Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/CodeGen/LatencyPriorityQueue.h |
//===---- LatencyPriorityQueue.h - A latency-oriented priority queue ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the LatencyPriorityQueue class, which is a // SchedulingPriorityQueue that schedules using latency information to // reduce the length of the critical path through the basic block. // //===----------------------------------------------------------------------===// #ifndef LATENCY_PRIORITY_QUEUE_H #define LATENCY_PRIORITY_QUEUE_H #include "llvm/CodeGen/ScheduleDAG.h" namespace llvm { class LatencyPriorityQueue; /// Sorting functions for the Available queue. struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> { LatencyPriorityQueue *PQ; explicit latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {} bool operator()(const SUnit* left, const SUnit* right) const; }; class LatencyPriorityQueue : public SchedulingPriorityQueue { // SUnits - The SUnits for the current graph. std::vector<SUnit> *SUnits; /// NumNodesSolelyBlocking - This vector contains, for every node in the /// Queue, the number of nodes that the node is the sole unscheduled /// predecessor for. This is used as a tie-breaker heuristic for better /// mobility. std::vector<unsigned> NumNodesSolelyBlocking; /// Queue - The queue. std::vector<SUnit*> Queue; latency_sort Picker; public: LatencyPriorityQueue() : Picker(this) { } bool isBottomUp() const { return false; } void initNodes(std::vector<SUnit> &sunits) { SUnits = &sunits; NumNodesSolelyBlocking.resize(SUnits->size(), 0); } void addNode(const SUnit *SU) { NumNodesSolelyBlocking.resize(SUnits->size(), 0); } void updateNode(const SUnit *SU) { } void releaseState() { SUnits = 0; } unsigned getLatency(unsigned NodeNum) const { assert(NodeNum < (*SUnits).size()); return (*SUnits)[NodeNum].getHeight(); } unsigned getNumSolelyBlockNodes(unsigned NodeNum) const { assert(NodeNum < NumNodesSolelyBlocking.size()); return NumNodesSolelyBlocking[NodeNum]; } bool empty() const { return Queue.empty(); } virtual void push(SUnit *U); virtual SUnit *pop(); virtual void remove(SUnit *SU); virtual void dump(ScheduleDAG* DAG) const; // scheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void scheduledNode(SUnit *Node); private: void AdjustPriorityOfUnscheduledPreds(SUnit *SU); SUnit *getSingleUnscheduledPred(SUnit *SU); }; } #endif