Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ADT/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ADT/ArrayRef.h |
//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_ARRAYREF_H #define LLVM_ADT_ARRAYREF_H #include "llvm/ADT/SmallVector.h" #include <vector> namespace llvm { /// ArrayRef - Represent a constant reference to an array (0 or more elements /// consecutively in memory), i.e. a start pointer and a length. It allows /// various APIs to take consecutive elements easily and conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the ArrayRef. For this reason, it is not in general /// safe to store an ArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template<typename T> class ArrayRef { public: typedef const T *iterator; typedef const T *const_iterator; typedef size_t size_type; private: /// The start of the array, in an external buffer. const T *Data; /// The number of elements. size_type Length; public: /// @name Constructors /// @{ /// Construct an empty ArrayRef. /*implicit*/ ArrayRef() : Data(0), Length(0) {} /// Construct an ArrayRef from a single element. /*implicit*/ ArrayRef(const T &OneElt) : Data(&OneElt), Length(1) {} /// Construct an ArrayRef from a pointer and length. /*implicit*/ ArrayRef(const T *data, size_t length) : Data(data), Length(length) {} /// Construct an ArrayRef from a range. ArrayRef(const T *begin, const T *end) : Data(begin), Length(end - begin) {} /// Construct an ArrayRef from a SmallVector. /*implicit*/ ArrayRef(const SmallVectorImpl<T> &Vec) : Data(Vec.data()), Length(Vec.size()) {} /// Construct an ArrayRef from a std::vector. /*implicit*/ ArrayRef(const std::vector<T> &Vec) : Data(Vec.empty() ? (T*)0 : &Vec[0]), Length(Vec.size()) {} /// Construct an ArrayRef from a C array. template <size_t N> /*implicit*/ ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} /// @} /// @name Simple Operations /// @{ iterator begin() const { return Data; } iterator end() const { return Data + Length; } /// empty - Check if the array is empty. bool empty() const { return Length == 0; } const T *data() const { return Data; } /// size - Get the array size. size_t size() const { return Length; } /// front - Get the first element. const T &front() const { assert(!empty()); return Data[0]; } /// back - Get the last element. const T &back() const { assert(!empty()); return Data[Length-1]; } /// equals - Check for element-wise equality. bool equals(ArrayRef RHS) const { if (Length != RHS.Length) return false; for (size_type i = 0; i != Length; i++) if (Data[i] != RHS.Data[i]) return false; return true; } /// slice(n) - Chop off the first N elements of the array. ArrayRef<T> slice(unsigned N) const { assert(N <= size() && "Invalid specifier"); return ArrayRef<T>(data()+N, size()-N); } /// slice(n, m) - Chop off the first N elements of the array, and keep M /// elements in the array. ArrayRef<T> slice(unsigned N, unsigned M) const { assert(N+M <= size() && "Invalid specifier"); return ArrayRef<T>(data()+N, M); } /// @} /// @name Operator Overloads /// @{ const T &operator[](size_t Index) const { assert(Index < Length && "Invalid index!"); return Data[Index]; } /// @} /// @name Expensive Operations /// @{ std::vector<T> vec() const { return std::vector<T>(Data, Data+Length); } /// @} /// @name Conversion operators /// @{ operator std::vector<T>() const { return std::vector<T>(Data, Data+Length); } /// @} }; /// MutableArrayRef - Represent a mutable reference to an array (0 or more /// elements consecutively in memory), i.e. a start pointer and a length. It /// allows various APIs to take and modify consecutive elements easily and /// conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the MutableArrayRef. For this reason, it is not in /// general safe to store a MutableArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template<typename T> class MutableArrayRef : public ArrayRef<T> { public: typedef T *iterator; /// Construct an empty ArrayRef. /*implicit*/ MutableArrayRef() : ArrayRef<T>() {} /// Construct an MutableArrayRef from a single element. /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} /// Construct an MutableArrayRef from a pointer and length. /*implicit*/ MutableArrayRef(T *data, size_t length) : ArrayRef<T>(data, length) {} /// Construct an MutableArrayRef from a range. MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} /// Construct an MutableArrayRef from a SmallVector. /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) : ArrayRef<T>(Vec) {} /// Construct a MutableArrayRef from a std::vector. /*implicit*/ MutableArrayRef(std::vector<T> &Vec) : ArrayRef<T>(Vec) {} /// Construct an MutableArrayRef from a C array. template <size_t N> /*implicit*/ MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } iterator begin() const { return data(); } iterator end() const { return data() + this->size(); } /// front - Get the first element. T &front() const { assert(!this->empty()); return data()[0]; } /// back - Get the last element. T &back() const { assert(!this->empty()); return data()[this->size()-1]; } /// slice(n) - Chop off the first N elements of the array. MutableArrayRef<T> slice(unsigned N) const { assert(N <= this->size() && "Invalid specifier"); return MutableArrayRef<T>(data()+N, this->size()-N); } /// slice(n, m) - Chop off the first N elements of the array, and keep M /// elements in the array. MutableArrayRef<T> slice(unsigned N, unsigned M) const { assert(N+M <= this->size() && "Invalid specifier"); return MutableArrayRef<T>(data()+N, M); } /// @} /// @name Operator Overloads /// @{ T &operator[](size_t Index) const { assert(Index < this->size() && "Invalid index!"); return data()[Index]; } }; /// @name ArrayRef Convenience constructors /// @{ /// Construct an ArrayRef from a single element. template<typename T> ArrayRef<T> makeArrayRef(const T &OneElt) { return OneElt; } /// Construct an ArrayRef from a pointer and length. template<typename T> ArrayRef<T> makeArrayRef(const T *data, size_t length) { return ArrayRef<T>(data, length); } /// Construct an ArrayRef from a range. template<typename T> ArrayRef<T> makeArrayRef(const T *begin, const T *end) { return ArrayRef<T>(begin, end); } /// Construct an ArrayRef from a SmallVector. template <typename T> ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { return Vec; } /// Construct an ArrayRef from a SmallVector. template <typename T, unsigned N> ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { return Vec; } /// Construct an ArrayRef from a std::vector. template<typename T> ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { return Vec; } /// Construct an ArrayRef from a C array. template<typename T, size_t N> ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { return ArrayRef<T>(Arr); } /// @} /// @name ArrayRef Comparison Operators /// @{ template<typename T> inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { return LHS.equals(RHS); } template<typename T> inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { return !(LHS == RHS); } /// @} // ArrayRefs can be treated like a POD type. template <typename T> struct isPodLike; template <typename T> struct isPodLike<ArrayRef<T> > { static const bool value = true; }; } #endif