Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ADT/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ADT/SparseSet.h |
//===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SparseSet class derived from the version described in // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. // // A sparse set holds a small number of objects identified by integer keys from // a moderately sized universe. The sparse set uses more memory than other // containers in order to provide faster operations. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SPARSESET_H #define LLVM_ADT_SPARSESET_H #include "llvm/ADT/SmallVector.h" #include "llvm/Support/DataTypes.h" #include <limits> namespace llvm { /// SparseSetFunctor - Objects in a SparseSet are identified by small integer /// keys. A functor object is used to compute the key of an object. The /// functor's operator() must return an unsigned smaller than the universe. /// /// The default functor implementation forwards to a getSparseSetKey() method /// on the object. It is intended for sparse sets holding ad-hoc structs. /// template<typename ValueT> struct SparseSetFunctor { unsigned operator()(const ValueT &Val) { return Val.getSparseSetKey(); } }; /// SparseSetFunctor<unsigned> - Provide a trivial identity functor for /// SparseSet<unsigned>. /// template<> struct SparseSetFunctor<unsigned> { unsigned operator()(unsigned Val) { return Val; } }; /// SparseSet - Fast set implementation for objects that can be identified by /// small unsigned keys. /// /// SparseSet allocates memory proportional to the size of the key universe, so /// it is not recommended for building composite data structures. It is useful /// for algorithms that require a single set with fast operations. /// /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast /// clear() and iteration as fast as a vector. The find(), insert(), and /// erase() operations are all constant time, and typically faster than a hash /// table. The iteration order doesn't depend on numerical key values, it only /// depends on the order of insert() and erase() operations. When no elements /// have been erased, the iteration order is the insertion order. /// /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but /// offers constant-time clear() and size() operations as well as fast /// iteration independent on the size of the universe. /// /// SparseSet contains a dense vector holding all the objects and a sparse /// array holding indexes into the dense vector. Most of the memory is used by /// the sparse array which is the size of the key universe. The SparseT /// template parameter provides a space/speed tradeoff for sets holding many /// elements. /// /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse /// array uses 4 x Universe bytes. /// /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache /// lines, but the sparse array is 4x smaller. N is the number of elements in /// the set. /// /// For sets that may grow to thousands of elements, SparseT should be set to /// uint16_t or uint32_t. /// /// @param ValueT The type of objects in the set. /// @param SparseT An unsigned integer type. See above. /// @param KeyFunctorT A functor that computes the unsigned key of a ValueT. /// template<typename ValueT, typename SparseT = uint8_t, typename KeyFunctorT = SparseSetFunctor<ValueT> > class SparseSet { typedef SmallVector<ValueT, 8> DenseT; DenseT Dense; SparseT *Sparse; unsigned Universe; KeyFunctorT KeyOf; // Disable copy construction and assignment. // This data structure is not meant to be used that way. SparseSet(const SparseSet&); // DO NOT IMPLEMENT. SparseSet &operator=(const SparseSet&); // DO NOT IMPLEMENT. public: typedef ValueT value_type; typedef ValueT &reference; typedef const ValueT &const_reference; typedef ValueT *pointer; typedef const ValueT *const_pointer; SparseSet() : Sparse(0), Universe(0) {} ~SparseSet() { free(Sparse); } /// setUniverse - Set the universe size which determines the largest key the /// set can hold. The universe must be sized before any elements can be /// added. /// /// @param U Universe size. All object keys must be less than U. /// void setUniverse(unsigned U) { // It's not hard to resize the universe on a non-empty set, but it doesn't // seem like a likely use case, so we can add that code when we need it. assert(empty() && "Can only resize universe on an empty map"); // Hysteresis prevents needless reallocations. if (U >= Universe/4 && U <= Universe) return; free(Sparse); // The Sparse array doesn't actually need to be initialized, so malloc // would be enough here, but that will cause tools like valgrind to // complain about branching on uninitialized data. Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT))); Universe = U; } // Import trivial vector stuff from DenseT. typedef typename DenseT::iterator iterator; typedef typename DenseT::const_iterator const_iterator; const_iterator begin() const { return Dense.begin(); } const_iterator end() const { return Dense.end(); } iterator begin() { return Dense.begin(); } iterator end() { return Dense.end(); } /// empty - Returns true if the set is empty. /// /// This is not the same as BitVector::empty(). /// bool empty() const { return Dense.empty(); } /// size - Returns the number of elements in the set. /// /// This is not the same as BitVector::size() which returns the size of the /// universe. /// unsigned size() const { return Dense.size(); } /// clear - Clears the set. This is a very fast constant time operation. /// void clear() { // Sparse does not need to be cleared, see find(). Dense.clear(); } /// find - Find an element by its key. /// /// @param Key A valid key to find. /// @returns An iterator to the element identified by key, or end(). /// iterator find(unsigned Key) { assert(Key < Universe && "Key out of range"); assert(std::numeric_limits<SparseT>::is_integer && !std::numeric_limits<SparseT>::is_signed && "SparseT must be an unsigned integer type"); const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; for (unsigned i = Sparse[Key], e = size(); i < e; i += Stride) { const unsigned FoundKey = KeyOf(Dense[i]); assert(FoundKey < Universe && "Invalid key in set. Did object mutate?"); if (Key == FoundKey) return begin() + i; // Stride is 0 when SparseT >= unsigned. We don't need to loop. if (!Stride) break; } return end(); } const_iterator find(unsigned Key) const { return const_cast<SparseSet*>(this)->find(Key); } /// count - Returns true if this set contains an element identified by Key. /// bool count(unsigned Key) const { return find(Key) != end(); } /// insert - Attempts to insert a new element. /// /// If Val is successfully inserted, return (I, true), where I is an iterator /// pointing to the newly inserted element. /// /// If the set already contains an element with the same key as Val, return /// (I, false), where I is an iterator pointing to the existing element. /// /// Insertion invalidates all iterators. /// std::pair<iterator, bool> insert(const ValueT &Val) { unsigned Key = KeyOf(Val); iterator I = find(Key); if (I != end()) return std::make_pair(I, false); Sparse[Key] = size(); Dense.push_back(Val); return std::make_pair(end() - 1, true); } /// array subscript - If an element already exists with this key, return it. /// Otherwise, automatically construct a new value from Key, insert it, /// and return the newly inserted element. ValueT &operator[](unsigned Key) { return *insert(ValueT(Key)).first; } /// erase - Erases an existing element identified by a valid iterator. /// /// This invalidates all iterators, but erase() returns an iterator pointing /// to the next element. This makes it possible to erase selected elements /// while iterating over the set: /// /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) /// if (test(*I)) /// I = Set.erase(I); /// else /// ++I; /// /// Note that end() changes when elements are erased, unlike std::list. /// iterator erase(iterator I) { assert(unsigned(I - begin()) < size() && "Invalid iterator"); if (I != end() - 1) { *I = Dense.back(); unsigned BackKey = KeyOf(Dense.back()); assert(BackKey < Universe && "Invalid key in set. Did object mutate?"); Sparse[BackKey] = I - begin(); } // This depends on SmallVector::pop_back() not invalidating iterators. // std::vector::pop_back() doesn't give that guarantee. Dense.pop_back(); return I; } /// erase - Erases an element identified by Key, if it exists. /// /// @param Key The key identifying the element to erase. /// @returns True when an element was erased, false if no element was found. /// bool erase(unsigned Key) { iterator I = find(Key); if (I == end()) return false; erase(I); return true; } }; } // end namespace llvm #endif