Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/Operator.h |
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines various classes for working with Instructions and // ConstantExprs. // //===----------------------------------------------------------------------===// #ifndef LLVM_OPERATOR_H #define LLVM_OPERATOR_H #include "llvm/Constants.h" #include "llvm/Instruction.h" #include "llvm/Type.h" namespace llvm { class GetElementPtrInst; class BinaryOperator; class ConstantExpr; /// Operator - This is a utility class that provides an abstraction for the /// common functionality between Instructions and ConstantExprs. /// class Operator : public User { private: // Do not implement any of these. The Operator class is intended to be used // as a utility, and is never itself instantiated. void *operator new(size_t, unsigned); void *operator new(size_t s); Operator(); ~Operator(); public: /// getOpcode - Return the opcode for this Instruction or ConstantExpr. /// unsigned getOpcode() const { if (const Instruction *I = dyn_cast<Instruction>(this)) return I->getOpcode(); return cast<ConstantExpr>(this)->getOpcode(); } /// getOpcode - If V is an Instruction or ConstantExpr, return its /// opcode. Otherwise return UserOp1. /// static unsigned getOpcode(const Value *V) { if (const Instruction *I = dyn_cast<Instruction>(V)) return I->getOpcode(); if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) return CE->getOpcode(); return Instruction::UserOp1; } static inline bool classof(const Operator *) { return true; } static inline bool classof(const Instruction *) { return true; } static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return isa<Instruction>(V) || isa<ConstantExpr>(V); } }; /// OverflowingBinaryOperator - Utility class for integer arithmetic operators /// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv, /// despite that operator having the potential for overflow. /// class OverflowingBinaryOperator : public Operator { public: enum { NoUnsignedWrap = (1 << 0), NoSignedWrap = (1 << 1) }; private: ~OverflowingBinaryOperator(); // do not implement friend class BinaryOperator; friend class ConstantExpr; void setHasNoUnsignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap); } void setHasNoSignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap); } public: /// hasNoUnsignedWrap - Test whether this operation is known to never /// undergo unsigned overflow, aka the nuw property. bool hasNoUnsignedWrap() const { return SubclassOptionalData & NoUnsignedWrap; } /// hasNoSignedWrap - Test whether this operation is known to never /// undergo signed overflow, aka the nsw property. bool hasNoSignedWrap() const { return (SubclassOptionalData & NoSignedWrap) != 0; } static inline bool classof(const OverflowingBinaryOperator *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Sub || I->getOpcode() == Instruction::Mul || I->getOpcode() == Instruction::Shl; } static inline bool classof(const ConstantExpr *CE) { return CE->getOpcode() == Instruction::Add || CE->getOpcode() == Instruction::Sub || CE->getOpcode() == Instruction::Mul || CE->getOpcode() == Instruction::Shl; } static inline bool classof(const Value *V) { return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); } }; /// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as /// "exact", indicating that no bits are destroyed. class PossiblyExactOperator : public Operator { public: enum { IsExact = (1 << 0) }; private: ~PossiblyExactOperator(); // do not implement friend class BinaryOperator; friend class ConstantExpr; void setIsExact(bool B) { SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact); } public: /// isExact - Test whether this division is known to be exact, with /// zero remainder. bool isExact() const { return SubclassOptionalData & IsExact; } static bool isPossiblyExactOpcode(unsigned OpC) { return OpC == Instruction::SDiv || OpC == Instruction::UDiv || OpC == Instruction::AShr || OpC == Instruction::LShr; } static inline bool classof(const ConstantExpr *CE) { return isPossiblyExactOpcode(CE->getOpcode()); } static inline bool classof(const Instruction *I) { return isPossiblyExactOpcode(I->getOpcode()); } static inline bool classof(const Value *V) { return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); } }; /// FPMathOperator - Utility class for floating point operations which can have /// information about relaxed accuracy requirements attached to them. class FPMathOperator : public Operator { private: ~FPMathOperator(); // do not implement public: /// \brief Get the maximum error permitted by this operation in ULPs. An /// accuracy of 0.0 means that the operation should be performed with the /// default precision. float getFPAccuracy() const; static inline bool classof(const FPMathOperator *) { return true; } static inline bool classof(const Instruction *I) { return I->getType()->isFPOrFPVectorTy(); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } }; /// ConcreteOperator - A helper template for defining operators for individual /// opcodes. template<typename SuperClass, unsigned Opc> class ConcreteOperator : public SuperClass { ~ConcreteOperator(); // DO NOT IMPLEMENT public: static inline bool classof(const ConcreteOperator<SuperClass, Opc> *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Opc; } static inline bool classof(const ConstantExpr *CE) { return CE->getOpcode() == Opc; } static inline bool classof(const Value *V) { return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); } }; class AddOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> { ~AddOperator(); // DO NOT IMPLEMENT }; class SubOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> { ~SubOperator(); // DO NOT IMPLEMENT }; class MulOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> { ~MulOperator(); // DO NOT IMPLEMENT }; class ShlOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> { ~ShlOperator(); // DO NOT IMPLEMENT }; class SDivOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> { ~SDivOperator(); // DO NOT IMPLEMENT }; class UDivOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> { ~UDivOperator(); // DO NOT IMPLEMENT }; class AShrOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> { ~AShrOperator(); // DO NOT IMPLEMENT }; class LShrOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> { ~LShrOperator(); // DO NOT IMPLEMENT }; class GEPOperator : public ConcreteOperator<Operator, Instruction::GetElementPtr> { ~GEPOperator(); // DO NOT IMPLEMENT enum { IsInBounds = (1 << 0) }; friend class GetElementPtrInst; friend class ConstantExpr; void setIsInBounds(bool B) { SubclassOptionalData = (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds); } public: /// isInBounds - Test whether this is an inbounds GEP, as defined /// by LangRef.html. bool isInBounds() const { return SubclassOptionalData & IsInBounds; } inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand } /// getPointerOperandType - Method to return the pointer operand as a /// PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); } unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } bool hasIndices() const { return getNumOperands() > 1; } /// hasAllZeroIndices - Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const { for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { if (ConstantInt *C = dyn_cast<ConstantInt>(I)) if (C->isZero()) continue; return false; } return true; } /// hasAllConstantIndices - Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const { for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { if (!isa<ConstantInt>(I)) return false; } return true; } }; } // End llvm namespace #endif