Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/Analysis/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/Analysis/IntervalIterator.h |
//===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an iterator that enumerates the intervals in a control flow // graph of some sort. This iterator is parametric, allowing iterator over the // following types of graphs: // // 1. A Function* object, composed of BasicBlock nodes. // 2. An IntervalPartition& object, composed of Interval nodes. // // This iterator is defined to walk the control flow graph, returning intervals // in depth first order. These intervals are completely filled in except for // the predecessor fields (the successor information is filled in however). // // By default, the intervals created by this iterator are deleted after they // are no longer any use to the iterator. This behavior can be changed by // passing a false value into the intervals_begin() function. This causes the // IOwnMem member to be set, and the intervals to not be deleted. // // It is only safe to use this if all of the intervals are deleted by the caller // and all of the intervals are processed. However, the user of the iterator is // not allowed to modify or delete the intervals until after the iterator has // been used completely. The IntervalPartition class uses this functionality. // //===----------------------------------------------------------------------===// #ifndef LLVM_INTERVAL_ITERATOR_H #define LLVM_INTERVAL_ITERATOR_H #include "llvm/Analysis/IntervalPartition.h" #include "llvm/Function.h" #include "llvm/Support/CFG.h" #include <algorithm> #include <set> #include <vector> namespace llvm { // getNodeHeader - Given a source graph node and the source graph, return the // BasicBlock that is the header node. This is the opposite of // getSourceGraphNode. // inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; } inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); } // getSourceGraphNode - Given a BasicBlock and the source graph, return the // source graph node that corresponds to the BasicBlock. This is the opposite // of getNodeHeader. // inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) { return BB; } inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) { return IP->getBlockInterval(BB); } // addNodeToInterval - This method exists to assist the generic ProcessNode // with the task of adding a node to the new interval, depending on the // type of the source node. In the case of a CFG source graph (BasicBlock // case), the BasicBlock itself is added to the interval. // inline void addNodeToInterval(Interval *Int, BasicBlock *BB) { Int->Nodes.push_back(BB); } // addNodeToInterval - This method exists to assist the generic ProcessNode // with the task of adding a node to the new interval, depending on the // type of the source node. In the case of a CFG source graph (BasicBlock // case), the BasicBlock itself is added to the interval. In the case of // an IntervalPartition source graph (Interval case), all of the member // BasicBlocks are added to the interval. // inline void addNodeToInterval(Interval *Int, Interval *I) { // Add all of the nodes in I as new nodes in Int. copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes)); } template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy*>, class IGT = GraphTraits<Inverse<NodeTy*> > > class IntervalIterator { std::vector<std::pair<Interval*, typename Interval::succ_iterator> > IntStack; std::set<BasicBlock*> Visited; OrigContainer_t *OrigContainer; bool IOwnMem; // If True, delete intervals when done with them // See file header for conditions of use public: typedef IntervalIterator<NodeTy, OrigContainer_t> _Self; typedef std::forward_iterator_tag iterator_category; IntervalIterator() {} // End iterator, empty stack IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) { OrigContainer = M; if (!ProcessInterval(&M->front())) { llvm_unreachable("ProcessInterval should never fail for first interval!"); } } IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) { OrigContainer = &IP; if (!ProcessInterval(IP.getRootInterval())) { llvm_unreachable("ProcessInterval should never fail for first interval!"); } } inline ~IntervalIterator() { if (IOwnMem) while (!IntStack.empty()) { delete operator*(); IntStack.pop_back(); } } inline bool operator==(const _Self& x) const { return IntStack == x.IntStack;} inline bool operator!=(const _Self& x) const { return !operator==(x); } inline const Interval *operator*() const { return IntStack.back().first; } inline Interval *operator*() { return IntStack.back().first; } inline const Interval *operator->() const { return operator*(); } inline Interval *operator->() { return operator*(); } _Self& operator++() { // Preincrement assert(!IntStack.empty() && "Attempting to use interval iterator at end!"); do { // All of the intervals on the stack have been visited. Try visiting // their successors now. Interval::succ_iterator &SuccIt = IntStack.back().second, EndIt = succ_end(IntStack.back().first); while (SuccIt != EndIt) { // Loop over all interval succs bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt)); ++SuccIt; // Increment iterator if (Done) return *this; // Found a new interval! Use it! } // Free interval memory... if necessary if (IOwnMem) delete IntStack.back().first; // We ran out of successors for this interval... pop off the stack IntStack.pop_back(); } while (!IntStack.empty()); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } private: // ProcessInterval - This method is used during the construction of the // interval graph. It walks through the source graph, recursively creating // an interval per invokation until the entire graph is covered. This uses // the ProcessNode method to add all of the nodes to the interval. // // This method is templated because it may operate on two different source // graphs: a basic block graph, or a preexisting interval graph. // bool ProcessInterval(NodeTy *Node) { BasicBlock *Header = getNodeHeader(Node); if (Visited.count(Header)) return false; Interval *Int = new Interval(Header); Visited.insert(Header); // The header has now been visited! // Check all of our successors to see if they are in the interval... for (typename GT::ChildIteratorType I = GT::child_begin(Node), E = GT::child_end(Node); I != E; ++I) ProcessNode(Int, getSourceGraphNode(OrigContainer, *I)); IntStack.push_back(std::make_pair(Int, succ_begin(Int))); return true; } // ProcessNode - This method is called by ProcessInterval to add nodes to the // interval being constructed, and it is also called recursively as it walks // the source graph. A node is added to the current interval only if all of // its predecessors are already in the graph. This also takes care of keeping // the successor set of an interval up to date. // // This method is templated because it may operate on two different source // graphs: a basic block graph, or a preexisting interval graph. // void ProcessNode(Interval *Int, NodeTy *Node) { assert(Int && "Null interval == bad!"); assert(Node && "Null Node == bad!"); BasicBlock *NodeHeader = getNodeHeader(Node); if (Visited.count(NodeHeader)) { // Node already been visited? if (Int->contains(NodeHeader)) { // Already in this interval... return; } else { // In other interval, add as successor if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set Int->Successors.push_back(NodeHeader); } } else { // Otherwise, not in interval yet for (typename IGT::ChildIteratorType I = IGT::child_begin(Node), E = IGT::child_end(Node); I != E; ++I) { if (!Int->contains(*I)) { // If pred not in interval, we can't be if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set Int->Successors.push_back(NodeHeader); return; // See you later } } // If we get here, then all of the predecessors of BB are in the interval // already. In this case, we must add BB to the interval! addNodeToInterval(Int, Node); Visited.insert(NodeHeader); // The node has now been visited! if (Int->isSuccessor(NodeHeader)) { // If we were in the successor list from before... remove from succ list Int->Successors.erase(std::remove(Int->Successors.begin(), Int->Successors.end(), NodeHeader), Int->Successors.end()); } // Now that we have discovered that Node is in the interval, perhaps some // of its successors are as well? for (typename GT::ChildIteratorType It = GT::child_begin(Node), End = GT::child_end(Node); It != End; ++It) ProcessNode(Int, getSourceGraphNode(OrigContainer, *It)); } } }; typedef IntervalIterator<BasicBlock, Function> function_interval_iterator; typedef IntervalIterator<Interval, IntervalPartition> interval_part_interval_iterator; inline function_interval_iterator intervals_begin(Function *F, bool DeleteInts = true) { return function_interval_iterator(F, DeleteInts); } inline function_interval_iterator intervals_end(Function *) { return function_interval_iterator(); } inline interval_part_interval_iterator intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) { return interval_part_interval_iterator(IP, DeleteIntervals); } inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) { return interval_part_interval_iterator(); } } // End llvm namespace #endif