Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ADT/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ADT/SCCIterator.h |
//===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected // components (SCCs) of a graph in O(N+E) time using Tarjan's DFS algorithm. // // The SCC iterator has the important property that if a node in SCC S1 has an // edge to a node in SCC S2, then it visits S1 *after* S2. // // To visit S1 *before* S2, use the scc_iterator on the Inverse graph. // (NOTE: This requires some simple wrappers and is not supported yet.) // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SCCITERATOR_H #define LLVM_ADT_SCCITERATOR_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/DenseMap.h" #include <vector> namespace llvm { //===----------------------------------------------------------------------===// /// /// scc_iterator - Enumerate the SCCs of a directed graph, in /// reverse topological order of the SCC DAG. /// template<class GraphT, class GT = GraphTraits<GraphT> > class scc_iterator : public std::iterator<std::forward_iterator_tag, std::vector<typename GT::NodeType>, ptrdiff_t> { typedef typename GT::NodeType NodeType; typedef typename GT::ChildIteratorType ChildItTy; typedef std::vector<NodeType*> SccTy; typedef std::iterator<std::forward_iterator_tag, std::vector<typename GT::NodeType>, ptrdiff_t> super; typedef typename super::reference reference; typedef typename super::pointer pointer; // The visit counters used to detect when a complete SCC is on the stack. // visitNum is the global counter. // nodeVisitNumbers are per-node visit numbers, also used as DFS flags. unsigned visitNum; DenseMap<NodeType *, unsigned> nodeVisitNumbers; // SCCNodeStack - Stack holding nodes of the SCC. std::vector<NodeType *> SCCNodeStack; // CurrentSCC - The current SCC, retrieved using operator*(). SccTy CurrentSCC; // VisitStack - Used to maintain the ordering. Top = current block // First element is basic block pointer, second is the 'next child' to visit std::vector<std::pair<NodeType *, ChildItTy> > VisitStack; // MinVisitNumStack - Stack holding the "min" values for each node in the DFS. // This is used to track the minimum uplink values for all children of // the corresponding node on the VisitStack. std::vector<unsigned> MinVisitNumStack; // A single "visit" within the non-recursive DFS traversal. void DFSVisitOne(NodeType *N) { ++visitNum; // Global counter for the visit order nodeVisitNumbers[N] = visitNum; SCCNodeStack.push_back(N); MinVisitNumStack.push_back(visitNum); VisitStack.push_back(std::make_pair(N, GT::child_begin(N))); //dbgs() << "TarjanSCC: Node " << N << // " : visitNum = " << visitNum << "\n"; } // The stack-based DFS traversal; defined below. void DFSVisitChildren() { assert(!VisitStack.empty()); while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { // TOS has at least one more child so continue DFS NodeType *childN = *VisitStack.back().second++; if (!nodeVisitNumbers.count(childN)) { // this node has never been seen. DFSVisitOne(childN); continue; } unsigned childNum = nodeVisitNumbers[childN]; if (MinVisitNumStack.back() > childNum) MinVisitNumStack.back() = childNum; } } // Compute the next SCC using the DFS traversal. void GetNextSCC() { assert(VisitStack.size() == MinVisitNumStack.size()); CurrentSCC.clear(); // Prepare to compute the next SCC while (!VisitStack.empty()) { DFSVisitChildren(); assert(VisitStack.back().second ==GT::child_end(VisitStack.back().first)); NodeType *visitingN = VisitStack.back().first; unsigned minVisitNum = MinVisitNumStack.back(); VisitStack.pop_back(); MinVisitNumStack.pop_back(); if (!MinVisitNumStack.empty() && MinVisitNumStack.back() > minVisitNum) MinVisitNumStack.back() = minVisitNum; //dbgs() << "TarjanSCC: Popped node " << visitingN << // " : minVisitNum = " << minVisitNum << "; Node visit num = " << // nodeVisitNumbers[visitingN] << "\n"; if (minVisitNum != nodeVisitNumbers[visitingN]) continue; // A full SCC is on the SCCNodeStack! It includes all nodes below // visitingN on the stack. Copy those nodes to CurrentSCC, // reset their minVisit values, and return (this suspends // the DFS traversal till the next ++). do { CurrentSCC.push_back(SCCNodeStack.back()); SCCNodeStack.pop_back(); nodeVisitNumbers[CurrentSCC.back()] = ~0U; } while (CurrentSCC.back() != visitingN); return; } } inline scc_iterator(NodeType *entryN) : visitNum(0) { DFSVisitOne(entryN); GetNextSCC(); } inline scc_iterator() { /* End is when DFS stack is empty */ } public: typedef scc_iterator<GraphT, GT> _Self; // Provide static "constructors"... static inline _Self begin(const GraphT &G){return _Self(GT::getEntryNode(G));} static inline _Self end (const GraphT &) { return _Self(); } // Direct loop termination test: I.isAtEnd() is more efficient than I == end() inline bool isAtEnd() const { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty(); } inline bool operator==(const _Self& x) const { return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; } inline bool operator!=(const _Self& x) const { return !operator==(x); } // Iterator traversal: forward iteration only inline _Self& operator++() { // Preincrement GetNextSCC(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } // Retrieve a reference to the current SCC inline const SccTy &operator*() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); return CurrentSCC; } inline SccTy &operator*() { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); return CurrentSCC; } // hasLoop() -- Test if the current SCC has a loop. If it has more than one // node, this is trivially true. If not, it may still contain a loop if the // node has an edge back to itself. bool hasLoop() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); if (CurrentSCC.size() > 1) return true; NodeType *N = CurrentSCC.front(); for (ChildItTy CI = GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI) if (*CI == N) return true; return false; } /// ReplaceNode - This informs the scc_iterator that the specified Old node /// has been deleted, and New is to be used in its place. void ReplaceNode(NodeType *Old, NodeType *New) { assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); nodeVisitNumbers[New] = nodeVisitNumbers[Old]; nodeVisitNumbers.erase(Old); } }; // Global constructor for the SCC iterator. template <class T> scc_iterator<T> scc_begin(const T &G) { return scc_iterator<T>::begin(G); } template <class T> scc_iterator<T> scc_end(const T &G) { return scc_iterator<T>::end(G); } template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) { return scc_iterator<Inverse<T> >::begin(G); } template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) { return scc_iterator<Inverse<T> >::end(G); } } // End llvm namespace #endif