Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/Support/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/include/llvm/Support/ConstantRange.h |
//===-- llvm/Support/ConstantRange.h - Represent a range --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Represent a range of possible values that may occur when the program is run // for an integral value. This keeps track of a lower and upper bound for the // constant, which MAY wrap around the end of the numeric range. To do this, it // keeps track of a [lower, upper) bound, which specifies an interval just like // STL iterators. When used with boolean values, the following are important // ranges: : // // [F, F) = {} = Empty set // [T, F) = {T} // [F, T) = {F} // [T, T) = {F, T} = Full set // // The other integral ranges use min/max values for special range values. For // example, for 8-bit types, it uses: // [0, 0) = {} = Empty set // [255, 255) = {0..255} = Full Set // // Note that ConstantRange can be used to represent either signed or // unsigned ranges. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CONSTANT_RANGE_H #define LLVM_SUPPORT_CONSTANT_RANGE_H #include "llvm/ADT/APInt.h" #include "llvm/Support/DataTypes.h" namespace llvm { /// ConstantRange - This class represents an range of values. /// class ConstantRange { APInt Lower, Upper; public: /// Initialize a full (the default) or empty set for the specified bit width. /// explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true); /// Initialize a range to hold the single specified value. /// ConstantRange(const APInt &Value); /// @brief Initialize a range of values explicitly. This will assert out if /// Lower==Upper and Lower != Min or Max value for its type. It will also /// assert out if the two APInt's are not the same bit width. ConstantRange(const APInt &Lower, const APInt &Upper); /// makeICmpRegion - Produce the smallest range that contains all values that /// might satisfy the comparison specified by Pred when compared to any value /// contained within Other. /// /// Solves for range X in 'for all x in X, there exists a y in Y such that /// icmp op x, y is true'. Every value that might make the comparison true /// is included in the resulting range. static ConstantRange makeICmpRegion(unsigned Pred, const ConstantRange &Other); /// getLower - Return the lower value for this range... /// const APInt &getLower() const { return Lower; } /// getUpper - Return the upper value for this range... /// const APInt &getUpper() const { return Upper; } /// getBitWidth - get the bit width of this ConstantRange /// uint32_t getBitWidth() const { return Lower.getBitWidth(); } /// isFullSet - Return true if this set contains all of the elements possible /// for this data-type /// bool isFullSet() const; /// isEmptySet - Return true if this set contains no members. /// bool isEmptySet() const; /// isWrappedSet - Return true if this set wraps around the top of the range, /// for example: [100, 8) /// bool isWrappedSet() const; /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of /// its bitwidth, for example: i8 [120, 140). /// bool isSignWrappedSet() const; /// contains - Return true if the specified value is in the set. /// bool contains(const APInt &Val) const; /// contains - Return true if the other range is a subset of this one. /// bool contains(const ConstantRange &CR) const; /// getSingleElement - If this set contains a single element, return it, /// otherwise return null. /// const APInt *getSingleElement() const { if (Upper == Lower + 1) return &Lower; return 0; } /// isSingleElement - Return true if this set contains exactly one member. /// bool isSingleElement() const { return getSingleElement() != 0; } /// getSetSize - Return the number of elements in this set. /// APInt getSetSize() const; /// getUnsignedMax - Return the largest unsigned value contained in the /// ConstantRange. /// APInt getUnsignedMax() const; /// getUnsignedMin - Return the smallest unsigned value contained in the /// ConstantRange. /// APInt getUnsignedMin() const; /// getSignedMax - Return the largest signed value contained in the /// ConstantRange. /// APInt getSignedMax() const; /// getSignedMin - Return the smallest signed value contained in the /// ConstantRange. /// APInt getSignedMin() const; /// operator== - Return true if this range is equal to another range. /// bool operator==(const ConstantRange &CR) const { return Lower == CR.Lower && Upper == CR.Upper; } bool operator!=(const ConstantRange &CR) const { return !operator==(CR); } /// subtract - Subtract the specified constant from the endpoints of this /// constant range. ConstantRange subtract(const APInt &CI) const; /// intersectWith - Return the range that results from the intersection of /// this range with another range. The resultant range is guaranteed to /// include all elements contained in both input ranges, and to have the /// smallest possible set size that does so. Because there may be two /// intersections with the same set size, A.intersectWith(B) might not /// be equal to B.intersectWith(A). /// ConstantRange intersectWith(const ConstantRange &CR) const; /// unionWith - Return the range that results from the union of this range /// with another range. The resultant range is guaranteed to include the /// elements of both sets, but may contain more. For example, [3, 9) union /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included /// in either set before. /// ConstantRange unionWith(const ConstantRange &CR) const; /// zeroExtend - Return a new range in the specified integer type, which must /// be strictly larger than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// zero extended to BitWidth. ConstantRange zeroExtend(uint32_t BitWidth) const; /// signExtend - Return a new range in the specified integer type, which must /// be strictly larger than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// sign extended to BitWidth. ConstantRange signExtend(uint32_t BitWidth) const; /// truncate - Return a new range in the specified integer type, which must be /// strictly smaller than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// truncated to the specified type. ConstantRange truncate(uint32_t BitWidth) const; /// zextOrTrunc - make this range have the bit width given by \p BitWidth. The /// value is zero extended, truncated, or left alone to make it that width. ConstantRange zextOrTrunc(uint32_t BitWidth) const; /// sextOrTrunc - make this range have the bit width given by \p BitWidth. The /// value is sign extended, truncated, or left alone to make it that width. ConstantRange sextOrTrunc(uint32_t BitWidth) const; /// add - Return a new range representing the possible values resulting /// from an addition of a value in this range and a value in \p Other. ConstantRange add(const ConstantRange &Other) const; /// sub - Return a new range representing the possible values resulting /// from a subtraction of a value in this range and a value in \p Other. ConstantRange sub(const ConstantRange &Other) const; /// multiply - Return a new range representing the possible values resulting /// from a multiplication of a value in this range and a value in \p Other. /// TODO: This isn't fully implemented yet. ConstantRange multiply(const ConstantRange &Other) const; /// smax - Return a new range representing the possible values resulting /// from a signed maximum of a value in this range and a value in \p Other. ConstantRange smax(const ConstantRange &Other) const; /// umax - Return a new range representing the possible values resulting /// from an unsigned maximum of a value in this range and a value in \p Other. ConstantRange umax(const ConstantRange &Other) const; /// udiv - Return a new range representing the possible values resulting /// from an unsigned division of a value in this range and a value in /// \p Other. ConstantRange udiv(const ConstantRange &Other) const; /// binaryAnd - return a new range representing the possible values resulting /// from a binary-and of a value in this range by a value in \p Other. ConstantRange binaryAnd(const ConstantRange &Other) const; /// binaryOr - return a new range representing the possible values resulting /// from a binary-or of a value in this range by a value in \p Other. ConstantRange binaryOr(const ConstantRange &Other) const; /// shl - Return a new range representing the possible values resulting /// from a left shift of a value in this range by a value in \p Other. /// TODO: This isn't fully implemented yet. ConstantRange shl(const ConstantRange &Other) const; /// lshr - Return a new range representing the possible values resulting /// from a logical right shift of a value in this range and a value in /// \p Other. ConstantRange lshr(const ConstantRange &Other) const; /// inverse - Return a new range that is the logical not of the current set. /// ConstantRange inverse() const; /// print - Print out the bounds to a stream... /// void print(raw_ostream &OS) const; /// dump - Allow printing from a debugger easily... /// void dump() const; }; inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) { CR.print(OS); return OS; } } // End llvm namespace #endif