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we never want to also display the raw bytes the way objdump does. */ #define SLOT_MULTIPLIER 1 /* Length in bytes of an instruction bundle */ #define BUNDLE_LEN 16 static gdbarch_init_ftype ia64_gdbarch_init; static gdbarch_register_name_ftype ia64_register_name; static gdbarch_register_type_ftype ia64_register_type; static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; static gdbarch_skip_prologue_ftype ia64_skip_prologue; static gdbarch_extract_return_value_ftype ia64_extract_return_value; static gdbarch_use_struct_convention_ftype ia64_use_struct_convention; static struct type *is_float_or_hfa_type (struct type *t); static struct type *builtin_type_ia64_ext; #define NUM_IA64_RAW_REGS 462 static int sp_regnum = IA64_GR12_REGNUM; static int fp_regnum = IA64_VFP_REGNUM; static int lr_regnum = IA64_VRAP_REGNUM; /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because they may not be accessible via the ptrace register get/set interfaces. */ enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, V127_REGNUM = V32_REGNUM + 95, VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; /* Array of register names; There should be ia64_num_regs strings in the initializer. */ static char *ia64_register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", "vfp", "vrap", "pr", "ip", "psr", "cfm", "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", "", "", "", "", "", "", "", "", "rsc", "bsp", "bspstore", "rnat", "", "fcr", "", "", "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", "ccv", "", "", "", "unat", "", "", "", "fpsr", "", "", "", "itc", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "pfs", "lc", "ec", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", "bof", "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", }; struct ia64_frame_cache { CORE_ADDR base; /* frame pointer base for frame */ CORE_ADDR pc; /* function start pc for frame */ CORE_ADDR saved_sp; /* stack pointer for frame */ CORE_ADDR bsp; /* points at r32 for the current frame */ CORE_ADDR cfm; /* cfm value for current frame */ CORE_ADDR prev_cfm; /* cfm value for previous frame */ int frameless; int sof; /* Size of frame (decoded from cfm value) */ int sol; /* Size of locals (decoded from cfm value) */ int sor; /* Number of rotating registers. (decoded from cfm value) */ CORE_ADDR after_prologue; /* Address of first instruction after the last prologue instruction; Note that there may be instructions from the function's body intermingled with the prologue. */ int mem_stack_frame_size; /* Size of the memory stack frame (may be zero), or -1 if it has not been determined yet. */ int fp_reg; /* Register number (if any) used a frame pointer for this frame. 0 if no register is being used as the frame pointer. */ /* Saved registers. */ CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; }; int ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, struct reggroup *group) { int vector_p; int float_p; int raw_p; if (group == all_reggroup) return 1; vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; raw_p = regnum < NUM_IA64_RAW_REGS; if (group == float_reggroup) return float_p; if (group == vector_reggroup) return vector_p; if (group == general_reggroup) return (!vector_p && !float_p); if (group == save_reggroup || group == restore_reggroup) return raw_p; return 0; } static const char * ia64_register_name (int reg) { return ia64_register_names[reg]; } struct type * ia64_register_type (struct gdbarch *arch, int reg) { if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) return builtin_type_ia64_ext; else return builtin_type_long; } static int ia64_dwarf_reg_to_regnum (int reg) { if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) return V32_REGNUM + (reg - IA64_GR32_REGNUM); return reg; } static int floatformat_valid (const struct floatformat *fmt, const char *from) { return 1; } const struct floatformat floatformat_ia64_ext = { floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid }; /* Extract ``len'' bits from an instruction bundle starting at bit ``from''. */ static long long extract_bit_field (char *bundle, int from, int len) { long long result = 0LL; int to = from + len; int from_byte = from / 8; int to_byte = to / 8; unsigned char *b = (unsigned char *) bundle; unsigned char c; int lshift; int i; c = b[from_byte]; if (from_byte == to_byte) c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); result = c >> (from % 8); lshift = 8 - (from % 8); for (i = from_byte+1; i < to_byte; i++) { result |= ((long long) b[i]) << lshift; lshift += 8; } if (from_byte < to_byte && (to % 8 != 0)) { c = b[to_byte]; c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); result |= ((long long) c) << lshift; } return result; } /* Replace the specified bits in an instruction bundle */ static void replace_bit_field (char *bundle, long long val, int from, int len) { int to = from + len; int from_byte = from / 8; int to_byte = to / 8; unsigned char *b = (unsigned char *) bundle; unsigned char c; if (from_byte == to_byte) { unsigned char left, right; c = b[from_byte]; left = (c >> (to % 8)) << (to % 8); right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); c = (unsigned char) (val & 0xff); c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); c |= right | left; b[from_byte] = c; } else { int i; c = b[from_byte]; c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); c = c | (val << (from % 8)); b[from_byte] = c; val >>= 8 - from % 8; for (i = from_byte+1; i < to_byte; i++) { c = val & 0xff; val >>= 8; b[i] = c; } if (to % 8 != 0) { unsigned char cv = (unsigned char) val; c = b[to_byte]; c = c >> (to % 8) << (to % 8); c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); b[to_byte] = c; } } } /* Return the contents of slot N (for N = 0, 1, or 2) in and instruction bundle */ static long long slotN_contents (char *bundle, int slotnum) { return extract_bit_field (bundle, 5+41*slotnum, 41); } /* Store an instruction in an instruction bundle */ static void replace_slotN_contents (char *bundle, long long instr, int slotnum) { replace_bit_field (bundle, instr, 5+41*slotnum, 41); } static enum instruction_type template_encoding_table[32][3] = { { M, I, I }, /* 00 */ { M, I, I }, /* 01 */ { M, I, I }, /* 02 */ { M, I, I }, /* 03 */ { M, L, X }, /* 04 */ { M, L, X }, /* 05 */ { undefined, undefined, undefined }, /* 06 */ { undefined, undefined, undefined }, /* 07 */ { M, M, I }, /* 08 */ { M, M, I }, /* 09 */ { M, M, I }, /* 0A */ { M, M, I }, /* 0B */ { M, F, I }, /* 0C */ { M, F, I }, /* 0D */ { M, M, F }, /* 0E */ { M, M, F }, /* 0F */ { M, I, B }, /* 10 */ { M, I, B }, /* 11 */ { M, B, B }, /* 12 */ { M, B, B }, /* 13 */ { undefined, undefined, undefined }, /* 14 */ { undefined, undefined, undefined }, /* 15 */ { B, B, B }, /* 16 */ { B, B, B }, /* 17 */ { M, M, B }, /* 18 */ { M, M, B }, /* 19 */ { undefined, undefined, undefined }, /* 1A */ { undefined, undefined, undefined }, /* 1B */ { M, F, B }, /* 1C */ { M, F, B }, /* 1D */ { undefined, undefined, undefined }, /* 1E */ { undefined, undefined, undefined }, /* 1F */ }; /* Fetch and (partially) decode an instruction at ADDR and return the address of the next instruction to fetch. */ static CORE_ADDR fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) { char bundle[BUNDLE_LEN]; int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; long long template; int val; /* Warn about slot numbers greater than 2. We used to generate an error here on the assumption that the user entered an invalid address. But, sometimes GDB itself requests an invalid address. This can (easily) happen when execution stops in a function for which there are no symbols. The prologue scanner will attempt to find the beginning of the function - if the nearest symbol happens to not be aligned on a bundle boundary (16 bytes), the resulting starting address will cause GDB to think that the slot number is too large. So we warn about it and set the slot number to zero. It is not necessarily a fatal condition, particularly if debugging at the assembly language level. */ if (slotnum > 2) { warning ("Can't fetch instructions for slot numbers greater than 2.\n" "Using slot 0 instead"); slotnum = 0; } addr &= ~0x0f; val = target_read_memory (addr, bundle, BUNDLE_LEN); if (val != 0) return 0; *instr = slotN_contents (bundle, slotnum); template = extract_bit_field (bundle, 0, 5); *it = template_encoding_table[(int)template][slotnum]; if (slotnum == 2 || (slotnum == 1 && *it == L)) addr += 16; else addr += (slotnum + 1) * SLOT_MULTIPLIER; return addr; } /* There are 5 different break instructions (break.i, break.b, break.m, break.f, and break.x), but they all have the same encoding. (The five bit template in the low five bits of the instruction bundle distinguishes one from another.) The runtime architecture manual specifies that break instructions used for debugging purposes must have the upper two bits of the 21 bit immediate set to a 0 and a 1 respectively. A breakpoint instruction encodes the most significant bit of its 21 bit immediate at bit 36 of the 41 bit instruction. The penultimate msb is at bit 25 which leads to the pattern below. Originally, I had this set up to do, e.g, a "break.i 0x80000" But it turns out that 0x80000 was used as the syscall break in the early simulators. So I changed the pattern slightly to do "break.i 0x080001" instead. But that didn't work either (I later found out that this pattern was used by the simulator that I was using.) So I ended up using the pattern seen below. */ #if 0 #define IA64_BREAKPOINT 0x00002000040LL #endif #define IA64_BREAKPOINT 0x00003333300LL static int ia64_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache) { char bundle[BUNDLE_LEN]; int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; long long instr; int val; int template; if (slotnum > 2) error("Can't insert breakpoint for slot numbers greater than 2."); addr &= ~0x0f; val = target_read_memory (addr, bundle, BUNDLE_LEN); /* Check for L type instruction in 2nd slot, if present then bump up the slot number to the 3rd slot */ template = extract_bit_field (bundle, 0, 5); if (slotnum == 1 && template_encoding_table[template][1] == L) { slotnum = 2; } instr = slotN_contents (bundle, slotnum); memcpy(contents_cache, &instr, sizeof(instr)); replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); if (val == 0) target_write_memory (addr, bundle, BUNDLE_LEN); return val; } static int ia64_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) { char bundle[BUNDLE_LEN]; int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; long long instr; int val; int template; addr &= ~0x0f; val = target_read_memory (addr, bundle, BUNDLE_LEN); /* Check for L type instruction in 2nd slot, if present then bump up the slot number to the 3rd slot */ template = extract_bit_field (bundle, 0, 5); if (slotnum == 1 && template_encoding_table[template][1] == L) { slotnum = 2; } memcpy (&instr, contents_cache, sizeof instr); replace_slotN_contents (bundle, instr, slotnum); if (val == 0) target_write_memory (addr, bundle, BUNDLE_LEN); return val; } /* We don't really want to use this, but remote.c needs to call it in order to figure out if Z-packets are supported or not. Oh, well. */ const unsigned char * ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) { static unsigned char breakpoint[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; *lenptr = sizeof (breakpoint); #if 0 *pcptr &= ~0x0f; #endif return breakpoint; } static CORE_ADDR ia64_read_pc (ptid_t ptid) { CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid); CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, ptid); int slot_num = (psr_value >> 41) & 3; return pc_value | (slot_num * SLOT_MULTIPLIER); } void ia64_write_pc (CORE_ADDR new_pc, ptid_t ptid) { int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid); psr_value &= ~(3LL << 41); psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41; new_pc &= ~0xfLL; write_register_pid (IA64_PSR_REGNUM, psr_value, ptid); write_register_pid (IA64_IP_REGNUM, new_pc, ptid); } #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) /* Returns the address of the slot that's NSLOTS slots away from the address ADDR. NSLOTS may be positive or negative. */ static CORE_ADDR rse_address_add(CORE_ADDR addr, int nslots) { CORE_ADDR new_addr; int mandatory_nat_slots = nslots / 63; int direction = nslots < 0 ? -1 : 1; new_addr = addr + 8 * (nslots + mandatory_nat_slots); if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) new_addr += 8 * direction; if (IS_NaT_COLLECTION_ADDR(new_addr)) new_addr += 8 * direction; return new_addr; } static void ia64_read_reg (CORE_ADDR addr, void *buf, int len) { ULONGEST bspstore; regcache_cooked_read_unsigned (current_regcache, IA64_BSPSTORE_REGNUM, &bspstore); if (addr >= bspstore) { ULONGEST bsp; regcache_cooked_read_unsigned (current_regcache, IA64_BSP_REGNUM, &bsp); if (addr < bsp) { target_read_partial (¤t_target, TARGET_OBJECT_DIRTY, (void*)&bspstore, buf, addr - bspstore, len); return; } } read_memory (addr, buf, len); } static void ia64_write_reg (CORE_ADDR addr, void *buf, int len) { ULONGEST bspstore; regcache_cooked_read_unsigned (current_regcache, IA64_BSPSTORE_REGNUM, &bspstore); if (addr >= bspstore) { ULONGEST bsp; regcache_cooked_read_unsigned (current_regcache, IA64_BSP_REGNUM, &bsp); if (addr < bsp) { target_write_partial (¤t_target, TARGET_OBJECT_DIRTY, (void*)&bspstore, buf, addr - bspstore, len); return; } } write_memory (addr, buf, len); } static void ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, int regnum, void *buf) { if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) { ULONGEST bsp; ULONGEST cfm; CORE_ADDR reg; regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); /* The bsp points at the end of the register frame so we subtract the size of frame from it to get start of register frame. */ bsp = rse_address_add (bsp, -(cfm & 0x7f)); if ((cfm & 0x7f) > regnum - V32_REGNUM) { ULONGEST addr = rse_address_add (bsp, (regnum - V32_REGNUM)); ia64_read_reg (addr, buf, register_size (current_gdbarch, regnum)); } else store_unsigned_integer (buf, register_size (current_gdbarch, regnum), 0); } else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) { ULONGEST unatN_val; ULONGEST unat; regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; store_unsigned_integer (buf, register_size (current_gdbarch, regnum), unatN_val); } else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) { ULONGEST natN_val = 0; ULONGEST bsp; ULONGEST cfm; CORE_ADDR gr_addr = 0; regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); /* The bsp points at the end of the register frame so we subtract the size of frame from it to get start of register frame. */ bsp = rse_address_add (bsp, -(cfm & 0x7f)); if ((cfm & 0x7f) > regnum - V32_REGNUM) gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); if (gr_addr != 0) { /* Compute address of nat collection bits. */ CORE_ADDR nat_addr = gr_addr | 0x1f8; CORE_ADDR nat_collection; int nat_bit; /* If our nat collection address is bigger than bsp, we have to get the nat collection from rnat. Otherwise, we fetch the nat collection from the computed address. */ if (nat_addr >= bsp) regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); else { uint64_t tmp; ia64_read_reg (nat_addr, &tmp, sizeof(tmp)); nat_collection = tmp; } nat_bit = (gr_addr >> 3) & 0x3f; natN_val = (nat_collection >> nat_bit) & 1; } store_unsigned_integer (buf, register_size (current_gdbarch, regnum), natN_val); } else if (regnum == VBOF_REGNUM) { /* A virtual register frame start is provided for user convenience. It can be calculated as the bsp - sof (sizeof frame). */ ULONGEST bsp, vbsp; ULONGEST cfm; CORE_ADDR reg; regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); /* The bsp points at the end of the register frame so we subtract the size of frame from it to get beginning of frame. */ vbsp = rse_address_add (bsp, -(cfm & 0x7f)); store_unsigned_integer (buf, register_size (current_gdbarch, regnum), vbsp); } else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) { ULONGEST pr; ULONGEST cfm; ULONGEST prN_val; CORE_ADDR reg; regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) { /* Fetch predicate register rename base from current frame marker for this frame. */ int rrb_pr = (cfm >> 32) & 0x3f; /* Adjust the register number to account for register rotation. */ regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; } prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; store_unsigned_integer (buf, register_size (current_gdbarch, regnum), prN_val); } else memset (buf, 0, register_size (current_gdbarch, regnum)); } static void ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, int regnum, const void *buf) { if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) { ULONGEST bsp; ULONGEST cfm; CORE_ADDR reg; regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); bsp = rse_address_add (bsp, -(cfm & 0x7f)); if ((cfm & 0x7f) > regnum - V32_REGNUM) { ULONGEST addr = rse_address_add (bsp, (regnum - V32_REGNUM)); ia64_write_reg (addr, (void *)buf, 8); } } else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) { ULONGEST unatN_val, unat, unatN_mask; regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); unatN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); if (unatN_val == 0) unat &= ~unatN_mask; else if (unatN_val == 1) unat |= unatN_mask; regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); } else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) { ULONGEST natN_val; ULONGEST bsp; ULONGEST cfm; CORE_ADDR gr_addr = 0; regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); /* The bsp points at the end of the register frame so we subtract the size of frame from it to get start of register frame. */ bsp = rse_address_add (bsp, -(cfm & 0x7f)); if ((cfm & 0x7f) > regnum - V32_REGNUM) gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); natN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) { /* Compute address of nat collection bits. */ CORE_ADDR nat_addr = gr_addr | 0x1f8; CORE_ADDR nat_collection; int natN_bit = (gr_addr >> 3) & 0x3f; ULONGEST natN_mask = (1LL << natN_bit); /* If our nat collection address is bigger than bsp, we have to get the nat collection from rnat. Otherwise, we fetch the nat collection from the computed address. */ if (nat_addr >= bsp) { regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); if (natN_val) nat_collection |= natN_mask; else nat_collection &= ~natN_mask; regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); } else { uint64_t tmp; ia64_read_reg (nat_addr, &tmp, sizeof(tmp)); nat_collection = tmp; if (natN_val) nat_collection |= natN_mask; else nat_collection &= ~natN_mask; tmp = nat_collection; ia64_write_reg (nat_addr, &tmp, sizeof(tmp)); } } } else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) { ULONGEST pr; ULONGEST cfm; ULONGEST prN_val; ULONGEST prN_mask; regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) { /* Fetch predicate register rename base from current frame marker for this frame. */ int rrb_pr = (cfm >> 32) & 0x3f; /* Adjust the register number to account for register rotation. */ regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; } prN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); prN_mask = (1LL << (regnum - VP0_REGNUM)); if (prN_val == 0) pr &= ~prN_mask; else if (prN_val == 1) pr |= prN_mask; regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); } } /* The ia64 needs to convert between various ieee floating-point formats and the special ia64 floating point register format. */ static int ia64_convert_register_p (int regno, struct type *type) { return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM); } static void ia64_register_to_value (struct frame_info *frame, int regnum, struct type *valtype, void *out) { char in[MAX_REGISTER_SIZE]; frame_register_read (frame, regnum, in); convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); } static void ia64_value_to_register (struct frame_info *frame, int regnum, struct type *valtype, const void *in) { char out[MAX_REGISTER_SIZE]; convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); put_frame_register (frame, regnum, out); } /* Limit the number of skipped non-prologue instructions since examining of the prologue is expensive. */ static int max_skip_non_prologue_insns = 40; /* Given PC representing the starting address of a function, and LIM_PC which is the (sloppy) limit to which to scan when looking for a prologue, attempt to further refine this limit by using the line data in the symbol table. If successful, a better guess on where the prologue ends is returned, otherwise the previous value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag which will be set to indicate whether the returned limit may be used with no further scanning in the event that the function is frameless. */ /* FIXME: cagney/2004-02-14: This function and logic have largely been superseded by skip_prologue_using_sal. */ static CORE_ADDR refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) { struct symtab_and_line prologue_sal; CORE_ADDR start_pc = pc; /* Start off not trusting the limit. */ *trust_limit = 0; prologue_sal = find_pc_line (pc, 0); if (prologue_sal.line != 0) { int i; CORE_ADDR addr = prologue_sal.end; /* Handle the case in which compiler's optimizer/scheduler has moved instructions into the prologue. We scan ahead in the function looking for address ranges whose corresponding line number is less than or equal to the first one that we found for the function. (It can be less than when the scheduler puts a body instruction before the first prologue instruction.) */ for (i = 2 * max_skip_non_prologue_insns; i > 0 && (lim_pc == 0 || addr < lim_pc); i--) { struct symtab_and_line sal; sal = find_pc_line (addr, 0); if (sal.line == 0) break; if (sal.line <= prologue_sal.line && sal.symtab == prologue_sal.symtab) { prologue_sal = sal; } addr = sal.end; } if (lim_pc == 0 || prologue_sal.end < lim_pc) { lim_pc = prologue_sal.end; if (start_pc == get_pc_function_start (lim_pc)) *trust_limit = 1; } } return lim_pc; } #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ || (8 <= (_regnum_) && (_regnum_) <= 11) \ || (14 <= (_regnum_) && (_regnum_) <= 31)) #define imm9(_instr_) \ ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | (((_instr_) & 0x00008000000LL) >> 20) \ | (((_instr_) & 0x00000001fc0LL) >> 6)) /* Allocate and initialize a frame cache. */ static struct ia64_frame_cache * ia64_alloc_frame_cache (void) { struct ia64_frame_cache *cache; int i; cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); /* Base address. */ cache->base = 0; cache->pc = 0; cache->cfm = 0; cache->prev_cfm = 0; cache->sof = 0; cache->sol = 0; cache->sor = 0; cache->bsp = 0; cache->fp_reg = 0; cache->frameless = 1; for (i = 0; i < NUM_IA64_RAW_REGS; i++) cache->saved_regs[i] = 0; return cache; } static CORE_ADDR examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache) { CORE_ADDR next_pc; CORE_ADDR last_prologue_pc = pc; instruction_type it; long long instr; int cfm_reg = 0; int ret_reg = 0; int fp_reg = 0; int unat_save_reg = 0; int pr_save_reg = 0; int mem_stack_frame_size = 0; int spill_reg = 0; CORE_ADDR spill_addr = 0; char instores[8]; char infpstores[8]; char reg_contents[256]; int trust_limit; int frameless = 1; int i; CORE_ADDR addr; char buf[8]; CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; memset (instores, 0, sizeof instores); memset (infpstores, 0, sizeof infpstores); memset (reg_contents, 0, sizeof reg_contents); if (cache->after_prologue != 0 && cache->after_prologue <= lim_pc) return cache->after_prologue; lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); next_pc = fetch_instruction (pc, &it, &instr); /* We want to check if we have a recognizable function start before we look ahead for a prologue. */ if (pc < lim_pc && next_pc && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) { /* alloc - start of a regular function. */ int sor = (int) ((instr & 0x00078000000LL) >> 27); int sol = (int) ((instr & 0x00007f00000LL) >> 20); int sof = (int) ((instr & 0x000000fe000LL) >> 13); int rN = (int) ((instr & 0x00000001fc0LL) >> 6); /* Verify that the current cfm matches what we think is the function start. If we have somehow jumped within a function, we do not want to interpret the prologue and calculate the addresses of various registers such as the return address. We will instead treat the frame as frameless. */ if (!next_frame || (sof == (cache->cfm & 0x7f) && sol == ((cache->cfm >> 7) & 0x7f))) frameless = 0; cfm_reg = rN; last_prologue_pc = next_pc; pc = next_pc; } else { /* Look for a leaf routine. */ if (pc < lim_pc && next_pc && (it == I || it == M) && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) { /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | ((instr & 0x001f8000000LL) >> 20) | ((instr & 0x000000fe000LL) >> 13)); int rM = (int) ((instr & 0x00007f00000LL) >> 20); int rN = (int) ((instr & 0x00000001fc0LL) >> 6); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) { /* mov r2, r12 - beginning of leaf routine */ fp_reg = rN; last_prologue_pc = next_pc; } } /* If we don't recognize a regular function or leaf routine, we are done. */ if (!fp_reg) { pc = lim_pc; if (trust_limit) last_prologue_pc = lim_pc; } } /* Loop, looking for prologue instructions, keeping track of where preserved registers were spilled. */ while (pc < lim_pc) { next_pc = fetch_instruction (pc, &it, &instr); if (next_pc == 0) break; if (it == B && ((instr & 0x1e1f800003f) != 0x04000000000)) { /* Exit loop upon hitting a non-nop branch instruction. */ if (trust_limit) lim_pc = pc; break; } else if (((instr & 0x3fLL) != 0LL) && (frameless || ret_reg != 0)) { /* Exit loop upon hitting a predicated instruction if we already have the return register or if we are frameless. */ if (trust_limit) lim_pc = pc; break; } else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) { /* Move from BR */ int b2 = (int) ((instr & 0x0000000e000LL) >> 13); int rN = (int) ((instr & 0x00000001fc0LL) >> 6); int qp = (int) (instr & 0x0000000003f); if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) { ret_reg = rN; last_prologue_pc = next_pc; } } else if ((it == I || it == M) && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) { /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | ((instr & 0x001f8000000LL) >> 20) | ((instr & 0x000000fe000LL) >> 13)); int rM = (int) ((instr & 0x00007f00000LL) >> 20); int rN = (int) ((instr & 0x00000001fc0LL) >> 6); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) { /* mov rN, r12 */ fp_reg = rN; last_prologue_pc = next_pc; } else if (qp == 0 && rN == 12 && rM == 12) { /* adds r12, -mem_stack_frame_size, r12 */ mem_stack_frame_size -= imm; last_prologue_pc = next_pc; } else if (qp == 0 && rN == 2 && ((rM == fp_reg && fp_reg != 0) || rM == 12)) { char buf[MAX_REGISTER_SIZE]; CORE_ADDR saved_sp = 0; /* adds r2, spilloffset, rFramePointer or adds r2, spilloffset, r12 Get ready for stf.spill or st8.spill instructions. The address to start spilling at is loaded into r2. FIXME: Why r2? That's what gcc currently uses; it could well be different for other compilers. */ /* Hmm... whether or not this will work will depend on where the pc is. If it's still early in the prologue this'll be wrong. FIXME */ if (next_frame) { frame_unwind_register (next_frame, sp_regnum, buf); saved_sp = extract_unsigned_integer (buf, 8); } spill_addr = saved_sp + (rM == 12 ? 0 : mem_stack_frame_size) + imm; spill_reg = rN; last_prologue_pc = next_pc; } else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] && rN < 256 && imm == 0) { /* mov rN, rM where rM is an input register */ reg_contents[rN] = rM; last_prologue_pc = next_pc; } else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && rM == 2) { /* mov r12, r2 */ last_prologue_pc = next_pc; break; } } else if (it == M && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) { /* stf.spill [rN] = fM, imm9 or stf.spill [rN] = fM */ int imm = imm9(instr); int rN = (int) ((instr & 0x00007f00000LL) >> 20); int fM = (int) ((instr & 0x000000fe000LL) >> 13); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && rN == spill_reg && spill_addr != 0 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) { cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; if ((instr & 0x1efc0000000) == 0x0eec0000000) spill_addr += imm; else spill_addr = 0; /* last one; must be done */ last_prologue_pc = next_pc; } } else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) { /* mov.m rN = arM or mov.i rN = arM */ int arM = (int) ((instr & 0x00007f00000LL) >> 20); int rN = (int) ((instr & 0x00000001fc0LL) >> 6); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) { /* We have something like "mov.m r3 = ar.unat". Remember the r3 (or whatever) and watch for a store of this register... */ unat_save_reg = rN; last_prologue_pc = next_pc; } } else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) { /* mov rN = pr */ int rN = (int) ((instr & 0x00000001fc0LL) >> 6); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && isScratch (rN)) { pr_save_reg = rN; last_prologue_pc = next_pc; } } else if (it == M && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) { /* st8 [rN] = rM or st8 [rN] = rM, imm9 */ int rN = (int) ((instr & 0x00007f00000LL) >> 20); int rM = (int) ((instr & 0x000000fe000LL) >> 13); int qp = (int) (instr & 0x0000000003fLL); int indirect = rM < 256 ? reg_contents[rM] : 0; if (qp == 0 && rN == spill_reg && spill_addr != 0 && (rM == unat_save_reg || rM == pr_save_reg)) { /* We've found a spill of either the UNAT register or the PR register. (Well, not exactly; what we've actually found is a spill of the register that UNAT or PR was moved to). Record that fact and move on... */ if (rM == unat_save_reg) { /* Track UNAT register */ cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; unat_save_reg = 0; } else { /* Track PR register */ cache->saved_regs[IA64_PR_REGNUM] = spill_addr; pr_save_reg = 0; } if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) /* st8 [rN] = rM, imm9 */ spill_addr += imm9(instr); else spill_addr = 0; /* must be done spilling */ last_prologue_pc = next_pc; } else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) { /* Allow up to one store of each input register. */ instores[rM-32] = 1; last_prologue_pc = next_pc; } else if (qp == 0 && 32 <= indirect && indirect < 40 && !instores[indirect-32]) { /* Allow an indirect store of an input register. */ instores[indirect-32] = 1; last_prologue_pc = next_pc; } } else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) { /* One of st1 [rN] = rM st2 [rN] = rM st4 [rN] = rM st8 [rN] = rM Note that the st8 case is handled in the clause above. Advance over stores of input registers. One store per input register is permitted. */ int rM = (int) ((instr & 0x000000fe000LL) >> 13); int qp = (int) (instr & 0x0000000003fLL); int indirect = rM < 256 ? reg_contents[rM] : 0; if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) { instores[rM-32] = 1; last_prologue_pc = next_pc; } else if (qp == 0 && 32 <= indirect && indirect < 40 && !instores[indirect-32]) { /* Allow an indirect store of an input register. */ instores[indirect-32] = 1; last_prologue_pc = next_pc; } } else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) { /* Either stfs [rN] = fM or stfd [rN] = fM Advance over stores of floating point input registers. Again one store per register is permitted */ int fM = (int) ((instr & 0x000000fe000LL) >> 13); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) { infpstores[fM-8] = 1; last_prologue_pc = next_pc; } } else if (it == M && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) { /* st8.spill [rN] = rM or st8.spill [rN] = rM, imm9 */ int rN = (int) ((instr & 0x00007f00000LL) >> 20); int rM = (int) ((instr & 0x000000fe000LL) >> 13); int qp = (int) (instr & 0x0000000003fLL); if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) { /* We've found a spill of one of the preserved general purpose regs. Record the spill address and advance the spill register if appropriate. */ cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) /* st8.spill [rN] = rM, imm9 */ spill_addr += imm9(instr); else spill_addr = 0; /* Done spilling */ last_prologue_pc = next_pc; } } pc = next_pc; } /* If not frameless and we aren't called by skip_prologue, then we need to calculate registers for the previous frame which will be needed later. */ if (!frameless && next_frame) { /* Extract the size of the rotating portion of the stack frame and the register rename base from the current frame marker. */ cfm = cache->cfm; sor = cache->sor; sof = cache->sof; sol = cache->sol; rrb_gr = (cfm >> 18) & 0x7f; /* Find the bof (beginning of frame). */ bof = rse_address_add (cache->bsp, -sof); for (i = 0, addr = bof; i < sof; i++, addr += 8) { if (IS_NaT_COLLECTION_ADDR (addr)) { addr += 8; } if (i+32 == cfm_reg) cache->saved_regs[IA64_CFM_REGNUM] = addr; if (i+32 == ret_reg) cache->saved_regs[IA64_VRAP_REGNUM] = addr; if (i+32 == fp_reg) cache->saved_regs[IA64_VFP_REGNUM] = addr; } /* For the previous argument registers we require the previous bof. If we can't find the previous cfm, then we can do nothing. */ cfm = 0; if (cache->saved_regs[IA64_CFM_REGNUM] != 0) { uint64_t tmp; ia64_read_reg (cache->saved_regs[IA64_CFM_REGNUM], &tmp, sizeof(tmp)); cfm = tmp; } else if (cfm_reg != 0) { frame_unwind_register (next_frame, cfm_reg, buf); cfm = extract_unsigned_integer (buf, 8); } cache->prev_cfm = cfm; if (cfm != 0) { sor = ((cfm >> 14) & 0xf) * 8; sof = (cfm & 0x7f); sol = (cfm >> 7) & 0x7f; rrb_gr = (cfm >> 18) & 0x7f; /* The previous bof only requires subtraction of the sol (size of locals) due to the overlap between output and input of subsequent frames. */ bof = rse_address_add (bof, -sol); for (i = 0, addr = bof; i < sof; i++, addr += 8) { if (IS_NaT_COLLECTION_ADDR (addr)) { addr += 8; } if (i < sor) cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] = addr; else cache->saved_regs[IA64_GR32_REGNUM + i] = addr; } } } /* Try and trust the lim_pc value whenever possible. */ if (trust_limit && lim_pc >= last_prologue_pc) last_prologue_pc = lim_pc; cache->frameless = frameless; cache->after_prologue = last_prologue_pc; cache->mem_stack_frame_size = mem_stack_frame_size; cache->fp_reg = fp_reg; return last_prologue_pc; } CORE_ADDR ia64_skip_prologue (CORE_ADDR pc) { struct ia64_frame_cache cache; cache.base = 0; cache.after_prologue = 0; cache.cfm = 0; cache.bsp = 0; /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ return examine_prologue (pc, pc+1024, 0, &cache); } /* Normal frames. */ static struct ia64_frame_cache * ia64_frame_cache (struct frame_info *next_frame, void **this_cache) { struct ia64_frame_cache *cache; char buf[8]; CORE_ADDR cfm, sof, sol, bsp, psr; int i; if (*this_cache) return *this_cache; cache = ia64_alloc_frame_cache (); *this_cache = cache; frame_unwind_register (next_frame, sp_regnum, buf); cache->saved_sp = extract_unsigned_integer (buf, 8); /* We always want the bsp to point to the end of frame. This way, we can always get the beginning of frame (bof) by subtracting frame size. */ frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); cache->bsp = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); psr = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); cfm = extract_unsigned_integer (buf, 8); cache->sof = (cfm & 0x7f); cache->sol = (cfm >> 7) & 0x7f; cache->sor = ((cfm >> 14) & 0xf) * 8; cache->cfm = cfm; cache->pc = frame_func_unwind (next_frame); if (cache->pc != 0) examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache); cache->base = cache->saved_sp + cache->mem_stack_frame_size; return cache; } static void ia64_frame_this_id (struct frame_info *next_frame, void **this_cache, struct frame_id *this_id) { struct ia64_frame_cache *cache = ia64_frame_cache (next_frame, this_cache); /* This marks the outermost frame. */ if (cache->base == 0) return; (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", paddr_nz (this_id->code_addr), paddr_nz (this_id->stack_addr), paddr_nz (cache->bsp), next_frame); } static void ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache, int regnum, int *optimizedp, enum lval_type *lvalp, CORE_ADDR *addrp, int *realnump, void *valuep) { struct ia64_frame_cache *cache = ia64_frame_cache (next_frame, this_cache); char dummy_valp[MAX_REGISTER_SIZE]; char buf[8]; gdb_assert (regnum >= 0); if (!target_has_registers) error ("No registers."); *optimizedp = 0; *addrp = 0; *lvalp = not_lval; *realnump = -1; /* Rather than check each time if valuep is non-null, supply a dummy buffer when valuep is not supplied. */ if (!valuep) valuep = dummy_valp; memset (valuep, 0, register_size (current_gdbarch, regnum)); if (regnum == SP_REGNUM) { /* Handle SP values for all frames but the topmost. */ store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->base); } else if (regnum == IA64_BSP_REGNUM) { char cfm_valuep[MAX_REGISTER_SIZE]; int cfm_optim; int cfm_realnum; enum lval_type cfm_lval; CORE_ADDR cfm_addr; CORE_ADDR bsp, prev_cfm, prev_bsp; /* We want to calculate the previous bsp as the end of the previous register stack frame. This corresponds to what the hardware bsp register will be if we pop the frame back which is why we might have been called. We know the beginning of the current frame is cache->bsp - cache->sof. This value in the previous frame points to the start of the output registers. We can calculate the end of that frame by adding the size of output (sof (size of frame) - sol (size of locals)). */ ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); prev_cfm = extract_unsigned_integer (cfm_valuep, 8); bsp = rse_address_add (cache->bsp, -(cache->sof)); prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prev_bsp); } else if (regnum == IA64_CFM_REGNUM) { CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, valuep, register_size (current_gdbarch, regnum)); } else if (cache->prev_cfm) store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->prev_cfm); else if (cache->frameless) { CORE_ADDR cfm = 0; frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep); } } else if (regnum == IA64_VFP_REGNUM) { /* If the function in question uses an automatic register (r32-r127) for the frame pointer, it'll be found by ia64_find_saved_register() above. If the function lacks one of these frame pointers, we can still provide a value since we know the size of the frame. */ CORE_ADDR vfp = cache->base; store_unsigned_integer (valuep, register_size (current_gdbarch, IA64_VFP_REGNUM), vfp); } else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) { char pr_valuep[MAX_REGISTER_SIZE]; int pr_optim; int pr_realnum; enum lval_type pr_lval; CORE_ADDR pr_addr; ULONGEST prN_val; ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM, &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep); if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) { /* Fetch predicate register rename base from current frame marker for this frame. */ int rrb_pr = (cache->cfm >> 32) & 0x3f; /* Adjust the register number to account for register rotation. */ regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; } prN_val = extract_bit_field ((unsigned char *) pr_valuep, regnum - VP0_REGNUM, 1); store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); } else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) { char unat_valuep[MAX_REGISTER_SIZE]; int unat_optim; int unat_realnum; enum lval_type unat_lval; CORE_ADDR unat_addr; ULONGEST unatN_val; ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM, &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep); unatN_val = extract_bit_field ((unsigned char *) unat_valuep, regnum - IA64_NAT0_REGNUM, 1); store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), unatN_val); } else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) { int natval = 0; /* Find address of general register corresponding to nat bit we're interested in. */ CORE_ADDR gr_addr; gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM]; if (gr_addr != 0) { /* Compute address of nat collection bits. */ CORE_ADDR nat_addr = gr_addr | 0x1f8; CORE_ADDR bsp; CORE_ADDR nat_collection; int nat_bit; /* If our nat collection address is bigger than bsp, we have to get the nat collection from rnat. Otherwise, we fetch the nat collection from the computed address. */ frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); bsp = extract_unsigned_integer (buf, 8); if (nat_addr >= bsp) { frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf); nat_collection = extract_unsigned_integer (buf, 8); } else { uint64_t tmp; ia64_read_reg (nat_addr, &tmp, sizeof(tmp)); nat_collection = tmp; } nat_bit = (gr_addr >> 3) & 0x3f; natval = (nat_collection >> nat_bit) & 1; } store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), natval); } else if (regnum == IA64_IP_REGNUM) { CORE_ADDR pc = 0; CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); pc = extract_unsigned_integer (buf, 8); } else if (cache->frameless) { frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); pc = extract_unsigned_integer (buf, 8); } pc &= ~0xf; store_unsigned_integer (valuep, 8, pc); } else if (regnum == IA64_PSR_REGNUM) { /* We don't know how to get the complete previous PSR, but we need it for the slot information when we unwind the pc (pc is formed of IP register plus slot information from PSR). To get the previous slot information, we mask it off the return address. */ ULONGEST slot_num = 0; CORE_ADDR pc= 0; CORE_ADDR psr = 0; CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); psr = extract_unsigned_integer (buf, 8); if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); pc = extract_unsigned_integer (buf, 8); } else if (cache->frameless) { CORE_ADDR pc; frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); pc = extract_unsigned_integer (buf, 8); } psr &= ~(3LL << 41); slot_num = pc & 0x3LL; psr |= (CORE_ADDR)slot_num << 41; store_unsigned_integer (valuep, 8, psr); } else if (regnum == IA64_BR0_REGNUM) { CORE_ADDR br0 = 0; CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, buf, register_size (current_gdbarch, IA64_BR0_REGNUM)); br0 = extract_unsigned_integer (buf, 8); } store_unsigned_integer (valuep, 8, br0); } else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) { CORE_ADDR addr = 0; if (regnum >= V32_REGNUM) regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); addr = cache->saved_regs[regnum]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, valuep, register_size (current_gdbarch, regnum)); } else if (cache->frameless) { char r_valuep[MAX_REGISTER_SIZE]; int r_optim; int r_realnum; enum lval_type r_lval; CORE_ADDR r_addr; CORE_ADDR prev_cfm, prev_bsp, prev_bof; CORE_ADDR addr = 0; if (regnum >= V32_REGNUM) regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); prev_cfm = extract_unsigned_integer (r_valuep, 8); ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM, &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); prev_bsp = extract_unsigned_integer (r_valuep, 8); prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, valuep, register_size (current_gdbarch, regnum)); } } else { CORE_ADDR addr = 0; if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) { /* Fetch floating point register rename base from current frame marker for this frame. */ int rrb_fr = (cache->cfm >> 25) & 0x7f; /* Adjust the floating point register number to account for register rotation. */ regnum = IA64_FR32_REGNUM + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; } /* If we have stored a memory address, access the register. */ addr = cache->saved_regs[regnum]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, valuep, register_size (current_gdbarch, regnum)); } /* Otherwise, punt and get the current value of the register. */ else frame_unwind_register (next_frame, regnum, valuep); } if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "regular prev register <%d> <%s> is 0x%s\n", regnum, (((unsigned) regnum <= IA64_NAT127_REGNUM) ? ia64_register_names[regnum] : "r??"), paddr_nz (extract_unsigned_integer (valuep, 8))); } static const struct frame_unwind ia64_frame_unwind = { NORMAL_FRAME, &ia64_frame_this_id, &ia64_frame_prev_register }; static const struct frame_unwind * ia64_frame_sniffer (struct frame_info *next_frame) { return &ia64_frame_unwind; } /* Signal trampolines. */ static void ia64_sigtramp_frame_init_saved_regs (struct ia64_frame_cache *cache) { if (SIGCONTEXT_REGISTER_ADDRESS) { int regno; cache->saved_regs[IA64_VRAP_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_IP_REGNUM); cache->saved_regs[IA64_CFM_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CFM_REGNUM); cache->saved_regs[IA64_PSR_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PSR_REGNUM); cache->saved_regs[IA64_BSP_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_BSP_REGNUM); cache->saved_regs[IA64_RNAT_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_RNAT_REGNUM); cache->saved_regs[IA64_CCV_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CCV_REGNUM); cache->saved_regs[IA64_UNAT_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_UNAT_REGNUM); cache->saved_regs[IA64_FPSR_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_FPSR_REGNUM); cache->saved_regs[IA64_PFS_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PFS_REGNUM); cache->saved_regs[IA64_LC_REGNUM] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_LC_REGNUM); for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) cache->saved_regs[regno] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) cache->saved_regs[regno] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) cache->saved_regs[regno] = SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); } } static struct ia64_frame_cache * ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) { struct ia64_frame_cache *cache; CORE_ADDR addr; char buf[8]; int i; if (*this_cache) return *this_cache; cache = ia64_alloc_frame_cache (); frame_unwind_register (next_frame, sp_regnum, buf); /* Note that frame size is hard-coded below. We cannot calculate it via prologue examination. */ cache->base = extract_unsigned_integer (buf, 8) + 16; frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); cache->bsp = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); cache->cfm = extract_unsigned_integer (buf, 8); cache->sof = cache->cfm & 0x7f; ia64_sigtramp_frame_init_saved_regs (cache); *this_cache = cache; return cache; } static void ia64_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache, struct frame_id *this_id) { struct ia64_frame_cache *cache = ia64_sigtramp_frame_cache (next_frame, this_cache); (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp); if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", paddr_nz (this_id->code_addr), paddr_nz (this_id->stack_addr), paddr_nz (cache->bsp), next_frame); } static void ia64_sigtramp_frame_prev_register (struct frame_info *next_frame, void **this_cache, int regnum, int *optimizedp, enum lval_type *lvalp, CORE_ADDR *addrp, int *realnump, void *valuep) { char dummy_valp[MAX_REGISTER_SIZE]; char buf[MAX_REGISTER_SIZE]; struct ia64_frame_cache *cache = ia64_sigtramp_frame_cache (next_frame, this_cache); gdb_assert (regnum >= 0); if (!target_has_registers) error ("No registers."); *optimizedp = 0; *addrp = 0; *lvalp = not_lval; *realnump = -1; /* Rather than check each time if valuep is non-null, supply a dummy buffer when valuep is not supplied. */ if (!valuep) valuep = dummy_valp; memset (valuep, 0, register_size (current_gdbarch, regnum)); if (regnum == IA64_IP_REGNUM) { CORE_ADDR pc = 0; CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); pc = extract_unsigned_integer (buf, 8); } pc &= ~0xf; store_unsigned_integer (valuep, 8, pc); } else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) { CORE_ADDR addr = 0; if (regnum >= V32_REGNUM) regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); addr = cache->saved_regs[regnum]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, valuep, register_size (current_gdbarch, regnum)); } } else { /* All other registers not listed above. */ CORE_ADDR addr = cache->saved_regs[regnum]; if (addr != 0) { *lvalp = lval_memory; *addrp = addr; ia64_read_reg (addr, valuep, register_size (current_gdbarch, regnum)); } } if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "sigtramp prev register <%s> is 0x%s\n", (((unsigned) regnum <= IA64_NAT127_REGNUM) ? ia64_register_names[regnum] : "r??"), paddr_nz (extract_unsigned_integer (valuep, 8))); } static const struct frame_unwind ia64_sigtramp_frame_unwind = { SIGTRAMP_FRAME, ia64_sigtramp_frame_this_id, ia64_sigtramp_frame_prev_register }; static const struct frame_unwind * ia64_sigtramp_frame_sniffer (struct frame_info *next_frame) { char *name; CORE_ADDR pc = frame_pc_unwind (next_frame); find_pc_partial_function (pc, &name, NULL, NULL); if (PC_IN_SIGTRAMP (pc, name)) return &ia64_sigtramp_frame_unwind; return NULL; } static CORE_ADDR ia64_frame_base_address (struct frame_info *next_frame, void **this_cache) { struct ia64_frame_cache *cache = ia64_frame_cache (next_frame, this_cache); return cache->base; } static const struct frame_base ia64_frame_base = { &ia64_frame_unwind, ia64_frame_base_address, ia64_frame_base_address, ia64_frame_base_address }; #ifdef HAVE_LIBUNWIND_IA64_H struct ia64_unwind_table_entry { unw_word_t start_offset; unw_word_t end_offset; unw_word_t info_offset; }; static __inline__ uint64_t ia64_rse_slot_num (uint64_t addr) { return (addr >> 3) & 0x3f; } /* Skip over a designated number of registers in the backing store, remembering every 64th position is for NAT. */ static __inline__ uint64_t ia64_rse_skip_regs (uint64_t addr, long num_regs) { long delta = ia64_rse_slot_num(addr) + num_regs; if (num_regs < 0) delta -= 0x3e; return addr + ((num_regs + delta/0x3f) << 3); } /* Gdb libunwind-frame callback function to convert from an ia64 gdb register number to a libunwind register number. */ static int ia64_gdb2uw_regnum (int regnum) { if (regnum == sp_regnum) return UNW_IA64_SP; else if (regnum == IA64_BSP_REGNUM) return UNW_IA64_BSP; else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); else if ((unsigned) (regnum - V32_REGNUM) < 95) return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) return -1; else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); else if (regnum == IA64_PR_REGNUM) return UNW_IA64_PR; else if (regnum == IA64_IP_REGNUM) return UNW_REG_IP; else if (regnum == IA64_CFM_REGNUM) return UNW_IA64_CFM; else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); else return -1; } /* Gdb libunwind-frame callback function to convert from a libunwind register number to a ia64 gdb register number. */ static int ia64_uw2gdb_regnum (int uw_regnum) { if (uw_regnum == UNW_IA64_SP) return sp_regnum; else if (uw_regnum == UNW_IA64_BSP) return IA64_BSP_REGNUM; else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); else if (uw_regnum == UNW_IA64_PR) return IA64_PR_REGNUM; else if (uw_regnum == UNW_REG_IP) return IA64_IP_REGNUM; else if (uw_regnum == UNW_IA64_CFM) return IA64_CFM_REGNUM; else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); else return -1; } /* Gdb libunwind-frame callback function to reveal if register is a float register or not. */ static int ia64_is_fpreg (int uw_regnum) { return unw_is_fpreg (uw_regnum); } /* Libunwind callback accessor function for general registers. */ static int ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, int write, void *arg) { int regnum = ia64_uw2gdb_regnum (uw_regnum); unw_word_t bsp, sof, sol, cfm, psr, ip; struct frame_info *next_frame = arg; long new_sof, old_sof; char buf[MAX_REGISTER_SIZE]; if (write) { if (regnum < 0) /* ignore writes to pseudo-registers such as UNW_IA64_PROC_STARTI. */ return 0; switch (uw_regnum) { case UNW_REG_IP: ia64_write_pc (*val, inferior_ptid); break; case UNW_IA64_AR_BSPSTORE: write_register (IA64_BSP_REGNUM, *val); break; case UNW_IA64_AR_BSP: case UNW_IA64_BSP: /* Account for the fact that ptrace() expects bsp to point after the current register frame. */ cfm = read_register (IA64_CFM_REGNUM); sof = (cfm & 0x7f); bsp = ia64_rse_skip_regs (*val, sof); write_register (IA64_BSP_REGNUM, bsp); break; case UNW_IA64_CFM: /* If we change CFM, we need to adjust ptrace's notion of bsp accordingly, so that the real bsp remains unchanged. */ bsp = read_register (IA64_BSP_REGNUM); cfm = read_register (IA64_CFM_REGNUM); old_sof = (cfm & 0x7f); new_sof = (*val & 0x7f); if (old_sof != new_sof) { bsp = ia64_rse_skip_regs (bsp, -old_sof + new_sof); write_register (IA64_BSP_REGNUM, bsp); } write_register (IA64_CFM_REGNUM, *val); break; default: write_register (regnum, *val); break; } if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, " access_reg: to cache: %4s=0x%s\n", (((unsigned) regnum <= IA64_NAT127_REGNUM) ? ia64_register_names[regnum] : "r??"), paddr_nz (*val)); } else { switch (uw_regnum) { case UNW_REG_IP: /* Libunwind expects to see the pc value which means the slot number from the psr must be merged with the ip word address. */ frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); ip = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); psr = extract_unsigned_integer (buf, 8); *val = ip | ((psr >> 41) & 0x3); break; case UNW_IA64_AR_BSP: /* Libunwind expects to see the beginning of the current register frame so we must account for the fact that ptrace() will return a value for bsp that points *after* the current register frame. */ frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); bsp = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); cfm = extract_unsigned_integer (buf, 8); sof = (cfm & 0x7f); *val = ia64_rse_skip_regs (bsp, -sof); break; case UNW_IA64_AR_BSPSTORE: /* Libunwind wants bspstore to be after the current register frame. This is what ptrace() and gdb treats as the regular bsp value. */ frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); *val = extract_unsigned_integer (buf, 8); break; default: /* For all other registers, just unwind the value directly. */ frame_unwind_register (next_frame, regnum, buf); *val = extract_unsigned_integer (buf, 8); break; } if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, " access_reg: from cache: %4s=0x%s\n", (((unsigned) regnum <= IA64_NAT127_REGNUM) ? ia64_register_names[regnum] : "r??"), paddr_nz (*val)); } return 0; } /* Libunwind callback accessor function for floating-point registers. */ static int ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, int write, void *arg) { int regnum = ia64_uw2gdb_regnum (uw_regnum); if (write) regcache_cooked_write (current_regcache, regnum, (char *) val); else regcache_cooked_read (current_regcache, regnum, (char *) val); return 0; } /* Libunwind callback accessor function for accessing memory. */ static int ia64_access_mem (unw_addr_space_t as, unw_word_t addr, unw_word_t *val, int write, void *arg) { /* XXX do we need to normalize byte-order here? */ if (write) return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); else return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); } /* Call low-level function to access the kernel unwind table. */ static int getunwind_table (void *buf, size_t len) { LONGEST x; x = target_read_partial (¤t_target, TARGET_OBJECT_UNWIND_TABLE, NULL, buf, 0, len); return (int)x; } /* Get the kernel unwind table. */ static int get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) { size_t size; struct ia64_table_entry { uint64_t start_offset; uint64_t end_offset; uint64_t info_offset; }; static struct ia64_table_entry *ktab = NULL, *etab; if (!ktab) { size = getunwind_table (NULL, 0); if ((int)size < 0) return -UNW_ENOINFO; ktab = xmalloc (size); getunwind_table (ktab, size); /* Determine length of kernel's unwind table and relocate it's entries. */ for (etab = ktab; etab->start_offset; ++etab) etab->info_offset += (uint64_t) ktab; } if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) return -UNW_ENOINFO; di->format = UNW_INFO_FORMAT_TABLE; di->gp = 0; di->start_ip = ktab[0].start_offset; di->end_ip = etab[-1].end_offset; di->u.ti.name_ptr = (unw_word_t) "<kernel>"; di->u.ti.segbase = 0; di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); di->u.ti.table_data = (unw_word_t *) ktab; if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " "segbase=0x%s, length=%s, gp=0x%s\n", (char *) di->u.ti.name_ptr, paddr_nz (di->u.ti.segbase), paddr_u (di->u.ti.table_len), paddr_nz (di->gp)); return 0; } /* Find the unwind table entry for a specified address. */ static int ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, unw_dyn_info_t *dip, void **buf) { Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; Elf_Internal_Ehdr *ehdr; unw_word_t segbase = 0; CORE_ADDR load_base; bfd *bfd; int i; bfd = objfile->obfd; ehdr = elf_tdata (bfd)->elf_header; phdr = elf_tdata (bfd)->phdr; load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); for (i = 0; i < ehdr->e_phnum; ++i) { switch (phdr[i].p_type) { case PT_LOAD: if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) < phdr[i].p_memsz) p_text = phdr + i; break; case PT_IA_64_UNWIND: p_unwind = phdr + i; break; default: break; } } if (!p_text || !p_unwind /* Verify that the segment that contains the IP also contains the static unwind table. If not, we are dealing with runtime-generated code, for which we have no info here. */ || (p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) return -UNW_ENOINFO; segbase = p_text->p_vaddr + load_base; dip->start_ip = segbase; dip->end_ip = dip->start_ip + p_text->p_memsz; dip->gp = FIND_GLOBAL_POINTER (ip); dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); dip->u.rti.segbase = segbase; dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); dip->u.rti.table_data = p_unwind->p_vaddr + load_base; return 0; } /* Libunwind callback accessor function to acquire procedure unwind-info. */ static int ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, int need_unwind_info, void *arg) { struct obj_section *sec = find_pc_section (ip); unw_dyn_info_t di; int ret; void *buf = NULL; if (!sec) { /* XXX This only works if the host and the target architecture are both ia64 and if the have (more or less) the same kernel version. */ if (get_kernel_table (ip, &di) < 0) return -UNW_ENOINFO; if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," "length=%s,data=0x%s)\n", paddr_nz (ip), (char *)di.u.ti.name_ptr, paddr_nz (di.u.ti.segbase), paddr_nz (di.start_ip), paddr_nz (di.end_ip), paddr_nz (di.gp), paddr_u (di.u.ti.table_len), paddr_nz ((CORE_ADDR)di.u.ti.table_data)); } else { ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); if (ret < 0) return ret; if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," "length=%s,data=0x%s)\n", paddr_nz (ip), (char *)di.u.rti.name_ptr, paddr_nz (di.u.rti.segbase), paddr_nz (di.start_ip), paddr_nz (di.end_ip), paddr_nz (di.gp), paddr_u (di.u.rti.table_len), paddr_nz (di.u.rti.table_data)); } ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, arg); /* We no longer need the dyn info storage so free it. */ xfree (buf); return ret; } /* Libunwind callback accessor function for cleanup. */ static void ia64_put_unwind_info (unw_addr_space_t as, unw_proc_info_t *pip, void *arg) { /* Nothing required for now. */ } /* Libunwind callback accessor function to get head of the dynamic unwind-info registration list. */ static int ia64_get_dyn_info_list (unw_addr_space_t as, unw_word_t *dilap, void *arg) { struct obj_section *text_sec; struct objfile *objfile; unw_word_t ip, addr; unw_dyn_info_t di; int ret; if (!libunwind_is_initialized ()) return -UNW_ENOINFO; for (objfile = object_files; objfile; objfile = objfile->next) { void *buf = NULL; text_sec = objfile->sections + SECT_OFF_TEXT (objfile); ip = text_sec->addr; ret = ia64_find_unwind_table (objfile, ip, &di, &buf); if (ret >= 0) { addr = libunwind_find_dyn_list (as, &di, arg); /* We no longer need the dyn info storage so free it. */ xfree (buf); if (addr) { if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "dynamic unwind table in objfile %s " "at 0x%s (gp=0x%s)\n", bfd_get_filename (objfile->obfd), paddr_nz (addr), paddr_nz (di.gp)); *dilap = addr; return 0; } } } return -UNW_ENOINFO; } /* Frame interface functions for libunwind. */ static void ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache, struct frame_id *this_id) { char buf[8]; CORE_ADDR bsp; struct frame_id id; libunwind_frame_this_id (next_frame, this_cache, &id); /* We must add the bsp as the special address for frame comparison purposes. */ frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); bsp = extract_unsigned_integer (buf, 8); (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", paddr_nz (id.code_addr), paddr_nz (id.stack_addr), paddr_nz (bsp), next_frame); } static void ia64_libunwind_frame_prev_register (struct frame_info *next_frame, void **this_cache, int regnum, int *optimizedp, enum lval_type *lvalp, CORE_ADDR *addrp, int *realnump, void *valuep) { int reg = regnum; if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) reg = IA64_PR_REGNUM; else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) reg = IA64_UNAT_REGNUM; /* Let libunwind do most of the work. */ libunwind_frame_prev_register (next_frame, this_cache, reg, optimizedp, lvalp, addrp, realnump, valuep); if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) { ULONGEST prN_val; if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) { int rrb_pr = 0; ULONGEST cfm; unsigned char buf[MAX_REGISTER_SIZE]; /* Fetch predicate register rename base from current frame marker for this frame. */ frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); cfm = extract_unsigned_integer (buf, 8); rrb_pr = (cfm >> 32) & 0x3f; /* Adjust the register number to account for register rotation. */ regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; } prN_val = extract_bit_field ((unsigned char *) valuep, regnum - VP0_REGNUM, 1); store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); } else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) { ULONGEST unatN_val; unatN_val = extract_bit_field ((unsigned char *) valuep, regnum - IA64_NAT0_REGNUM, 1); store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), unatN_val); } else if (regnum == IA64_BSP_REGNUM) { char cfm_valuep[MAX_REGISTER_SIZE]; int cfm_optim; int cfm_realnum; enum lval_type cfm_lval; CORE_ADDR cfm_addr; CORE_ADDR bsp, prev_cfm, prev_bsp; /* We want to calculate the previous bsp as the end of the previous register stack frame. This corresponds to what the hardware bsp register will be if we pop the frame back which is why we might have been called. We know that libunwind will pass us back the beginning of the current frame so we should just add sof to it. */ prev_bsp = extract_unsigned_integer (valuep, 8); libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); prev_cfm = extract_unsigned_integer (cfm_valuep, 8); prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prev_bsp); } if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "libunwind prev register <%s> is 0x%s\n", (((unsigned) regnum <= IA64_NAT127_REGNUM) ? ia64_register_names[regnum] : "r??"), paddr_nz (extract_unsigned_integer (valuep, 8))); } static const struct frame_unwind ia64_libunwind_frame_unwind = { NORMAL_FRAME, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register }; static const struct frame_unwind * ia64_libunwind_frame_sniffer (struct frame_info *next_frame) { if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame)) return &ia64_libunwind_frame_unwind; return NULL; } /* Set of libunwind callback acccessor functions. */ static unw_accessors_t ia64_unw_accessors = { ia64_find_proc_info_x, ia64_put_unwind_info, ia64_get_dyn_info_list, ia64_access_mem, ia64_access_reg, ia64_access_fpreg, /* resume */ /* get_proc_name */ }; /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ static struct libunwind_descr ia64_libunwind_descr = { ia64_gdb2uw_regnum, ia64_uw2gdb_regnum, ia64_is_fpreg, &ia64_unw_accessors, }; #endif /* HAVE_LIBUNWIND_IA64_H */ /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE is the type (which is known to be struct, union or array). */ int ia64_use_struct_convention (int gcc_p, struct type *type) { struct type *float_elt_type; /* HFAs are structures (or arrays) consisting entirely of floating point values of the same length. Up to 8 of these are returned in registers. Don't use the struct convention when this is the case. */ float_elt_type = is_float_or_hfa_type (type); if (float_elt_type != NULL && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) return 0; /* Other structs of length 32 or less are returned in r8-r11. Don't use the struct convention for those either. */ return TYPE_LENGTH (type) > 32; } void ia64_extract_return_value (struct type *type, struct regcache *regcache, void *valbuf) { struct type *float_elt_type; float_elt_type = is_float_or_hfa_type (type); if (float_elt_type != NULL) { char from[MAX_REGISTER_SIZE]; int offset = 0; int regnum = IA64_FR8_REGNUM; int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); while (n-- > 0) { regcache_cooked_read (regcache, regnum, from); convert_typed_floating (from, builtin_type_ia64_ext, (char *)valbuf + offset, float_elt_type); offset += TYPE_LENGTH (float_elt_type); regnum++; } } else { ULONGEST val; int offset = 0; int regnum = IA64_GR8_REGNUM; int reglen = TYPE_LENGTH (ia64_register_type (NULL, IA64_GR8_REGNUM)); int n = TYPE_LENGTH (type) / reglen; int m = TYPE_LENGTH (type) % reglen; while (n-- > 0) { ULONGEST val; regcache_cooked_read_unsigned (regcache, regnum, &val); memcpy ((char *)valbuf + offset, &val, reglen); offset += reglen; regnum++; } if (m) { regcache_cooked_read_unsigned (regcache, regnum, &val); memcpy ((char *)valbuf + offset, &val, m); } } } CORE_ADDR ia64_extract_struct_value_address (struct regcache *regcache) { error ("ia64_extract_struct_value_address called and cannot get struct value address"); return 0; } static int is_float_or_hfa_type_recurse (struct type *t, struct type **etp) { switch (TYPE_CODE (t)) { case TYPE_CODE_FLT: if (*etp) return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); else { *etp = t; return 1; } break; case TYPE_CODE_ARRAY: return is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), etp); break; case TYPE_CODE_STRUCT: { int i; for (i = 0; i < TYPE_NFIELDS (t); i++) if (!is_float_or_hfa_type_recurse (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) return 0; return 1; } break; default: return 0; break; } } /* Determine if the given type is one of the floating point types or and HFA (which is a struct, array, or combination thereof whose bottom-most elements are all of the same floating point type). */ static struct type * is_float_or_hfa_type (struct type *t) { struct type *et = 0; return is_float_or_hfa_type_recurse (t, &et) ? et : 0; } /* Return 1 if the alignment of T is such that the next even slot should be used. Return 0, if the next available slot should be used. (See section 8.5.1 of the IA-64 Software Conventions and Runtime manual). */ static int slot_alignment_is_next_even (struct type *t) { switch (TYPE_CODE (t)) { case TYPE_CODE_INT: case TYPE_CODE_FLT: if (TYPE_LENGTH (t) > 8) return 1; else return 0; case TYPE_CODE_ARRAY: return slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); case TYPE_CODE_STRUCT: { int i; for (i = 0; i < TYPE_NFIELDS (t); i++) if (slot_alignment_is_next_even (check_typedef (TYPE_FIELD_TYPE (t, i)))) return 1; return 0; } default: return 0; } } /* Attempt to find (and return) the global pointer for the given function. This is a rather nasty bit of code searchs for the .dynamic section in the objfile corresponding to the pc of the function we're trying to call. Once it finds the addresses at which the .dynamic section lives in the child process, it scans the Elf64_Dyn entries for a DT_PLTGOT tag. If it finds one of these, the corresponding d_un.d_ptr value is the global pointer. */ CORE_ADDR ia64_generic_find_global_pointer (CORE_ADDR faddr) { struct obj_section *faddr_sect; faddr_sect = find_pc_section (faddr); if (faddr_sect != NULL) { struct obj_section *osect; ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) { if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) break; } if (osect < faddr_sect->objfile->sections_end) { CORE_ADDR addr; addr = osect->addr; while (addr < osect->endaddr) { int status; LONGEST tag; char buf[8]; status = target_read_memory (addr, buf, sizeof (buf)); if (status != 0) break; tag = extract_signed_integer (buf, sizeof (buf)); if (tag == DT_PLTGOT) { CORE_ADDR global_pointer; status = target_read_memory (addr + 8, buf, sizeof (buf)); if (status != 0) break; global_pointer = extract_unsigned_integer (buf, sizeof (buf)); /* The payoff... */ return global_pointer; } if (tag == DT_NULL) break; addr += 16; } } } return 0; } /* Given a function's address, attempt to find (and return) the corresponding (canonical) function descriptor. Return 0 if not found. */ static CORE_ADDR find_extant_func_descr (CORE_ADDR faddr) { struct obj_section *faddr_sect; /* Return early if faddr is already a function descriptor. */ faddr_sect = find_pc_section (faddr); if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) return faddr; if (faddr_sect != NULL) { struct obj_section *osect; ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) { if (strcmp (osect->the_bfd_section->name, ".opd") == 0) break; } if (osect < faddr_sect->objfile->sections_end) { CORE_ADDR addr; addr = osect->addr; while (addr < osect->endaddr) { int status; LONGEST faddr2; char buf[8]; status = target_read_memory (addr, buf, sizeof (buf)); if (status != 0) break; faddr2 = extract_signed_integer (buf, sizeof (buf)); if (faddr == faddr2) return addr; addr += 16; } } } return 0; } /* Attempt to find a function descriptor corresponding to the given address. If none is found, construct one on the stack using the address at fdaptr. */ static CORE_ADDR find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr) { CORE_ADDR fdesc; fdesc = find_extant_func_descr (faddr); if (fdesc == 0) { CORE_ADDR global_pointer; char buf[16]; fdesc = *fdaptr; *fdaptr += 16; global_pointer = FIND_GLOBAL_POINTER (faddr); if (global_pointer == 0) global_pointer = read_register (IA64_GR1_REGNUM); store_unsigned_integer (buf, 8, faddr); store_unsigned_integer (buf + 8, 8, global_pointer); write_memory (fdesc, buf, 16); } return fdesc; } /* Use the following routine when printing out function pointers so the user can see the function address rather than just the function descriptor. */ static CORE_ADDR ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ) { struct obj_section *s; s = find_pc_section (addr); /* check if ADDR points to a function descriptor. */ if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) return read_memory_unsigned_integer (addr, 8); return addr; } static CORE_ADDR ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) { return sp & ~0xfLL; } static CORE_ADDR ia64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { int argno; struct value *arg; struct type *type; int len, argoffset; int nslots, rseslots, memslots, slotnum, nfuncargs; int floatreg; CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr, pc, global_pointer; nslots = 0; nfuncargs = 0; /* Count the number of slots needed for the arguments. */ for (argno = 0; argno < nargs; argno++) { arg = args[argno]; type = check_typedef (VALUE_TYPE (arg)); len = TYPE_LENGTH (type); if ((nslots & 1) && slot_alignment_is_next_even (type)) nslots++; if (TYPE_CODE (type) == TYPE_CODE_FUNC) nfuncargs++; nslots += (len + 7) / 8; } /* Divvy up the slots between the RSE and the memory stack. */ rseslots = (nslots > 8) ? 8 : nslots; memslots = nslots - rseslots; /* Allocate a new RSE frame. */ cfm = read_register (IA64_CFM_REGNUM); bsp = read_register (IA64_BSP_REGNUM); new_bsp = rse_address_add (bsp, rseslots); write_register (IA64_BSP_REGNUM, new_bsp); pfs = read_register (IA64_PFS_REGNUM); pfs &= 0xc000000000000000LL; pfs |= (cfm & 0xffffffffffffLL); write_register (IA64_PFS_REGNUM, pfs); cfm &= 0xc000000000000000LL; cfm |= rseslots; write_register (IA64_CFM_REGNUM, cfm); /* We will attempt to find function descriptors in the .opd segment, but if we can't we'll construct them ourselves. That being the case, we'll need to reserve space on the stack for them. */ funcdescaddr = sp - nfuncargs * 16; funcdescaddr &= ~0xfLL; /* Adjust the stack pointer to it's new value. The calling conventions require us to have 16 bytes of scratch, plus whatever space is necessary for the memory slots and our function descriptors. */ sp = sp - 16 - (memslots + nfuncargs) * 8; sp &= ~0xfLL; /* Maintain 16 byte alignment. */ /* Place the arguments where they belong. The arguments will be either placed in the RSE backing store or on the memory stack. In addition, floating point arguments or HFAs are placed in floating point registers. */ slotnum = 0; floatreg = IA64_FR8_REGNUM; for (argno = 0; argno < nargs; argno++) { struct type *float_elt_type; arg = args[argno]; type = check_typedef (VALUE_TYPE (arg)); len = TYPE_LENGTH (type); /* Special handling for function parameters. */ if (len == 8 && TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) { char val_buf[8]; store_unsigned_integer (val_buf, 8, find_func_descr (extract_unsigned_integer (VALUE_CONTENTS (arg), 8), &funcdescaddr)); if (slotnum < rseslots) write_memory (rse_address_add (bsp, slotnum), val_buf, 8); else write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); slotnum++; continue; } /* Normal slots. */ /* Skip odd slot if necessary... */ if ((slotnum & 1) && slot_alignment_is_next_even (type)) slotnum++; argoffset = 0; while (len > 0) { char val_buf[8]; memset (val_buf, 0, 8); memcpy (val_buf, VALUE_CONTENTS (arg) + argoffset, (len > 8) ? 8 : len); if (slotnum < rseslots) write_memory (rse_address_add (bsp, slotnum), val_buf, 8); else write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); argoffset += 8; len -= 8; slotnum++; } /* Handle floating point types (including HFAs). */ float_elt_type = is_float_or_hfa_type (type); if (float_elt_type != NULL) { argoffset = 0; len = TYPE_LENGTH (type); while (len > 0 && floatreg < IA64_FR16_REGNUM) { char to[MAX_REGISTER_SIZE]; convert_typed_floating (VALUE_CONTENTS (arg) + argoffset, float_elt_type, to, builtin_type_ia64_ext); regcache_cooked_write (regcache, floatreg, (void *)to); floatreg++; argoffset += TYPE_LENGTH (float_elt_type); len -= TYPE_LENGTH (float_elt_type); } } } /* Store the struct return value in r8 if necessary. */ if (struct_return) { regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); } global_pointer = FIND_GLOBAL_POINTER (func_addr); if (global_pointer != 0) write_register (IA64_GR1_REGNUM, global_pointer); write_register (IA64_BR0_REGNUM, bp_addr); write_register (sp_regnum, sp); return sp; } static struct frame_id ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) { char buf[8]; CORE_ADDR sp, bsp; frame_unwind_register (next_frame, sp_regnum, buf); sp = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); bsp = extract_unsigned_integer (buf, 8); if (gdbarch_debug >= 1) fprintf_unfiltered (gdb_stdlog, "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", paddr_nz (frame_pc_unwind (next_frame)), paddr_nz (sp), paddr_nz (bsp)); return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp); } static CORE_ADDR ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) { char buf[8]; CORE_ADDR ip, psr, pc; frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); ip = extract_unsigned_integer (buf, 8); frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); psr = extract_unsigned_integer (buf, 8); pc = (ip & ~0xf) | ((psr >> 41) & 3); return pc; } static void ia64_store_return_value (struct type *type, struct regcache *regcache, const void *valbuf) { if (TYPE_CODE (type) == TYPE_CODE_FLT) { char to[MAX_REGISTER_SIZE]; convert_typed_floating (valbuf, type, to, builtin_type_ia64_ext); regcache_cooked_write (regcache, IA64_FR8_REGNUM, (void *)to); target_store_registers (IA64_FR8_REGNUM); } else regcache_cooked_write (regcache, IA64_GR8_REGNUM, valbuf); } static void ia64_remote_translate_xfer_address (struct gdbarch *gdbarch, struct regcache *regcache, CORE_ADDR memaddr, int nr_bytes, CORE_ADDR *targ_addr, int *targ_len) { *targ_addr = memaddr; *targ_len = nr_bytes; } static int ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) { info->bytes_per_line = SLOT_MULTIPLIER; return print_insn_ia64 (memaddr, info); } static struct gdbarch * ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; /* If there is already a candidate, use it. */ arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) return arches->gdbarch; tdep = xmalloc (sizeof (struct gdbarch_tdep)); gdbarch = gdbarch_alloc (&info, tdep); tdep->osabi = info.osabi; tdep->sigcontext_register_address = NULL; tdep->find_global_pointer = ia64_generic_find_global_pointer; /* Define the ia64 floating-point format to gdb. */ builtin_type_ia64_ext = init_type (TYPE_CODE_FLT, 128 / 8, 0, "builtin_type_ia64_ext", NULL); TYPE_FLOATFORMAT (builtin_type_ia64_ext) = &floatformat_ia64_ext; /* According to the ia64 specs, instructions that store long double floats in memory use a long-double format different than that used in the floating registers. The memory format matches the x86 extended float format which is 80 bits. An OS may choose to use this format (e.g. GNU/Linux) or choose to use a different format for storing long doubles (e.g. HPUX). In the latter case, the setting of the format may be moved/overridden in an OS-specific tdep file. */ set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext); set_gdbarch_short_bit (gdbarch, 16); set_gdbarch_int_bit (gdbarch, 32); set_gdbarch_long_bit (gdbarch, 64); set_gdbarch_long_long_bit (gdbarch, 64); set_gdbarch_float_bit (gdbarch, 32); set_gdbarch_double_bit (gdbarch, 64); set_gdbarch_long_double_bit (gdbarch, 128); set_gdbarch_ptr_bit (gdbarch, 64); set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); set_gdbarch_sp_regnum (gdbarch, sp_regnum); set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); set_gdbarch_register_name (gdbarch, ia64_register_name); /* FIXME: Following interface should not be needed, however, without it recurse.exp gets a number of extra failures. */ set_gdbarch_deprecated_register_size (gdbarch, 8); set_gdbarch_register_type (gdbarch, ia64_register_type); set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); set_gdbarch_use_struct_convention (gdbarch, ia64_use_struct_convention); set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value); set_gdbarch_store_return_value (gdbarch, ia64_store_return_value); set_gdbarch_deprecated_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address); set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); set_gdbarch_read_pc (gdbarch, ia64_read_pc); set_gdbarch_write_pc (gdbarch, ia64_write_pc); /* Settings for calling functions in the inferior. */ set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); set_gdbarch_frame_align (gdbarch, ia64_frame_align); set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id); set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer); #ifdef HAVE_LIBUNWIND_IA64_H frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer); libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); #endif frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer); frame_base_set_default (gdbarch, &ia64_frame_base); /* Settings that should be unnecessary. */ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_remote_translate_xfer_address ( gdbarch, ia64_remote_translate_xfer_address); set_gdbarch_print_insn (gdbarch, ia64_print_insn); set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); gdbarch_init_osabi (info, gdbarch); return gdbarch; } extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ void _initialize_ia64_tdep (void) { register_gdbarch_init (bfd_arch_ia64, ia64_gdbarch_init); }