Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/CodeGen/PBQP/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/CodeGen/PBQP/HeuristicSolver.h |
//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Heuristic PBQP solver. This solver is able to perform optimal reductions for // nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is // used to select a node for reduction. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H #define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H #include "Graph.h" #include "Solution.h" #include <vector> #include <limits> namespace PBQP { /// \brief Heuristic PBQP solver implementation. /// /// This class should usually be created (and destroyed) indirectly via a call /// to HeuristicSolver<HImpl>::solve(Graph&). /// See the comments for HeuristicSolver. /// /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules, /// backpropagation phase, and maintains the internal copy of the graph on /// which the reduction is carried out (the original being kept to facilitate /// backpropagation). template <typename HImpl> class HeuristicSolverImpl { private: typedef typename HImpl::NodeData HeuristicNodeData; typedef typename HImpl::EdgeData HeuristicEdgeData; typedef std::list<Graph::EdgeItr> SolverEdges; public: /// \brief Iterator type for edges in the solver graph. typedef SolverEdges::iterator SolverEdgeItr; private: class NodeData { public: NodeData() : solverDegree(0) {} HeuristicNodeData& getHeuristicData() { return hData; } SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) { ++solverDegree; return solverEdges.insert(solverEdges.end(), eItr); } void removeSolverEdge(SolverEdgeItr seItr) { --solverDegree; solverEdges.erase(seItr); } SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); } SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); } unsigned getSolverDegree() const { return solverDegree; } void clearSolverEdges() { solverDegree = 0; solverEdges.clear(); } private: HeuristicNodeData hData; unsigned solverDegree; SolverEdges solverEdges; }; class EdgeData { public: HeuristicEdgeData& getHeuristicData() { return hData; } void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) { this->n1SolverEdgeItr = n1SolverEdgeItr; } SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; } void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){ this->n2SolverEdgeItr = n2SolverEdgeItr; } SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; } private: HeuristicEdgeData hData; SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr; }; Graph &g; HImpl h; Solution s; std::vector<Graph::NodeItr> stack; typedef std::list<NodeData> NodeDataList; NodeDataList nodeDataList; typedef std::list<EdgeData> EdgeDataList; EdgeDataList edgeDataList; public: /// \brief Construct a heuristic solver implementation to solve the given /// graph. /// @param g The graph representing the problem instance to be solved. HeuristicSolverImpl(Graph &g) : g(g), h(*this) {} /// \brief Get the graph being solved by this solver. /// @return The graph representing the problem instance being solved by this /// solver. Graph& getGraph() { return g; } /// \brief Get the heuristic data attached to the given node. /// @param nItr Node iterator. /// @return The heuristic data attached to the given node. HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) { return getSolverNodeData(nItr).getHeuristicData(); } /// \brief Get the heuristic data attached to the given edge. /// @param eItr Edge iterator. /// @return The heuristic data attached to the given node. HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) { return getSolverEdgeData(eItr).getHeuristicData(); } /// \brief Begin iterator for the set of edges adjacent to the given node in /// the solver graph. /// @param nItr Node iterator. /// @return Begin iterator for the set of edges adjacent to the given node /// in the solver graph. SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) { return getSolverNodeData(nItr).solverEdgesBegin(); } /// \brief End iterator for the set of edges adjacent to the given node in /// the solver graph. /// @param nItr Node iterator. /// @return End iterator for the set of edges adjacent to the given node in /// the solver graph. SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) { return getSolverNodeData(nItr).solverEdgesEnd(); } /// \brief Remove a node from the solver graph. /// @param eItr Edge iterator for edge to be removed. /// /// Does <i>not</i> notify the heuristic of the removal. That should be /// done manually if necessary. void removeSolverEdge(Graph::EdgeItr eItr) { EdgeData &eData = getSolverEdgeData(eItr); NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), &n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); n1Data.removeSolverEdge(eData.getN1SolverEdgeItr()); n2Data.removeSolverEdge(eData.getN2SolverEdgeItr()); } /// \brief Compute a solution to the PBQP problem instance with which this /// heuristic solver was constructed. /// @return A solution to the PBQP problem. /// /// Performs the full PBQP heuristic solver algorithm, including setup, /// calls to the heuristic (which will call back to the reduction rules in /// this class), and cleanup. Solution computeSolution() { setup(); h.setup(); h.reduce(); backpropagate(); h.cleanup(); cleanup(); return s; } /// \brief Add to the end of the stack. /// @param nItr Node iterator to add to the reduction stack. void pushToStack(Graph::NodeItr nItr) { getSolverNodeData(nItr).clearSolverEdges(); stack.push_back(nItr); } /// \brief Returns the solver degree of the given node. /// @param nItr Node iterator for which degree is requested. /// @return Node degree in the <i>solver</i> graph (not the original graph). unsigned getSolverDegree(Graph::NodeItr nItr) { return getSolverNodeData(nItr).getSolverDegree(); } /// \brief Set the solution of the given node. /// @param nItr Node iterator to set solution for. /// @param selection Selection for node. void setSolution(const Graph::NodeItr &nItr, unsigned selection) { s.setSelection(nItr, selection); for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), aeEnd = g.adjEdgesEnd(nItr); aeItr != aeEnd; ++aeItr) { Graph::EdgeItr eItr(*aeItr); Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr)); getSolverNodeData(anItr).addSolverEdge(eItr); } } /// \brief Apply rule R0. /// @param nItr Node iterator for node to apply R0 to. /// /// Node will be automatically pushed to the solver stack. void applyR0(Graph::NodeItr nItr) { assert(getSolverNodeData(nItr).getSolverDegree() == 0 && "R0 applied to node with degree != 0."); // Nothing to do. Just push the node onto the reduction stack. pushToStack(nItr); s.recordR0(); } /// \brief Apply rule R1. /// @param xnItr Node iterator for node to apply R1 to. /// /// Node will be automatically pushed to the solver stack. void applyR1(Graph::NodeItr xnItr) { NodeData &nd = getSolverNodeData(xnItr); assert(nd.getSolverDegree() == 1 && "R1 applied to node with degree != 1."); Graph::EdgeItr eItr = *nd.solverEdgesBegin(); const Matrix &eCosts = g.getEdgeCosts(eItr); const Vector &xCosts = g.getNodeCosts(xnItr); // Duplicate a little to avoid transposing matrices. if (xnItr == g.getEdgeNode1(eItr)) { Graph::NodeItr ynItr = g.getEdgeNode2(eItr); Vector &yCosts = g.getNodeCosts(ynItr); for (unsigned j = 0; j < yCosts.getLength(); ++j) { PBQPNum min = eCosts[0][j] + xCosts[0]; for (unsigned i = 1; i < xCosts.getLength(); ++i) { PBQPNum c = eCosts[i][j] + xCosts[i]; if (c < min) min = c; } yCosts[j] += min; } h.handleRemoveEdge(eItr, ynItr); } else { Graph::NodeItr ynItr = g.getEdgeNode1(eItr); Vector &yCosts = g.getNodeCosts(ynItr); for (unsigned i = 0; i < yCosts.getLength(); ++i) { PBQPNum min = eCosts[i][0] + xCosts[0]; for (unsigned j = 1; j < xCosts.getLength(); ++j) { PBQPNum c = eCosts[i][j] + xCosts[j]; if (c < min) min = c; } yCosts[i] += min; } h.handleRemoveEdge(eItr, ynItr); } removeSolverEdge(eItr); assert(nd.getSolverDegree() == 0 && "Degree 1 with edge removed should be 0."); pushToStack(xnItr); s.recordR1(); } /// \brief Apply rule R2. /// @param xnItr Node iterator for node to apply R2 to. /// /// Node will be automatically pushed to the solver stack. void applyR2(Graph::NodeItr xnItr) { assert(getSolverNodeData(xnItr).getSolverDegree() == 2 && "R2 applied to node with degree != 2."); NodeData &nd = getSolverNodeData(xnItr); const Vector &xCosts = g.getNodeCosts(xnItr); SolverEdgeItr aeItr = nd.solverEdgesBegin(); Graph::EdgeItr yxeItr = *aeItr, zxeItr = *(++aeItr); Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr), znItr = g.getEdgeOtherNode(zxeItr, xnItr); bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr), flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr); const Matrix *yxeCosts = flipEdge1 ? new Matrix(g.getEdgeCosts(yxeItr).transpose()) : &g.getEdgeCosts(yxeItr); const Matrix *zxeCosts = flipEdge2 ? new Matrix(g.getEdgeCosts(zxeItr).transpose()) : &g.getEdgeCosts(zxeItr); unsigned xLen = xCosts.getLength(), yLen = yxeCosts->getRows(), zLen = zxeCosts->getRows(); Matrix delta(yLen, zLen); for (unsigned i = 0; i < yLen; ++i) { for (unsigned j = 0; j < zLen; ++j) { PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0]; for (unsigned k = 1; k < xLen; ++k) { PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k]; if (c < min) { min = c; } } delta[i][j] = min; } } if (flipEdge1) delete yxeCosts; if (flipEdge2) delete zxeCosts; Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr); bool addedEdge = false; if (yzeItr == g.edgesEnd()) { yzeItr = g.addEdge(ynItr, znItr, delta); addedEdge = true; } else { Matrix &yzeCosts = g.getEdgeCosts(yzeItr); h.preUpdateEdgeCosts(yzeItr); if (ynItr == g.getEdgeNode1(yzeItr)) { yzeCosts += delta; } else { yzeCosts += delta.transpose(); } } bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr); if (!addedEdge) { // If we modified the edge costs let the heuristic know. h.postUpdateEdgeCosts(yzeItr); } if (nullCostEdge) { // If this edge ended up null remove it. if (!addedEdge) { // We didn't just add it, so we need to notify the heuristic // and remove it from the solver. h.handleRemoveEdge(yzeItr, ynItr); h.handleRemoveEdge(yzeItr, znItr); removeSolverEdge(yzeItr); } g.removeEdge(yzeItr); } else if (addedEdge) { // If the edge was added, and non-null, finish setting it up, add it to // the solver & notify heuristic. edgeDataList.push_back(EdgeData()); g.setEdgeData(yzeItr, &edgeDataList.back()); addSolverEdge(yzeItr); h.handleAddEdge(yzeItr); } h.handleRemoveEdge(yxeItr, ynItr); removeSolverEdge(yxeItr); h.handleRemoveEdge(zxeItr, znItr); removeSolverEdge(zxeItr); pushToStack(xnItr); s.recordR2(); } /// \brief Record an application of the RN rule. /// /// For use by the HeuristicBase. void recordRN() { s.recordRN(); } private: NodeData& getSolverNodeData(Graph::NodeItr nItr) { return *static_cast<NodeData*>(g.getNodeData(nItr)); } EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) { return *static_cast<EdgeData*>(g.getEdgeData(eItr)); } void addSolverEdge(Graph::EdgeItr eItr) { EdgeData &eData = getSolverEdgeData(eItr); NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), &n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr)); eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr)); } void setup() { if (h.solverRunSimplify()) { simplify(); } // Create node data objects. for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); nItr != nEnd; ++nItr) { nodeDataList.push_back(NodeData()); g.setNodeData(nItr, &nodeDataList.back()); } // Create edge data objects. for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); eItr != eEnd; ++eItr) { edgeDataList.push_back(EdgeData()); g.setEdgeData(eItr, &edgeDataList.back()); addSolverEdge(eItr); } } void simplify() { disconnectTrivialNodes(); eliminateIndependentEdges(); } // Eliminate trivial nodes. void disconnectTrivialNodes() { unsigned numDisconnected = 0; for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); nItr != nEnd; ++nItr) { if (g.getNodeCosts(nItr).getLength() == 1) { std::vector<Graph::EdgeItr> edgesToRemove; for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), aeEnd = g.adjEdgesEnd(nItr); aeItr != aeEnd; ++aeItr) { Graph::EdgeItr eItr = *aeItr; if (g.getEdgeNode1(eItr) == nItr) { Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr); g.getNodeCosts(otherNodeItr) += g.getEdgeCosts(eItr).getRowAsVector(0); } else { Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr); g.getNodeCosts(otherNodeItr) += g.getEdgeCosts(eItr).getColAsVector(0); } edgesToRemove.push_back(eItr); } if (!edgesToRemove.empty()) ++numDisconnected; while (!edgesToRemove.empty()) { g.removeEdge(edgesToRemove.back()); edgesToRemove.pop_back(); } } } } void eliminateIndependentEdges() { std::vector<Graph::EdgeItr> edgesToProcess; unsigned numEliminated = 0; for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); eItr != eEnd; ++eItr) { edgesToProcess.push_back(eItr); } while (!edgesToProcess.empty()) { if (tryToEliminateEdge(edgesToProcess.back())) ++numEliminated; edgesToProcess.pop_back(); } } bool tryToEliminateEdge(Graph::EdgeItr eItr) { if (tryNormaliseEdgeMatrix(eItr)) { g.removeEdge(eItr); return true; } return false; } bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) { const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity(); Matrix &edgeCosts = g.getEdgeCosts(eItr); Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)), &vCosts = g.getNodeCosts(g.getEdgeNode2(eItr)); for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { PBQPNum rowMin = infinity; for (unsigned c = 0; c < edgeCosts.getCols(); ++c) { if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin) rowMin = edgeCosts[r][c]; } uCosts[r] += rowMin; if (rowMin != infinity) { edgeCosts.subFromRow(r, rowMin); } else { edgeCosts.setRow(r, 0); } } for (unsigned c = 0; c < edgeCosts.getCols(); ++c) { PBQPNum colMin = infinity; for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { if (uCosts[r] != infinity && edgeCosts[r][c] < colMin) colMin = edgeCosts[r][c]; } vCosts[c] += colMin; if (colMin != infinity) { edgeCosts.subFromCol(c, colMin); } else { edgeCosts.setCol(c, 0); } } return edgeCosts.isZero(); } void backpropagate() { while (!stack.empty()) { computeSolution(stack.back()); stack.pop_back(); } } void computeSolution(Graph::NodeItr nItr) { NodeData &nodeData = getSolverNodeData(nItr); Vector v(g.getNodeCosts(nItr)); // Solve based on existing solved edges. for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(), solvedEdgeEnd = nodeData.solverEdgesEnd(); solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) { Graph::EdgeItr eItr(*solvedEdgeItr); Matrix &edgeCosts = g.getEdgeCosts(eItr); if (nItr == g.getEdgeNode1(eItr)) { Graph::NodeItr adjNode(g.getEdgeNode2(eItr)); unsigned adjSolution = s.getSelection(adjNode); v += edgeCosts.getColAsVector(adjSolution); } else { Graph::NodeItr adjNode(g.getEdgeNode1(eItr)); unsigned adjSolution = s.getSelection(adjNode); v += edgeCosts.getRowAsVector(adjSolution); } } setSolution(nItr, v.minIndex()); } void cleanup() { h.cleanup(); nodeDataList.clear(); edgeDataList.clear(); } }; /// \brief PBQP heuristic solver class. /// /// Given a PBQP Graph g representing a PBQP problem, you can find a solution /// by calling /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt> /// /// The choice of heuristic for the H parameter will affect both the solver /// speed and solution quality. The heuristic should be chosen based on the /// nature of the problem being solved. /// Currently the only solver included with LLVM is the Briggs heuristic for /// register allocation. template <typename HImpl> class HeuristicSolver { public: static Solution solve(Graph &g) { HeuristicSolverImpl<HImpl> hs(g); return hs.computeSolution(); } }; } #endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H