Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/AsmParser/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/AsmParser/LLParser.cpp |
//===-- LLParser.cpp - Parser Class ---------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the parser class for .ll files. // //===----------------------------------------------------------------------===// #include "LLParser.h" #include "llvm/AutoUpgrade.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Operator.h" #include "llvm/ValueSymbolTable.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static std::string getTypeString(Type *T) { std::string Result; raw_string_ostream Tmp(Result); Tmp << *T; return Tmp.str(); } /// Run: module ::= toplevelentity* bool LLParser::Run() { // Prime the lexer. Lex.Lex(); return ParseTopLevelEntities() || ValidateEndOfModule(); } /// ValidateEndOfModule - Do final validity and sanity checks at the end of the /// module. bool LLParser::ValidateEndOfModule() { // Handle any instruction metadata forward references. if (!ForwardRefInstMetadata.empty()) { for (DenseMap<Instruction*, std::vector<MDRef> >::iterator I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); I != E; ++I) { Instruction *Inst = I->first; const std::vector<MDRef> &MDList = I->second; for (unsigned i = 0, e = MDList.size(); i != e; ++i) { unsigned SlotNo = MDList[i].MDSlot; if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) return Error(MDList[i].Loc, "use of undefined metadata '!" + Twine(SlotNo) + "'"); Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); } } ForwardRefInstMetadata.clear(); } // If there are entries in ForwardRefBlockAddresses at this point, they are // references after the function was defined. Resolve those now. while (!ForwardRefBlockAddresses.empty()) { // Okay, we are referencing an already-parsed function, resolve them now. Function *TheFn = 0; const ValID &Fn = ForwardRefBlockAddresses.begin()->first; if (Fn.Kind == ValID::t_GlobalName) TheFn = M->getFunction(Fn.StrVal); else if (Fn.UIntVal < NumberedVals.size()) TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); if (TheFn == 0) return Error(Fn.Loc, "unknown function referenced by blockaddress"); // Resolve all these references. if (ResolveForwardRefBlockAddresses(TheFn, ForwardRefBlockAddresses.begin()->second, 0)) return true; ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); } for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) if (NumberedTypes[i].second.isValid()) return Error(NumberedTypes[i].second, "use of undefined type '%" + Twine(i) + "'"); for (StringMap<std::pair<Type*, LocTy> >::iterator I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) if (I->second.second.isValid()) return Error(I->second.second, "use of undefined type named '" + I->getKey() + "'"); if (!ForwardRefVals.empty()) return Error(ForwardRefVals.begin()->second.second, "use of undefined value '@" + ForwardRefVals.begin()->first + "'"); if (!ForwardRefValIDs.empty()) return Error(ForwardRefValIDs.begin()->second.second, "use of undefined value '@" + Twine(ForwardRefValIDs.begin()->first) + "'"); if (!ForwardRefMDNodes.empty()) return Error(ForwardRefMDNodes.begin()->second.second, "use of undefined metadata '!" + Twine(ForwardRefMDNodes.begin()->first) + "'"); // Look for intrinsic functions and CallInst that need to be upgraded for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove return false; } bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, std::vector<std::pair<ValID, GlobalValue*> > &Refs, PerFunctionState *PFS) { // Loop over all the references, resolving them. for (unsigned i = 0, e = Refs.size(); i != e; ++i) { BasicBlock *Res; if (PFS) { if (Refs[i].first.Kind == ValID::t_LocalName) Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); else Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); } else if (Refs[i].first.Kind == ValID::t_LocalID) { return Error(Refs[i].first.Loc, "cannot take address of numeric label after the function is defined"); } else { Res = dyn_cast_or_null<BasicBlock>( TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); } if (Res == 0) return Error(Refs[i].first.Loc, "referenced value is not a basic block"); // Get the BlockAddress for this and update references to use it. BlockAddress *BA = BlockAddress::get(TheFn, Res); Refs[i].second->replaceAllUsesWith(BA); Refs[i].second->eraseFromParent(); } return false; } //===----------------------------------------------------------------------===// // Top-Level Entities //===----------------------------------------------------------------------===// bool LLParser::ParseTopLevelEntities() { while (1) { switch (Lex.getKind()) { default: return TokError("expected top-level entity"); case lltok::Eof: return false; case lltok::kw_declare: if (ParseDeclare()) return true; break; case lltok::kw_define: if (ParseDefine()) return true; break; case lltok::kw_module: if (ParseModuleAsm()) return true; break; case lltok::kw_target: if (ParseTargetDefinition()) return true; break; case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; case lltok::LocalVar: if (ParseNamedType()) return true; break; case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; // The Global variable production with no name can have many different // optional leading prefixes, the production is: // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal // OptionalAddrSpace OptionalUnNammedAddr // ('constant'|'global') ... case lltok::kw_private: // OptionalLinkage case lltok::kw_linker_private: // OptionalLinkage case lltok::kw_linker_private_weak: // OptionalLinkage case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage case lltok::kw_internal: // OptionalLinkage case lltok::kw_weak: // OptionalLinkage case lltok::kw_weak_odr: // OptionalLinkage case lltok::kw_linkonce: // OptionalLinkage case lltok::kw_linkonce_odr: // OptionalLinkage case lltok::kw_appending: // OptionalLinkage case lltok::kw_dllexport: // OptionalLinkage case lltok::kw_common: // OptionalLinkage case lltok::kw_dllimport: // OptionalLinkage case lltok::kw_extern_weak: // OptionalLinkage case lltok::kw_external: { // OptionalLinkage unsigned Linkage, Visibility; if (ParseOptionalLinkage(Linkage) || ParseOptionalVisibility(Visibility) || ParseGlobal("", SMLoc(), Linkage, true, Visibility)) return true; break; } case lltok::kw_default: // OptionalVisibility case lltok::kw_hidden: // OptionalVisibility case lltok::kw_protected: { // OptionalVisibility unsigned Visibility; if (ParseOptionalVisibility(Visibility) || ParseGlobal("", SMLoc(), 0, false, Visibility)) return true; break; } case lltok::kw_thread_local: // OptionalThreadLocal case lltok::kw_addrspace: // OptionalAddrSpace case lltok::kw_constant: // GlobalType case lltok::kw_global: // GlobalType if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; break; } } } /// toplevelentity /// ::= 'module' 'asm' STRINGCONSTANT bool LLParser::ParseModuleAsm() { assert(Lex.getKind() == lltok::kw_module); Lex.Lex(); std::string AsmStr; if (ParseToken(lltok::kw_asm, "expected 'module asm'") || ParseStringConstant(AsmStr)) return true; M->appendModuleInlineAsm(AsmStr); return false; } /// toplevelentity /// ::= 'target' 'triple' '=' STRINGCONSTANT /// ::= 'target' 'datalayout' '=' STRINGCONSTANT bool LLParser::ParseTargetDefinition() { assert(Lex.getKind() == lltok::kw_target); std::string Str; switch (Lex.Lex()) { default: return TokError("unknown target property"); case lltok::kw_triple: Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after target triple") || ParseStringConstant(Str)) return true; M->setTargetTriple(Str); return false; case lltok::kw_datalayout: Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after target datalayout") || ParseStringConstant(Str)) return true; M->setDataLayout(Str); return false; } } /// toplevelentity /// ::= 'deplibs' '=' '[' ']' /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' bool LLParser::ParseDepLibs() { assert(Lex.getKind() == lltok::kw_deplibs); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after deplibs") || ParseToken(lltok::lsquare, "expected '=' after deplibs")) return true; if (EatIfPresent(lltok::rsquare)) return false; std::string Str; if (ParseStringConstant(Str)) return true; M->addLibrary(Str); while (EatIfPresent(lltok::comma)) { if (ParseStringConstant(Str)) return true; M->addLibrary(Str); } return ParseToken(lltok::rsquare, "expected ']' at end of list"); } /// ParseUnnamedType: /// ::= LocalVarID '=' 'type' type bool LLParser::ParseUnnamedType() { LocTy TypeLoc = Lex.getLoc(); unsigned TypeID = Lex.getUIntVal(); Lex.Lex(); // eat LocalVarID; if (ParseToken(lltok::equal, "expected '=' after name") || ParseToken(lltok::kw_type, "expected 'type' after '='")) return true; if (TypeID >= NumberedTypes.size()) NumberedTypes.resize(TypeID+1); Type *Result = 0; if (ParseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) return true; if (!isa<StructType>(Result)) { std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; if (Entry.first) return Error(TypeLoc, "non-struct types may not be recursive"); Entry.first = Result; Entry.second = SMLoc(); } return false; } /// toplevelentity /// ::= LocalVar '=' 'type' type bool LLParser::ParseNamedType() { std::string Name = Lex.getStrVal(); LocTy NameLoc = Lex.getLoc(); Lex.Lex(); // eat LocalVar. if (ParseToken(lltok::equal, "expected '=' after name") || ParseToken(lltok::kw_type, "expected 'type' after name")) return true; Type *Result = 0; if (ParseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) return true; if (!isa<StructType>(Result)) { std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; if (Entry.first) return Error(NameLoc, "non-struct types may not be recursive"); Entry.first = Result; Entry.second = SMLoc(); } return false; } /// toplevelentity /// ::= 'declare' FunctionHeader bool LLParser::ParseDeclare() { assert(Lex.getKind() == lltok::kw_declare); Lex.Lex(); Function *F; return ParseFunctionHeader(F, false); } /// toplevelentity /// ::= 'define' FunctionHeader '{' ... bool LLParser::ParseDefine() { assert(Lex.getKind() == lltok::kw_define); Lex.Lex(); Function *F; return ParseFunctionHeader(F, true) || ParseFunctionBody(*F); } /// ParseGlobalType /// ::= 'constant' /// ::= 'global' bool LLParser::ParseGlobalType(bool &IsConstant) { if (Lex.getKind() == lltok::kw_constant) IsConstant = true; else if (Lex.getKind() == lltok::kw_global) IsConstant = false; else { IsConstant = false; return TokError("expected 'global' or 'constant'"); } Lex.Lex(); return false; } /// ParseUnnamedGlobal: /// OptionalVisibility ALIAS ... /// OptionalLinkage OptionalVisibility ... -> global variable /// GlobalID '=' OptionalVisibility ALIAS ... /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable bool LLParser::ParseUnnamedGlobal() { unsigned VarID = NumberedVals.size(); std::string Name; LocTy NameLoc = Lex.getLoc(); // Handle the GlobalID form. if (Lex.getKind() == lltok::GlobalID) { if (Lex.getUIntVal() != VarID) return Error(Lex.getLoc(), "variable expected to be numbered '%" + Twine(VarID) + "'"); Lex.Lex(); // eat GlobalID; if (ParseToken(lltok::equal, "expected '=' after name")) return true; } bool HasLinkage; unsigned Linkage, Visibility; if (ParseOptionalLinkage(Linkage, HasLinkage) || ParseOptionalVisibility(Visibility)) return true; if (HasLinkage || Lex.getKind() != lltok::kw_alias) return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); return ParseAlias(Name, NameLoc, Visibility); } /// ParseNamedGlobal: /// GlobalVar '=' OptionalVisibility ALIAS ... /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable bool LLParser::ParseNamedGlobal() { assert(Lex.getKind() == lltok::GlobalVar); LocTy NameLoc = Lex.getLoc(); std::string Name = Lex.getStrVal(); Lex.Lex(); bool HasLinkage; unsigned Linkage, Visibility; if (ParseToken(lltok::equal, "expected '=' in global variable") || ParseOptionalLinkage(Linkage, HasLinkage) || ParseOptionalVisibility(Visibility)) return true; if (HasLinkage || Lex.getKind() != lltok::kw_alias) return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); return ParseAlias(Name, NameLoc, Visibility); } // MDString: // ::= '!' STRINGCONSTANT bool LLParser::ParseMDString(MDString *&Result) { std::string Str; if (ParseStringConstant(Str)) return true; Result = MDString::get(Context, Str); return false; } // MDNode: // ::= '!' MDNodeNumber // /// This version of ParseMDNodeID returns the slot number and null in the case /// of a forward reference. bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { // !{ ..., !42, ... } if (ParseUInt32(SlotNo)) return true; // Check existing MDNode. if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) Result = NumberedMetadata[SlotNo]; else Result = 0; return false; } bool LLParser::ParseMDNodeID(MDNode *&Result) { // !{ ..., !42, ... } unsigned MID = 0; if (ParseMDNodeID(Result, MID)) return true; // If not a forward reference, just return it now. if (Result) return false; // Otherwise, create MDNode forward reference. MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); if (NumberedMetadata.size() <= MID) NumberedMetadata.resize(MID+1); NumberedMetadata[MID] = FwdNode; Result = FwdNode; return false; } /// ParseNamedMetadata: /// !foo = !{ !1, !2 } bool LLParser::ParseNamedMetadata() { assert(Lex.getKind() == lltok::MetadataVar); std::string Name = Lex.getStrVal(); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' here") || ParseToken(lltok::exclaim, "Expected '!' here") || ParseToken(lltok::lbrace, "Expected '{' here")) return true; NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); if (Lex.getKind() != lltok::rbrace) do { if (ParseToken(lltok::exclaim, "Expected '!' here")) return true; MDNode *N = 0; if (ParseMDNodeID(N)) return true; NMD->addOperand(N); } while (EatIfPresent(lltok::comma)); if (ParseToken(lltok::rbrace, "expected end of metadata node")) return true; return false; } /// ParseStandaloneMetadata: /// !42 = !{...} bool LLParser::ParseStandaloneMetadata() { assert(Lex.getKind() == lltok::exclaim); Lex.Lex(); unsigned MetadataID = 0; LocTy TyLoc; Type *Ty = 0; SmallVector<Value *, 16> Elts; if (ParseUInt32(MetadataID) || ParseToken(lltok::equal, "expected '=' here") || ParseType(Ty, TyLoc) || ParseToken(lltok::exclaim, "Expected '!' here") || ParseToken(lltok::lbrace, "Expected '{' here") || ParseMDNodeVector(Elts, NULL) || ParseToken(lltok::rbrace, "expected end of metadata node")) return true; MDNode *Init = MDNode::get(Context, Elts); // See if this was forward referenced, if so, handle it. std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator FI = ForwardRefMDNodes.find(MetadataID); if (FI != ForwardRefMDNodes.end()) { MDNode *Temp = FI->second.first; Temp->replaceAllUsesWith(Init); MDNode::deleteTemporary(Temp); ForwardRefMDNodes.erase(FI); assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); } else { if (MetadataID >= NumberedMetadata.size()) NumberedMetadata.resize(MetadataID+1); if (NumberedMetadata[MetadataID] != 0) return TokError("Metadata id is already used"); NumberedMetadata[MetadataID] = Init; } return false; } /// ParseAlias: /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee /// Aliasee /// ::= TypeAndValue /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' /// ::= 'getelementptr' 'inbounds'? '(' ... ')' /// /// Everything through visibility has already been parsed. /// bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned Visibility) { assert(Lex.getKind() == lltok::kw_alias); Lex.Lex(); unsigned Linkage; LocTy LinkageLoc = Lex.getLoc(); if (ParseOptionalLinkage(Linkage)) return true; if (Linkage != GlobalValue::ExternalLinkage && Linkage != GlobalValue::WeakAnyLinkage && Linkage != GlobalValue::WeakODRLinkage && Linkage != GlobalValue::InternalLinkage && Linkage != GlobalValue::PrivateLinkage && Linkage != GlobalValue::LinkerPrivateLinkage && Linkage != GlobalValue::LinkerPrivateWeakLinkage && Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) return Error(LinkageLoc, "invalid linkage type for alias"); Constant *Aliasee; LocTy AliaseeLoc = Lex.getLoc(); if (Lex.getKind() != lltok::kw_bitcast && Lex.getKind() != lltok::kw_getelementptr) { if (ParseGlobalTypeAndValue(Aliasee)) return true; } else { // The bitcast dest type is not present, it is implied by the dest type. ValID ID; if (ParseValID(ID)) return true; if (ID.Kind != ValID::t_Constant) return Error(AliaseeLoc, "invalid aliasee"); Aliasee = ID.ConstantVal; } if (!Aliasee->getType()->isPointerTy()) return Error(AliaseeLoc, "alias must have pointer type"); // Okay, create the alias but do not insert it into the module yet. GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), (GlobalValue::LinkageTypes)Linkage, Name, Aliasee); GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); // See if this value already exists in the symbol table. If so, it is either // a redefinition or a definition of a forward reference. if (GlobalValue *Val = M->getNamedValue(Name)) { // See if this was a redefinition. If so, there is no entry in // ForwardRefVals. std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator I = ForwardRefVals.find(Name); if (I == ForwardRefVals.end()) return Error(NameLoc, "redefinition of global named '@" + Name + "'"); // Otherwise, this was a definition of forward ref. Verify that types // agree. if (Val->getType() != GA->getType()) return Error(NameLoc, "forward reference and definition of alias have different types"); // If they agree, just RAUW the old value with the alias and remove the // forward ref info. Val->replaceAllUsesWith(GA); Val->eraseFromParent(); ForwardRefVals.erase(I); } // Insert into the module, we know its name won't collide now. M->getAliasList().push_back(GA); assert(GA->getName() == Name && "Should not be a name conflict!"); return false; } /// ParseGlobal /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const /// /// Everything through visibility has been parsed already. /// bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, unsigned Linkage, bool HasLinkage, unsigned Visibility) { unsigned AddrSpace; bool ThreadLocal, IsConstant, UnnamedAddr; LocTy UnnamedAddrLoc; LocTy TyLoc; Type *Ty = 0; if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || ParseOptionalAddrSpace(AddrSpace) || ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, &UnnamedAddrLoc) || ParseGlobalType(IsConstant) || ParseType(Ty, TyLoc)) return true; // If the linkage is specified and is external, then no initializer is // present. Constant *Init = 0; if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && Linkage != GlobalValue::ExternalWeakLinkage && Linkage != GlobalValue::ExternalLinkage)) { if (ParseGlobalValue(Ty, Init)) return true; } if (Ty->isFunctionTy() || Ty->isLabelTy()) return Error(TyLoc, "invalid type for global variable"); GlobalVariable *GV = 0; // See if the global was forward referenced, if so, use the global. if (!Name.empty()) { if (GlobalValue *GVal = M->getNamedValue(Name)) { if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) return Error(NameLoc, "redefinition of global '@" + Name + "'"); GV = cast<GlobalVariable>(GVal); } } else { std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { GV = cast<GlobalVariable>(I->second.first); ForwardRefValIDs.erase(I); } } if (GV == 0) { GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, Name, 0, false, AddrSpace); } else { if (GV->getType()->getElementType() != Ty) return Error(TyLoc, "forward reference and definition of global have different types"); // Move the forward-reference to the correct spot in the module. M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); } if (Name.empty()) NumberedVals.push_back(GV); // Set the parsed properties on the global. if (Init) GV->setInitializer(Init); GV->setConstant(IsConstant); GV->setLinkage((GlobalValue::LinkageTypes)Linkage); GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); GV->setThreadLocal(ThreadLocal); GV->setUnnamedAddr(UnnamedAddr); // Parse attributes on the global. while (Lex.getKind() == lltok::comma) { Lex.Lex(); if (Lex.getKind() == lltok::kw_section) { Lex.Lex(); GV->setSection(Lex.getStrVal()); if (ParseToken(lltok::StringConstant, "expected global section string")) return true; } else if (Lex.getKind() == lltok::kw_align) { unsigned Alignment; if (ParseOptionalAlignment(Alignment)) return true; GV->setAlignment(Alignment); } else { TokError("unknown global variable property!"); } } return false; } //===----------------------------------------------------------------------===// // GlobalValue Reference/Resolution Routines. //===----------------------------------------------------------------------===// /// GetGlobalVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, LocTy Loc) { PointerType *PTy = dyn_cast<PointerType>(Ty); if (PTy == 0) { Error(Loc, "global variable reference must have pointer type"); return 0; } // Look this name up in the normal function symbol table. GlobalValue *Val = cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; Error(Loc, "'@" + Name + "' defined with type '" + getTypeString(Val->getType()) + "'"); return 0; } // Otherwise, create a new forward reference for this value and remember it. GlobalValue *FwdVal; if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); else FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, GlobalValue::ExternalWeakLinkage, 0, Name); ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); return FwdVal; } GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { PointerType *PTy = dyn_cast<PointerType>(Ty); if (PTy == 0) { Error(Loc, "global variable reference must have pointer type"); return 0; } GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I = ForwardRefValIDs.find(ID); if (I != ForwardRefValIDs.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; Error(Loc, "'@" + Twine(ID) + "' defined with type '" + getTypeString(Val->getType()) + "'"); return 0; } // Otherwise, create a new forward reference for this value and remember it. GlobalValue *FwdVal; if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); else FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, GlobalValue::ExternalWeakLinkage, 0, ""); ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); return FwdVal; } //===----------------------------------------------------------------------===// // Helper Routines. //===----------------------------------------------------------------------===// /// ParseToken - If the current token has the specified kind, eat it and return /// success. Otherwise, emit the specified error and return failure. bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { if (Lex.getKind() != T) return TokError(ErrMsg); Lex.Lex(); return false; } /// ParseStringConstant /// ::= StringConstant bool LLParser::ParseStringConstant(std::string &Result) { if (Lex.getKind() != lltok::StringConstant) return TokError("expected string constant"); Result = Lex.getStrVal(); Lex.Lex(); return false; } /// ParseUInt32 /// ::= uint32 bool LLParser::ParseUInt32(unsigned &Val) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return TokError("expected integer"); uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); if (Val64 != unsigned(Val64)) return TokError("expected 32-bit integer (too large)"); Val = Val64; Lex.Lex(); return false; } /// ParseOptionalAddrSpace /// := /*empty*/ /// := 'addrspace' '(' uint32 ')' bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { AddrSpace = 0; if (!EatIfPresent(lltok::kw_addrspace)) return false; return ParseToken(lltok::lparen, "expected '(' in address space") || ParseUInt32(AddrSpace) || ParseToken(lltok::rparen, "expected ')' in address space"); } /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind /// indicates what kind of attribute list this is: 0: function arg, 1: result, /// 2: function attr. bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) { Attrs = Attribute::None; LocTy AttrLoc = Lex.getLoc(); while (1) { switch (Lex.getKind()) { default: // End of attributes. if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) return Error(AttrLoc, "invalid use of function-only attribute"); // As a hack, we allow "align 2" on functions as a synonym for // "alignstack 2". if (AttrKind == 2 && (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment))) return Error(AttrLoc, "invalid use of attribute on a function"); if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly)) return Error(AttrLoc, "invalid use of parameter-only attribute"); return false; case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; case lltok::kw_signext: Attrs |= Attribute::SExt; break; case lltok::kw_inreg: Attrs |= Attribute::InReg; break; case lltok::kw_sret: Attrs |= Attribute::StructRet; break; case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; case lltok::kw_byval: Attrs |= Attribute::ByVal; break; case lltok::kw_nest: Attrs |= Attribute::Nest; break; case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break; case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break; case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; case lltok::kw_naked: Attrs |= Attribute::Naked; break; case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break; case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break; case lltok::kw_alignstack: { unsigned Alignment; if (ParseOptionalStackAlignment(Alignment)) return true; Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); continue; } case lltok::kw_align: { unsigned Alignment; if (ParseOptionalAlignment(Alignment)) return true; Attrs |= Attribute::constructAlignmentFromInt(Alignment); continue; } } Lex.Lex(); } } /// ParseOptionalLinkage /// ::= /*empty*/ /// ::= 'private' /// ::= 'linker_private' /// ::= 'linker_private_weak' /// ::= 'linker_private_weak_def_auto' /// ::= 'internal' /// ::= 'weak' /// ::= 'weak_odr' /// ::= 'linkonce' /// ::= 'linkonce_odr' /// ::= 'available_externally' /// ::= 'appending' /// ::= 'dllexport' /// ::= 'common' /// ::= 'dllimport' /// ::= 'extern_weak' /// ::= 'external' bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { HasLinkage = false; switch (Lex.getKind()) { default: Res=GlobalValue::ExternalLinkage; return false; case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; case lltok::kw_linker_private_weak: Res = GlobalValue::LinkerPrivateWeakLinkage; break; case lltok::kw_linker_private_weak_def_auto: Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; break; case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; case lltok::kw_available_externally: Res = GlobalValue::AvailableExternallyLinkage; break; case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; } Lex.Lex(); HasLinkage = true; return false; } /// ParseOptionalVisibility /// ::= /*empty*/ /// ::= 'default' /// ::= 'hidden' /// ::= 'protected' /// bool LLParser::ParseOptionalVisibility(unsigned &Res) { switch (Lex.getKind()) { default: Res = GlobalValue::DefaultVisibility; return false; case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; } Lex.Lex(); return false; } /// ParseOptionalCallingConv /// ::= /*empty*/ /// ::= 'ccc' /// ::= 'fastcc' /// ::= 'coldcc' /// ::= 'x86_stdcallcc' /// ::= 'x86_fastcallcc' /// ::= 'x86_thiscallcc' /// ::= 'arm_apcscc' /// ::= 'arm_aapcscc' /// ::= 'arm_aapcs_vfpcc' /// ::= 'msp430_intrcc' /// ::= 'ptx_kernel' /// ::= 'ptx_device' /// ::= 'cc' UINT /// bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { switch (Lex.getKind()) { default: CC = CallingConv::C; return false; case lltok::kw_ccc: CC = CallingConv::C; break; case lltok::kw_fastcc: CC = CallingConv::Fast; break; case lltok::kw_coldcc: CC = CallingConv::Cold; break; case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; case lltok::kw_cc: { unsigned ArbitraryCC; Lex.Lex(); if (ParseUInt32(ArbitraryCC)) return true; CC = static_cast<CallingConv::ID>(ArbitraryCC); return false; } } Lex.Lex(); return false; } /// ParseInstructionMetadata /// ::= !dbg !42 (',' !dbg !57)* bool LLParser::ParseInstructionMetadata(Instruction *Inst, PerFunctionState *PFS) { do { if (Lex.getKind() != lltok::MetadataVar) return TokError("expected metadata after comma"); std::string Name = Lex.getStrVal(); unsigned MDK = M->getMDKindID(Name); Lex.Lex(); MDNode *Node; SMLoc Loc = Lex.getLoc(); if (ParseToken(lltok::exclaim, "expected '!' here")) return true; // This code is similar to that of ParseMetadataValue, however it needs to // have special-case code for a forward reference; see the comments on // ForwardRefInstMetadata for details. Also, MDStrings are not supported // at the top level here. if (Lex.getKind() == lltok::lbrace) { ValID ID; if (ParseMetadataListValue(ID, PFS)) return true; assert(ID.Kind == ValID::t_MDNode); Inst->setMetadata(MDK, ID.MDNodeVal); } else { unsigned NodeID = 0; if (ParseMDNodeID(Node, NodeID)) return true; if (Node) { // If we got the node, add it to the instruction. Inst->setMetadata(MDK, Node); } else { MDRef R = { Loc, MDK, NodeID }; // Otherwise, remember that this should be resolved later. ForwardRefInstMetadata[Inst].push_back(R); } } // If this is the end of the list, we're done. } while (EatIfPresent(lltok::comma)); return false; } /// ParseOptionalAlignment /// ::= /* empty */ /// ::= 'align' 4 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { Alignment = 0; if (!EatIfPresent(lltok::kw_align)) return false; LocTy AlignLoc = Lex.getLoc(); if (ParseUInt32(Alignment)) return true; if (!isPowerOf2_32(Alignment)) return Error(AlignLoc, "alignment is not a power of two"); if (Alignment > Value::MaximumAlignment) return Error(AlignLoc, "huge alignments are not supported yet"); return false; } /// ParseOptionalCommaAlign /// ::= /// ::= ',' align 4 /// /// This returns with AteExtraComma set to true if it ate an excess comma at the /// end. bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, bool &AteExtraComma) { AteExtraComma = false; while (EatIfPresent(lltok::comma)) { // Metadata at the end is an early exit. if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; return false; } if (Lex.getKind() != lltok::kw_align) return Error(Lex.getLoc(), "expected metadata or 'align'"); if (ParseOptionalAlignment(Alignment)) return true; } return false; } /// ParseScopeAndOrdering /// if isAtomic: ::= 'singlethread'? AtomicOrdering /// else: ::= /// /// This sets Scope and Ordering to the parsed values. bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, AtomicOrdering &Ordering) { if (!isAtomic) return false; Scope = CrossThread; if (EatIfPresent(lltok::kw_singlethread)) Scope = SingleThread; switch (Lex.getKind()) { default: return TokError("Expected ordering on atomic instruction"); case lltok::kw_unordered: Ordering = Unordered; break; case lltok::kw_monotonic: Ordering = Monotonic; break; case lltok::kw_acquire: Ordering = Acquire; break; case lltok::kw_release: Ordering = Release; break; case lltok::kw_acq_rel: Ordering = AcquireRelease; break; case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; } Lex.Lex(); return false; } /// ParseOptionalStackAlignment /// ::= /* empty */ /// ::= 'alignstack' '(' 4 ')' bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { Alignment = 0; if (!EatIfPresent(lltok::kw_alignstack)) return false; LocTy ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return Error(ParenLoc, "expected '('"); LocTy AlignLoc = Lex.getLoc(); if (ParseUInt32(Alignment)) return true; ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return Error(ParenLoc, "expected ')'"); if (!isPowerOf2_32(Alignment)) return Error(AlignLoc, "stack alignment is not a power of two"); return false; } /// ParseIndexList - This parses the index list for an insert/extractvalue /// instruction. This sets AteExtraComma in the case where we eat an extra /// comma at the end of the line and find that it is followed by metadata. /// Clients that don't allow metadata can call the version of this function that /// only takes one argument. /// /// ParseIndexList /// ::= (',' uint32)+ /// bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, bool &AteExtraComma) { AteExtraComma = false; if (Lex.getKind() != lltok::comma) return TokError("expected ',' as start of index list"); while (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; return false; } unsigned Idx = 0; if (ParseUInt32(Idx)) return true; Indices.push_back(Idx); } return false; } //===----------------------------------------------------------------------===// // Type Parsing. //===----------------------------------------------------------------------===// /// ParseType - Parse a type. bool LLParser::ParseType(Type *&Result, bool AllowVoid) { SMLoc TypeLoc = Lex.getLoc(); switch (Lex.getKind()) { default: return TokError("expected type"); case lltok::Type: // Type ::= 'float' | 'void' (etc) Result = Lex.getTyVal(); Lex.Lex(); break; case lltok::lbrace: // Type ::= StructType if (ParseAnonStructType(Result, false)) return true; break; case lltok::lsquare: // Type ::= '[' ... ']' Lex.Lex(); // eat the lsquare. if (ParseArrayVectorType(Result, false)) return true; break; case lltok::less: // Either vector or packed struct. // Type ::= '<' ... '>' Lex.Lex(); if (Lex.getKind() == lltok::lbrace) { if (ParseAnonStructType(Result, true) || ParseToken(lltok::greater, "expected '>' at end of packed struct")) return true; } else if (ParseArrayVectorType(Result, true)) return true; break; case lltok::LocalVar: { // Type ::= %foo std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; // If the type hasn't been defined yet, create a forward definition and // remember where that forward def'n was seen (in case it never is defined). if (Entry.first == 0) { Entry.first = StructType::create(Context, Lex.getStrVal()); Entry.second = Lex.getLoc(); } Result = Entry.first; Lex.Lex(); break; } case lltok::LocalVarID: { // Type ::= %4 if (Lex.getUIntVal() >= NumberedTypes.size()) NumberedTypes.resize(Lex.getUIntVal()+1); std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; // If the type hasn't been defined yet, create a forward definition and // remember where that forward def'n was seen (in case it never is defined). if (Entry.first == 0) { Entry.first = StructType::create(Context); Entry.second = Lex.getLoc(); } Result = Entry.first; Lex.Lex(); break; } } // Parse the type suffixes. while (1) { switch (Lex.getKind()) { // End of type. default: if (!AllowVoid && Result->isVoidTy()) return Error(TypeLoc, "void type only allowed for function results"); return false; // Type ::= Type '*' case lltok::star: if (Result->isLabelTy()) return TokError("basic block pointers are invalid"); if (Result->isVoidTy()) return TokError("pointers to void are invalid - use i8* instead"); if (!PointerType::isValidElementType(Result)) return TokError("pointer to this type is invalid"); Result = PointerType::getUnqual(Result); Lex.Lex(); break; // Type ::= Type 'addrspace' '(' uint32 ')' '*' case lltok::kw_addrspace: { if (Result->isLabelTy()) return TokError("basic block pointers are invalid"); if (Result->isVoidTy()) return TokError("pointers to void are invalid; use i8* instead"); if (!PointerType::isValidElementType(Result)) return TokError("pointer to this type is invalid"); unsigned AddrSpace; if (ParseOptionalAddrSpace(AddrSpace) || ParseToken(lltok::star, "expected '*' in address space")) return true; Result = PointerType::get(Result, AddrSpace); break; } /// Types '(' ArgTypeListI ')' OptFuncAttrs case lltok::lparen: if (ParseFunctionType(Result)) return true; break; } } } /// ParseParameterList /// ::= '(' ')' /// ::= '(' Arg (',' Arg)* ')' /// Arg /// ::= Type OptionalAttributes Value OptionalAttributes bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, PerFunctionState &PFS) { if (ParseToken(lltok::lparen, "expected '(' in call")) return true; while (Lex.getKind() != lltok::rparen) { // If this isn't the first argument, we need a comma. if (!ArgList.empty() && ParseToken(lltok::comma, "expected ',' in argument list")) return true; // Parse the argument. LocTy ArgLoc; Type *ArgTy = 0; Attributes ArgAttrs1; Attributes ArgAttrs2; Value *V; if (ParseType(ArgTy, ArgLoc)) return true; // Otherwise, handle normal operands. if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) return true; ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); } Lex.Lex(); // Lex the ')'. return false; } /// ParseArgumentList - Parse the argument list for a function type or function /// prototype. /// ::= '(' ArgTypeListI ')' /// ArgTypeListI /// ::= /*empty*/ /// ::= '...' /// ::= ArgTypeList ',' '...' /// ::= ArgType (',' ArgType)* /// bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, bool &isVarArg){ isVarArg = false; assert(Lex.getKind() == lltok::lparen); Lex.Lex(); // eat the (. if (Lex.getKind() == lltok::rparen) { // empty } else if (Lex.getKind() == lltok::dotdotdot) { isVarArg = true; Lex.Lex(); } else { LocTy TypeLoc = Lex.getLoc(); Type *ArgTy = 0; Attributes Attrs; std::string Name; if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; if (ArgTy->isVoidTy()) return Error(TypeLoc, "argument can not have void type"); if (Lex.getKind() == lltok::LocalVar) { Name = Lex.getStrVal(); Lex.Lex(); } if (!FunctionType::isValidArgumentType(ArgTy)) return Error(TypeLoc, "invalid type for function argument"); ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); while (EatIfPresent(lltok::comma)) { // Handle ... at end of arg list. if (EatIfPresent(lltok::dotdotdot)) { isVarArg = true; break; } // Otherwise must be an argument type. TypeLoc = Lex.getLoc(); if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; if (ArgTy->isVoidTy()) return Error(TypeLoc, "argument can not have void type"); if (Lex.getKind() == lltok::LocalVar) { Name = Lex.getStrVal(); Lex.Lex(); } else { Name = ""; } if (!ArgTy->isFirstClassType()) return Error(TypeLoc, "invalid type for function argument"); ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); } } return ParseToken(lltok::rparen, "expected ')' at end of argument list"); } /// ParseFunctionType /// ::= Type ArgumentList OptionalAttrs bool LLParser::ParseFunctionType(Type *&Result) { assert(Lex.getKind() == lltok::lparen); if (!FunctionType::isValidReturnType(Result)) return TokError("invalid function return type"); SmallVector<ArgInfo, 8> ArgList; bool isVarArg; if (ParseArgumentList(ArgList, isVarArg)) return true; // Reject names on the arguments lists. for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { if (!ArgList[i].Name.empty()) return Error(ArgList[i].Loc, "argument name invalid in function type"); if (ArgList[i].Attrs) return Error(ArgList[i].Loc, "argument attributes invalid in function type"); } SmallVector<Type*, 16> ArgListTy; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ArgListTy.push_back(ArgList[i].Ty); Result = FunctionType::get(Result, ArgListTy, isVarArg); return false; } /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into /// other structs. bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { SmallVector<Type*, 8> Elts; if (ParseStructBody(Elts)) return true; Result = StructType::get(Context, Elts, Packed); return false; } /// ParseStructDefinition - Parse a struct in a 'type' definition. bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, std::pair<Type*, LocTy> &Entry, Type *&ResultTy) { // If the type was already defined, diagnose the redefinition. if (Entry.first && !Entry.second.isValid()) return Error(TypeLoc, "redefinition of type"); // If we have opaque, just return without filling in the definition for the // struct. This counts as a definition as far as the .ll file goes. if (EatIfPresent(lltok::kw_opaque)) { // This type is being defined, so clear the location to indicate this. Entry.second = SMLoc(); // If this type number has never been uttered, create it. if (Entry.first == 0) Entry.first = StructType::create(Context, Name); ResultTy = Entry.first; return false; } // If the type starts with '<', then it is either a packed struct or a vector. bool isPacked = EatIfPresent(lltok::less); // If we don't have a struct, then we have a random type alias, which we // accept for compatibility with old files. These types are not allowed to be // forward referenced and not allowed to be recursive. if (Lex.getKind() != lltok::lbrace) { if (Entry.first) return Error(TypeLoc, "forward references to non-struct type"); ResultTy = 0; if (isPacked) return ParseArrayVectorType(ResultTy, true); return ParseType(ResultTy); } // This type is being defined, so clear the location to indicate this. Entry.second = SMLoc(); // If this type number has never been uttered, create it. if (Entry.first == 0) Entry.first = StructType::create(Context, Name); StructType *STy = cast<StructType>(Entry.first); SmallVector<Type*, 8> Body; if (ParseStructBody(Body) || (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) return true; STy->setBody(Body, isPacked); ResultTy = STy; return false; } /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. /// StructType /// ::= '{' '}' /// ::= '{' Type (',' Type)* '}' /// ::= '<' '{' '}' '>' /// ::= '<' '{' Type (',' Type)* '}' '>' bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { assert(Lex.getKind() == lltok::lbrace); Lex.Lex(); // Consume the '{' // Handle the empty struct. if (EatIfPresent(lltok::rbrace)) return false; LocTy EltTyLoc = Lex.getLoc(); Type *Ty = 0; if (ParseType(Ty)) return true; Body.push_back(Ty); if (!StructType::isValidElementType(Ty)) return Error(EltTyLoc, "invalid element type for struct"); while (EatIfPresent(lltok::comma)) { EltTyLoc = Lex.getLoc(); if (ParseType(Ty)) return true; if (!StructType::isValidElementType(Ty)) return Error(EltTyLoc, "invalid element type for struct"); Body.push_back(Ty); } return ParseToken(lltok::rbrace, "expected '}' at end of struct"); } /// ParseArrayVectorType - Parse an array or vector type, assuming the first /// token has already been consumed. /// Type /// ::= '[' APSINTVAL 'x' Types ']' /// ::= '<' APSINTVAL 'x' Types '>' bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || Lex.getAPSIntVal().getBitWidth() > 64) return TokError("expected number in address space"); LocTy SizeLoc = Lex.getLoc(); uint64_t Size = Lex.getAPSIntVal().getZExtValue(); Lex.Lex(); if (ParseToken(lltok::kw_x, "expected 'x' after element count")) return true; LocTy TypeLoc = Lex.getLoc(); Type *EltTy = 0; if (ParseType(EltTy)) return true; if (ParseToken(isVector ? lltok::greater : lltok::rsquare, "expected end of sequential type")) return true; if (isVector) { if (Size == 0) return Error(SizeLoc, "zero element vector is illegal"); if ((unsigned)Size != Size) return Error(SizeLoc, "size too large for vector"); if (!VectorType::isValidElementType(EltTy)) return Error(TypeLoc, "vector element type must be fp, integer or a pointer to these types"); Result = VectorType::get(EltTy, unsigned(Size)); } else { if (!ArrayType::isValidElementType(EltTy)) return Error(TypeLoc, "invalid array element type"); Result = ArrayType::get(EltTy, Size); } return false; } //===----------------------------------------------------------------------===// // Function Semantic Analysis. //===----------------------------------------------------------------------===// LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, int functionNumber) : P(p), F(f), FunctionNumber(functionNumber) { // Insert unnamed arguments into the NumberedVals list. for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) if (!AI->hasName()) NumberedVals.push_back(AI); } LLParser::PerFunctionState::~PerFunctionState() { // If there were any forward referenced non-basicblock values, delete them. for (std::map<std::string, std::pair<Value*, LocTy> >::iterator I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) if (!isa<BasicBlock>(I->second.first)) { I->second.first->replaceAllUsesWith( UndefValue::get(I->second.first->getType())); delete I->second.first; I->second.first = 0; } for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) if (!isa<BasicBlock>(I->second.first)) { I->second.first->replaceAllUsesWith( UndefValue::get(I->second.first->getType())); delete I->second.first; I->second.first = 0; } } bool LLParser::PerFunctionState::FinishFunction() { // Check to see if someone took the address of labels in this block. if (!P.ForwardRefBlockAddresses.empty()) { ValID FunctionID; if (!F.getName().empty()) { FunctionID.Kind = ValID::t_GlobalName; FunctionID.StrVal = F.getName(); } else { FunctionID.Kind = ValID::t_GlobalID; FunctionID.UIntVal = FunctionNumber; } std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); if (FRBAI != P.ForwardRefBlockAddresses.end()) { // Resolve all these references. if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) return true; P.ForwardRefBlockAddresses.erase(FRBAI); } } if (!ForwardRefVals.empty()) return P.Error(ForwardRefVals.begin()->second.second, "use of undefined value '%" + ForwardRefVals.begin()->first + "'"); if (!ForwardRefValIDs.empty()) return P.Error(ForwardRefValIDs.begin()->second.second, "use of undefined value '%" + Twine(ForwardRefValIDs.begin()->first) + "'"); return false; } /// GetVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, LocTy Loc) { // Look this name up in the normal function symbol table. Value *Val = F.getValueSymbolTable().lookup(Name); // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map<std::string, std::pair<Value*, LocTy> >::iterator I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; if (Ty->isLabelTy()) P.Error(Loc, "'%" + Name + "' is not a basic block"); else P.Error(Loc, "'%" + Name + "' defined with type '" + getTypeString(Val->getType()) + "'"); return 0; } // Don't make placeholders with invalid type. if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { P.Error(Loc, "invalid use of a non-first-class type"); return 0; } // Otherwise, create a new forward reference for this value and remember it. Value *FwdVal; if (Ty->isLabelTy()) FwdVal = BasicBlock::Create(F.getContext(), Name, &F); else FwdVal = new Argument(Ty, Name); ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); return FwdVal; } Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { // Look this name up in the normal function symbol table. Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map<unsigned, std::pair<Value*, LocTy> >::iterator I = ForwardRefValIDs.find(ID); if (I != ForwardRefValIDs.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; if (Ty->isLabelTy()) P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); else P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + getTypeString(Val->getType()) + "'"); return 0; } if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { P.Error(Loc, "invalid use of a non-first-class type"); return 0; } // Otherwise, create a new forward reference for this value and remember it. Value *FwdVal; if (Ty->isLabelTy()) FwdVal = BasicBlock::Create(F.getContext(), "", &F); else FwdVal = new Argument(Ty); ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); return FwdVal; } /// SetInstName - After an instruction is parsed and inserted into its /// basic block, this installs its name. bool LLParser::PerFunctionState::SetInstName(int NameID, const std::string &NameStr, LocTy NameLoc, Instruction *Inst) { // If this instruction has void type, it cannot have a name or ID specified. if (Inst->getType()->isVoidTy()) { if (NameID != -1 || !NameStr.empty()) return P.Error(NameLoc, "instructions returning void cannot have a name"); return false; } // If this was a numbered instruction, verify that the instruction is the // expected value and resolve any forward references. if (NameStr.empty()) { // If neither a name nor an ID was specified, just use the next ID. if (NameID == -1) NameID = NumberedVals.size(); if (unsigned(NameID) != NumberedVals.size()) return P.Error(NameLoc, "instruction expected to be numbered '%" + Twine(NumberedVals.size()) + "'"); std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = ForwardRefValIDs.find(NameID); if (FI != ForwardRefValIDs.end()) { if (FI->second.first->getType() != Inst->getType()) return P.Error(NameLoc, "instruction forward referenced with type '" + getTypeString(FI->second.first->getType()) + "'"); FI->second.first->replaceAllUsesWith(Inst); delete FI->second.first; ForwardRefValIDs.erase(FI); } NumberedVals.push_back(Inst); return false; } // Otherwise, the instruction had a name. Resolve forward refs and set it. std::map<std::string, std::pair<Value*, LocTy> >::iterator FI = ForwardRefVals.find(NameStr); if (FI != ForwardRefVals.end()) { if (FI->second.first->getType() != Inst->getType()) return P.Error(NameLoc, "instruction forward referenced with type '" + getTypeString(FI->second.first->getType()) + "'"); FI->second.first->replaceAllUsesWith(Inst); delete FI->second.first; ForwardRefVals.erase(FI); } // Set the name on the instruction. Inst->setName(NameStr); if (Inst->getName() != NameStr) return P.Error(NameLoc, "multiple definition of local value named '" + NameStr + "'"); return false; } /// GetBB - Get a basic block with the specified name or ID, creating a /// forward reference record if needed. BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, LocTy Loc) { return cast_or_null<BasicBlock>(GetVal(Name, Type::getLabelTy(F.getContext()), Loc)); } BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { return cast_or_null<BasicBlock>(GetVal(ID, Type::getLabelTy(F.getContext()), Loc)); } /// DefineBB - Define the specified basic block, which is either named or /// unnamed. If there is an error, this returns null otherwise it returns /// the block being defined. BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, LocTy Loc) { BasicBlock *BB; if (Name.empty()) BB = GetBB(NumberedVals.size(), Loc); else BB = GetBB(Name, Loc); if (BB == 0) return 0; // Already diagnosed error. // Move the block to the end of the function. Forward ref'd blocks are // inserted wherever they happen to be referenced. F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); // Remove the block from forward ref sets. if (Name.empty()) { ForwardRefValIDs.erase(NumberedVals.size()); NumberedVals.push_back(BB); } else { // BB forward references are already in the function symbol table. ForwardRefVals.erase(Name); } return BB; } //===----------------------------------------------------------------------===// // Constants. //===----------------------------------------------------------------------===// /// ParseValID - Parse an abstract value that doesn't necessarily have a /// type implied. For example, if we parse "4" we don't know what integer type /// it has. The value will later be combined with its type and checked for /// sanity. PFS is used to convert function-local operands of metadata (since /// metadata operands are not just parsed here but also converted to values). /// PFS can be null when we are not parsing metadata values inside a function. bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { ID.Loc = Lex.getLoc(); switch (Lex.getKind()) { default: return TokError("expected value token"); case lltok::GlobalID: // @42 ID.UIntVal = Lex.getUIntVal(); ID.Kind = ValID::t_GlobalID; break; case lltok::GlobalVar: // @foo ID.StrVal = Lex.getStrVal(); ID.Kind = ValID::t_GlobalName; break; case lltok::LocalVarID: // %42 ID.UIntVal = Lex.getUIntVal(); ID.Kind = ValID::t_LocalID; break; case lltok::LocalVar: // %foo ID.StrVal = Lex.getStrVal(); ID.Kind = ValID::t_LocalName; break; case lltok::exclaim: // !42, !{...}, or !"foo" return ParseMetadataValue(ID, PFS); case lltok::APSInt: ID.APSIntVal = Lex.getAPSIntVal(); ID.Kind = ValID::t_APSInt; break; case lltok::APFloat: ID.APFloatVal = Lex.getAPFloatVal(); ID.Kind = ValID::t_APFloat; break; case lltok::kw_true: ID.ConstantVal = ConstantInt::getTrue(Context); ID.Kind = ValID::t_Constant; break; case lltok::kw_false: ID.ConstantVal = ConstantInt::getFalse(Context); ID.Kind = ValID::t_Constant; break; case lltok::kw_null: ID.Kind = ValID::t_Null; break; case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; case lltok::lbrace: { // ValID ::= '{' ConstVector '}' Lex.Lex(); SmallVector<Constant*, 16> Elts; if (ParseGlobalValueVector(Elts) || ParseToken(lltok::rbrace, "expected end of struct constant")) return true; ID.ConstantStructElts = new Constant*[Elts.size()]; ID.UIntVal = Elts.size(); memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); ID.Kind = ValID::t_ConstantStruct; return false; } case lltok::less: { // ValID ::= '<' ConstVector '>' --> Vector. // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. Lex.Lex(); bool isPackedStruct = EatIfPresent(lltok::lbrace); SmallVector<Constant*, 16> Elts; LocTy FirstEltLoc = Lex.getLoc(); if (ParseGlobalValueVector(Elts) || (isPackedStruct && ParseToken(lltok::rbrace, "expected end of packed struct")) || ParseToken(lltok::greater, "expected end of constant")) return true; if (isPackedStruct) { ID.ConstantStructElts = new Constant*[Elts.size()]; memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); ID.UIntVal = Elts.size(); ID.Kind = ValID::t_PackedConstantStruct; return false; } if (Elts.empty()) return Error(ID.Loc, "constant vector must not be empty"); if (!Elts[0]->getType()->isIntegerTy() && !Elts[0]->getType()->isFloatingPointTy() && !Elts[0]->getType()->isPointerTy()) return Error(FirstEltLoc, "vector elements must have integer, pointer or floating point type"); // Verify that all the vector elements have the same type. for (unsigned i = 1, e = Elts.size(); i != e; ++i) if (Elts[i]->getType() != Elts[0]->getType()) return Error(FirstEltLoc, "vector element #" + Twine(i) + " is not of type '" + getTypeString(Elts[0]->getType())); ID.ConstantVal = ConstantVector::get(Elts); ID.Kind = ValID::t_Constant; return false; } case lltok::lsquare: { // Array Constant Lex.Lex(); SmallVector<Constant*, 16> Elts; LocTy FirstEltLoc = Lex.getLoc(); if (ParseGlobalValueVector(Elts) || ParseToken(lltok::rsquare, "expected end of array constant")) return true; // Handle empty element. if (Elts.empty()) { // Use undef instead of an array because it's inconvenient to determine // the element type at this point, there being no elements to examine. ID.Kind = ValID::t_EmptyArray; return false; } if (!Elts[0]->getType()->isFirstClassType()) return Error(FirstEltLoc, "invalid array element type: " + getTypeString(Elts[0]->getType())); ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); // Verify all elements are correct type! for (unsigned i = 0, e = Elts.size(); i != e; ++i) { if (Elts[i]->getType() != Elts[0]->getType()) return Error(FirstEltLoc, "array element #" + Twine(i) + " is not of type '" + getTypeString(Elts[0]->getType())); } ID.ConstantVal = ConstantArray::get(ATy, Elts); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_c: // c "foo" Lex.Lex(); ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), false); if (ParseToken(lltok::StringConstant, "expected string")) return true; ID.Kind = ValID::t_Constant; return false; case lltok::kw_asm: { // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT bool HasSideEffect, AlignStack; Lex.Lex(); if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || ParseOptionalToken(lltok::kw_alignstack, AlignStack) || ParseStringConstant(ID.StrVal) || ParseToken(lltok::comma, "expected comma in inline asm expression") || ParseToken(lltok::StringConstant, "expected constraint string")) return true; ID.StrVal2 = Lex.getStrVal(); ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); ID.Kind = ValID::t_InlineAsm; return false; } case lltok::kw_blockaddress: { // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' Lex.Lex(); ValID Fn, Label; LocTy FnLoc, LabelLoc; if (ParseToken(lltok::lparen, "expected '(' in block address expression") || ParseValID(Fn) || ParseToken(lltok::comma, "expected comma in block address expression")|| ParseValID(Label) || ParseToken(lltok::rparen, "expected ')' in block address expression")) return true; if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) return Error(Fn.Loc, "expected function name in blockaddress"); if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) return Error(Label.Loc, "expected basic block name in blockaddress"); // Make a global variable as a placeholder for this reference. GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 0, ""); ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); ID.ConstantVal = FwdRef; ID.Kind = ValID::t_Constant; return false; } case lltok::kw_trunc: case lltok::kw_zext: case lltok::kw_sext: case lltok::kw_fptrunc: case lltok::kw_fpext: case lltok::kw_bitcast: case lltok::kw_uitofp: case lltok::kw_sitofp: case lltok::kw_fptoui: case lltok::kw_fptosi: case lltok::kw_inttoptr: case lltok::kw_ptrtoint: { unsigned Opc = Lex.getUIntVal(); Type *DestTy = 0; Constant *SrcVal; Lex.Lex(); if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || ParseGlobalTypeAndValue(SrcVal) || ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || ParseType(DestTy) || ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) return true; if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) return Error(ID.Loc, "invalid cast opcode for cast from '" + getTypeString(SrcVal->getType()) + "' to '" + getTypeString(DestTy) + "'"); ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal, DestTy); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_extractvalue: { Lex.Lex(); Constant *Val; SmallVector<unsigned, 4> Indices; if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| ParseGlobalTypeAndValue(Val) || ParseIndexList(Indices) || ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) return true; if (!Val->getType()->isAggregateType()) return Error(ID.Loc, "extractvalue operand must be aggregate type"); if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) return Error(ID.Loc, "invalid indices for extractvalue"); ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_insertvalue: { Lex.Lex(); Constant *Val0, *Val1; SmallVector<unsigned, 4> Indices; if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| ParseGlobalTypeAndValue(Val1) || ParseIndexList(Indices) || ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) return true; if (!Val0->getType()->isAggregateType()) return Error(ID.Loc, "insertvalue operand must be aggregate type"); if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) return Error(ID.Loc, "invalid indices for insertvalue"); ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_icmp: case lltok::kw_fcmp: { unsigned PredVal, Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (ParseCmpPredicate(PredVal, Opc) || ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in compare constantexpr") || ParseGlobalTypeAndValue(Val1) || ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) return true; if (Val0->getType() != Val1->getType()) return Error(ID.Loc, "compare operands must have the same type"); CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; if (Opc == Instruction::FCmp) { if (!Val0->getType()->isFPOrFPVectorTy()) return Error(ID.Loc, "fcmp requires floating point operands"); ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); } else { assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); if (!Val0->getType()->isIntOrIntVectorTy() && !Val0->getType()->getScalarType()->isPointerTy()) return Error(ID.Loc, "icmp requires pointer or integer operands"); ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); } ID.Kind = ValID::t_Constant; return false; } // Binary Operators. case lltok::kw_add: case lltok::kw_fadd: case lltok::kw_sub: case lltok::kw_fsub: case lltok::kw_mul: case lltok::kw_fmul: case lltok::kw_udiv: case lltok::kw_sdiv: case lltok::kw_fdiv: case lltok::kw_urem: case lltok::kw_srem: case lltok::kw_frem: case lltok::kw_shl: case lltok::kw_lshr: case lltok::kw_ashr: { bool NUW = false; bool NSW = false; bool Exact = false; unsigned Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); LocTy ModifierLoc = Lex.getLoc(); if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (EatIfPresent(lltok::kw_nuw)) NUW = true; if (EatIfPresent(lltok::kw_nsw)) { NSW = true; if (EatIfPresent(lltok::kw_nuw)) NUW = true; } } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || Opc == Instruction::LShr || Opc == Instruction::AShr) { if (EatIfPresent(lltok::kw_exact)) Exact = true; } if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in binary constantexpr") || ParseGlobalTypeAndValue(Val1) || ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) return true; if (Val0->getType() != Val1->getType()) return Error(ID.Loc, "operands of constexpr must have same type"); if (!Val0->getType()->isIntOrIntVectorTy()) { if (NUW) return Error(ModifierLoc, "nuw only applies to integer operations"); if (NSW) return Error(ModifierLoc, "nsw only applies to integer operations"); } // Check that the type is valid for the operator. switch (Opc) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::Shl: case Instruction::AShr: case Instruction::LShr: if (!Val0->getType()->isIntOrIntVectorTy()) return Error(ID.Loc, "constexpr requires integer operands"); break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: if (!Val0->getType()->isFPOrFPVectorTy()) return Error(ID.Loc, "constexpr requires fp operands"); break; default: llvm_unreachable("Unknown binary operator!"); } unsigned Flags = 0; if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; if (Exact) Flags |= PossiblyExactOperator::IsExact; Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); ID.ConstantVal = C; ID.Kind = ValID::t_Constant; return false; } // Logical Operations case lltok::kw_and: case lltok::kw_or: case lltok::kw_xor: { unsigned Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in logical constantexpr") || ParseGlobalTypeAndValue(Val1) || ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) return true; if (Val0->getType() != Val1->getType()) return Error(ID.Loc, "operands of constexpr must have same type"); if (!Val0->getType()->isIntOrIntVectorTy()) return Error(ID.Loc, "constexpr requires integer or integer vector operands"); ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_getelementptr: case lltok::kw_shufflevector: case lltok::kw_insertelement: case lltok::kw_extractelement: case lltok::kw_select: { unsigned Opc = Lex.getUIntVal(); SmallVector<Constant*, 16> Elts; bool InBounds = false; Lex.Lex(); if (Opc == Instruction::GetElementPtr) InBounds = EatIfPresent(lltok::kw_inbounds); if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || ParseGlobalValueVector(Elts) || ParseToken(lltok::rparen, "expected ')' in constantexpr")) return true; if (Opc == Instruction::GetElementPtr) { if (Elts.size() == 0 || !Elts[0]->getType()->getScalarType()->isPointerTy()) return Error(ID.Loc, "getelementptr requires pointer operand"); ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) return Error(ID.Loc, "invalid indices for getelementptr"); ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, InBounds); } else if (Opc == Instruction::Select) { if (Elts.size() != 3) return Error(ID.Loc, "expected three operands to select"); if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], Elts[2])) return Error(ID.Loc, Reason); ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); } else if (Opc == Instruction::ShuffleVector) { if (Elts.size() != 3) return Error(ID.Loc, "expected three operands to shufflevector"); if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) return Error(ID.Loc, "invalid operands to shufflevector"); ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); } else if (Opc == Instruction::ExtractElement) { if (Elts.size() != 2) return Error(ID.Loc, "expected two operands to extractelement"); if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) return Error(ID.Loc, "invalid extractelement operands"); ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); } else { assert(Opc == Instruction::InsertElement && "Unknown opcode"); if (Elts.size() != 3) return Error(ID.Loc, "expected three operands to insertelement"); if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) return Error(ID.Loc, "invalid insertelement operands"); ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); } ID.Kind = ValID::t_Constant; return false; } } Lex.Lex(); return false; } /// ParseGlobalValue - Parse a global value with the specified type. bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { C = 0; ValID ID; Value *V = NULL; bool Parsed = ParseValID(ID) || ConvertValIDToValue(Ty, ID, V, NULL); if (V && !(C = dyn_cast<Constant>(V))) return Error(ID.Loc, "global values must be constants"); return Parsed; } bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { Type *Ty = 0; return ParseType(Ty) || ParseGlobalValue(Ty, V); } /// ParseGlobalValueVector /// ::= /*empty*/ /// ::= TypeAndValue (',' TypeAndValue)* bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { // Empty list. if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::rsquare || Lex.getKind() == lltok::greater || Lex.getKind() == lltok::rparen) return false; Constant *C; if (ParseGlobalTypeAndValue(C)) return true; Elts.push_back(C); while (EatIfPresent(lltok::comma)) { if (ParseGlobalTypeAndValue(C)) return true; Elts.push_back(C); } return false; } bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { assert(Lex.getKind() == lltok::lbrace); Lex.Lex(); SmallVector<Value*, 16> Elts; if (ParseMDNodeVector(Elts, PFS) || ParseToken(lltok::rbrace, "expected end of metadata node")) return true; ID.MDNodeVal = MDNode::get(Context, Elts); ID.Kind = ValID::t_MDNode; return false; } /// ParseMetadataValue /// ::= !42 /// ::= !{...} /// ::= !"string" bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { assert(Lex.getKind() == lltok::exclaim); Lex.Lex(); // MDNode: // !{ ... } if (Lex.getKind() == lltok::lbrace) return ParseMetadataListValue(ID, PFS); // Standalone metadata reference // !42 if (Lex.getKind() == lltok::APSInt) { if (ParseMDNodeID(ID.MDNodeVal)) return true; ID.Kind = ValID::t_MDNode; return false; } // MDString: // ::= '!' STRINGCONSTANT if (ParseMDString(ID.MDStringVal)) return true; ID.Kind = ValID::t_MDString; return false; } //===----------------------------------------------------------------------===// // Function Parsing. //===----------------------------------------------------------------------===// bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, PerFunctionState *PFS) { if (Ty->isFunctionTy()) return Error(ID.Loc, "functions are not values, refer to them as pointers"); switch (ID.Kind) { case ValID::t_LocalID: if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); return (V == 0); case ValID::t_LocalName: if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); return (V == 0); case ValID::t_InlineAsm: { PointerType *PTy = dyn_cast<PointerType>(Ty); FunctionType *FTy = PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) return Error(ID.Loc, "invalid type for inline asm constraint string"); V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); return false; } case ValID::t_MDNode: if (!Ty->isMetadataTy()) return Error(ID.Loc, "metadata value must have metadata type"); V = ID.MDNodeVal; return false; case ValID::t_MDString: if (!Ty->isMetadataTy()) return Error(ID.Loc, "metadata value must have metadata type"); V = ID.MDStringVal; return false; case ValID::t_GlobalName: V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); return V == 0; case ValID::t_GlobalID: V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); return V == 0; case ValID::t_APSInt: if (!Ty->isIntegerTy()) return Error(ID.Loc, "integer constant must have integer type"); ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); V = ConstantInt::get(Context, ID.APSIntVal); return false; case ValID::t_APFloat: if (!Ty->isFloatingPointTy() || !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) return Error(ID.Loc, "floating point constant invalid for type"); // The lexer has no type info, so builds all half, float, and double FP // constants as double. Fix this here. Long double does not need this. if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { bool Ignored; if (Ty->isHalfTy()) ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &Ignored); else if (Ty->isFloatTy()) ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Ignored); } V = ConstantFP::get(Context, ID.APFloatVal); if (V->getType() != Ty) return Error(ID.Loc, "floating point constant does not have type '" + getTypeString(Ty) + "'"); return false; case ValID::t_Null: if (!Ty->isPointerTy()) return Error(ID.Loc, "null must be a pointer type"); V = ConstantPointerNull::get(cast<PointerType>(Ty)); return false; case ValID::t_Undef: // FIXME: LabelTy should not be a first-class type. if (!Ty->isFirstClassType() || Ty->isLabelTy()) return Error(ID.Loc, "invalid type for undef constant"); V = UndefValue::get(Ty); return false; case ValID::t_EmptyArray: if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) return Error(ID.Loc, "invalid empty array initializer"); V = UndefValue::get(Ty); return false; case ValID::t_Zero: // FIXME: LabelTy should not be a first-class type. if (!Ty->isFirstClassType() || Ty->isLabelTy()) return Error(ID.Loc, "invalid type for null constant"); V = Constant::getNullValue(Ty); return false; case ValID::t_Constant: if (ID.ConstantVal->getType() != Ty) return Error(ID.Loc, "constant expression type mismatch"); V = ID.ConstantVal; return false; case ValID::t_ConstantStruct: case ValID::t_PackedConstantStruct: if (StructType *ST = dyn_cast<StructType>(Ty)) { if (ST->getNumElements() != ID.UIntVal) return Error(ID.Loc, "initializer with struct type has wrong # elements"); if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) return Error(ID.Loc, "packed'ness of initializer and type don't match"); // Verify that the elements are compatible with the structtype. for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) return Error(ID.Loc, "element " + Twine(i) + " of struct initializer doesn't match struct element type"); V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, ID.UIntVal)); } else return Error(ID.Loc, "constant expression type mismatch"); return false; } llvm_unreachable("Invalid ValID"); } bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { V = 0; ValID ID; return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); } bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { Type *Ty = 0; return ParseType(Ty) || ParseValue(Ty, V, PFS); } bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, PerFunctionState &PFS) { Value *V; Loc = Lex.getLoc(); if (ParseTypeAndValue(V, PFS)) return true; if (!isa<BasicBlock>(V)) return Error(Loc, "expected a basic block"); BB = cast<BasicBlock>(V); return false; } /// FunctionHeader /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection /// OptionalAlign OptGC bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { // Parse the linkage. LocTy LinkageLoc = Lex.getLoc(); unsigned Linkage; unsigned Visibility; Attributes RetAttrs; CallingConv::ID CC; Type *RetType = 0; LocTy RetTypeLoc = Lex.getLoc(); if (ParseOptionalLinkage(Linkage) || ParseOptionalVisibility(Visibility) || ParseOptionalCallingConv(CC) || ParseOptionalAttrs(RetAttrs, 1) || ParseType(RetType, RetTypeLoc, true /*void allowed*/)) return true; // Verify that the linkage is ok. switch ((GlobalValue::LinkageTypes)Linkage) { case GlobalValue::ExternalLinkage: break; // always ok. case GlobalValue::DLLImportLinkage: case GlobalValue::ExternalWeakLinkage: if (isDefine) return Error(LinkageLoc, "invalid linkage for function definition"); break; case GlobalValue::PrivateLinkage: case GlobalValue::LinkerPrivateLinkage: case GlobalValue::LinkerPrivateWeakLinkage: case GlobalValue::LinkerPrivateWeakDefAutoLinkage: case GlobalValue::InternalLinkage: case GlobalValue::AvailableExternallyLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: case GlobalValue::DLLExportLinkage: if (!isDefine) return Error(LinkageLoc, "invalid linkage for function declaration"); break; case GlobalValue::AppendingLinkage: case GlobalValue::CommonLinkage: return Error(LinkageLoc, "invalid function linkage type"); } if (!FunctionType::isValidReturnType(RetType)) return Error(RetTypeLoc, "invalid function return type"); LocTy NameLoc = Lex.getLoc(); std::string FunctionName; if (Lex.getKind() == lltok::GlobalVar) { FunctionName = Lex.getStrVal(); } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. unsigned NameID = Lex.getUIntVal(); if (NameID != NumberedVals.size()) return TokError("function expected to be numbered '%" + Twine(NumberedVals.size()) + "'"); } else { return TokError("expected function name"); } Lex.Lex(); if (Lex.getKind() != lltok::lparen) return TokError("expected '(' in function argument list"); SmallVector<ArgInfo, 8> ArgList; bool isVarArg; Attributes FuncAttrs; std::string Section; unsigned Alignment; std::string GC; bool UnnamedAddr; LocTy UnnamedAddrLoc; if (ParseArgumentList(ArgList, isVarArg) || ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, &UnnamedAddrLoc) || ParseOptionalAttrs(FuncAttrs, 2) || (EatIfPresent(lltok::kw_section) && ParseStringConstant(Section)) || ParseOptionalAlignment(Alignment) || (EatIfPresent(lltok::kw_gc) && ParseStringConstant(GC))) return true; // If the alignment was parsed as an attribute, move to the alignment field. if (FuncAttrs & Attribute::Alignment) { Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); FuncAttrs &= ~Attribute::Alignment; } // Okay, if we got here, the function is syntactically valid. Convert types // and do semantic checks. std::vector<Type*> ParamTypeList; SmallVector<AttributeWithIndex, 8> Attrs; if (RetAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { ParamTypeList.push_back(ArgList[i].Ty); if (ArgList[i].Attrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); } if (FuncAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) return Error(RetTypeLoc, "functions with 'sret' argument must return void"); FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg); PointerType *PFT = PointerType::getUnqual(FT); Fn = 0; if (!FunctionName.empty()) { // If this was a definition of a forward reference, remove the definition // from the forward reference table and fill in the forward ref. std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = ForwardRefVals.find(FunctionName); if (FRVI != ForwardRefVals.end()) { Fn = M->getFunction(FunctionName); if (Fn->getType() != PFT) return Error(FRVI->second.second, "invalid forward reference to " "function '" + FunctionName + "' with wrong type!"); ForwardRefVals.erase(FRVI); } else if ((Fn = M->getFunction(FunctionName))) { // Reject redefinitions. return Error(NameLoc, "invalid redefinition of function '" + FunctionName + "'"); } else if (M->getNamedValue(FunctionName)) { return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); } } else { // If this is a definition of a forward referenced function, make sure the // types agree. std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { Fn = cast<Function>(I->second.first); if (Fn->getType() != PFT) return Error(NameLoc, "type of definition and forward reference of '@" + Twine(NumberedVals.size()) + "' disagree"); ForwardRefValIDs.erase(I); } } if (Fn == 0) Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); else // Move the forward-reference to the correct spot in the module. M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); if (FunctionName.empty()) NumberedVals.push_back(Fn); Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); Fn->setCallingConv(CC); Fn->setAttributes(PAL); Fn->setUnnamedAddr(UnnamedAddr); Fn->setAlignment(Alignment); Fn->setSection(Section); if (!GC.empty()) Fn->setGC(GC.c_str()); // Add all of the arguments we parsed to the function. Function::arg_iterator ArgIt = Fn->arg_begin(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { // If the argument has a name, insert it into the argument symbol table. if (ArgList[i].Name.empty()) continue; // Set the name, if it conflicted, it will be auto-renamed. ArgIt->setName(ArgList[i].Name); if (ArgIt->getName() != ArgList[i].Name) return Error(ArgList[i].Loc, "redefinition of argument '%" + ArgList[i].Name + "'"); } return false; } /// ParseFunctionBody /// ::= '{' BasicBlock+ '}' /// bool LLParser::ParseFunctionBody(Function &Fn) { if (Lex.getKind() != lltok::lbrace) return TokError("expected '{' in function body"); Lex.Lex(); // eat the {. int FunctionNumber = -1; if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; PerFunctionState PFS(*this, Fn, FunctionNumber); // We need at least one basic block. if (Lex.getKind() == lltok::rbrace) return TokError("function body requires at least one basic block"); while (Lex.getKind() != lltok::rbrace) if (ParseBasicBlock(PFS)) return true; // Eat the }. Lex.Lex(); // Verify function is ok. return PFS.FinishFunction(); } /// ParseBasicBlock /// ::= LabelStr? Instruction* bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { // If this basic block starts out with a name, remember it. std::string Name; LocTy NameLoc = Lex.getLoc(); if (Lex.getKind() == lltok::LabelStr) { Name = Lex.getStrVal(); Lex.Lex(); } BasicBlock *BB = PFS.DefineBB(Name, NameLoc); if (BB == 0) return true; std::string NameStr; // Parse the instructions in this block until we get a terminator. Instruction *Inst; SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; do { // This instruction may have three possibilities for a name: a) none // specified, b) name specified "%foo =", c) number specified: "%4 =". LocTy NameLoc = Lex.getLoc(); int NameID = -1; NameStr = ""; if (Lex.getKind() == lltok::LocalVarID) { NameID = Lex.getUIntVal(); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after instruction id")) return true; } else if (Lex.getKind() == lltok::LocalVar) { NameStr = Lex.getStrVal(); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after instruction name")) return true; } switch (ParseInstruction(Inst, BB, PFS)) { default: llvm_unreachable("Unknown ParseInstruction result!"); case InstError: return true; case InstNormal: BB->getInstList().push_back(Inst); // With a normal result, we check to see if the instruction is followed by // a comma and metadata. if (EatIfPresent(lltok::comma)) if (ParseInstructionMetadata(Inst, &PFS)) return true; break; case InstExtraComma: BB->getInstList().push_back(Inst); // If the instruction parser ate an extra comma at the end of it, it // *must* be followed by metadata. if (ParseInstructionMetadata(Inst, &PFS)) return true; break; } // Set the name on the instruction. if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; } while (!isa<TerminatorInst>(Inst)); return false; } //===----------------------------------------------------------------------===// // Instruction Parsing. //===----------------------------------------------------------------------===// /// ParseInstruction - Parse one of the many different instructions. /// int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS) { lltok::Kind Token = Lex.getKind(); if (Token == lltok::Eof) return TokError("found end of file when expecting more instructions"); LocTy Loc = Lex.getLoc(); unsigned KeywordVal = Lex.getUIntVal(); Lex.Lex(); // Eat the keyword. switch (Token) { default: return Error(Loc, "expected instruction opcode"); // Terminator Instructions. case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; case lltok::kw_ret: return ParseRet(Inst, BB, PFS); case lltok::kw_br: return ParseBr(Inst, PFS); case lltok::kw_switch: return ParseSwitch(Inst, PFS); case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); case lltok::kw_invoke: return ParseInvoke(Inst, PFS); case lltok::kw_resume: return ParseResume(Inst, PFS); // Binary Operators. case lltok::kw_add: case lltok::kw_sub: case lltok::kw_mul: case lltok::kw_shl: { bool NUW = EatIfPresent(lltok::kw_nuw); bool NSW = EatIfPresent(lltok::kw_nsw); if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); return false; } case lltok::kw_fadd: case lltok::kw_fsub: case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); case lltok::kw_sdiv: case lltok::kw_udiv: case lltok::kw_lshr: case lltok::kw_ashr: { bool Exact = EatIfPresent(lltok::kw_exact); if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); return false; } case lltok::kw_urem: case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); case lltok::kw_fdiv: case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); case lltok::kw_and: case lltok::kw_or: case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); case lltok::kw_icmp: case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); // Casts. case lltok::kw_trunc: case lltok::kw_zext: case lltok::kw_sext: case lltok::kw_fptrunc: case lltok::kw_fpext: case lltok::kw_bitcast: case lltok::kw_uitofp: case lltok::kw_sitofp: case lltok::kw_fptoui: case lltok::kw_fptosi: case lltok::kw_inttoptr: case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); // Other. case lltok::kw_select: return ParseSelect(Inst, PFS); case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); case lltok::kw_phi: return ParsePHI(Inst, PFS); case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); case lltok::kw_call: return ParseCall(Inst, PFS, false); case lltok::kw_tail: return ParseCall(Inst, PFS, true); // Memory. case lltok::kw_alloca: return ParseAlloc(Inst, PFS); case lltok::kw_load: return ParseLoad(Inst, PFS); case lltok::kw_store: return ParseStore(Inst, PFS); case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); case lltok::kw_fence: return ParseFence(Inst, PFS); case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); } } /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { if (Opc == Instruction::FCmp) { switch (Lex.getKind()) { default: TokError("expected fcmp predicate (e.g. 'oeq')"); case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; case lltok::kw_one: P = CmpInst::FCMP_ONE; break; case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; case lltok::kw_une: P = CmpInst::FCMP_UNE; break; case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; } } else { switch (Lex.getKind()) { default: TokError("expected icmp predicate (e.g. 'eq')"); case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; case lltok::kw_ne: P = CmpInst::ICMP_NE; break; case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; } } Lex.Lex(); return false; } //===----------------------------------------------------------------------===// // Terminator Instructions. //===----------------------------------------------------------------------===// /// ParseRet - Parse a return instruction. /// ::= 'ret' void (',' !dbg, !1)* /// ::= 'ret' TypeAndValue (',' !dbg, !1)* bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS) { SMLoc TypeLoc = Lex.getLoc(); Type *Ty = 0; if (ParseType(Ty, true /*void allowed*/)) return true; Type *ResType = PFS.getFunction().getReturnType(); if (Ty->isVoidTy()) { if (!ResType->isVoidTy()) return Error(TypeLoc, "value doesn't match function result type '" + getTypeString(ResType) + "'"); Inst = ReturnInst::Create(Context); return false; } Value *RV; if (ParseValue(Ty, RV, PFS)) return true; if (ResType != RV->getType()) return Error(TypeLoc, "value doesn't match function result type '" + getTypeString(ResType) + "'"); Inst = ReturnInst::Create(Context, RV); return false; } /// ParseBr /// ::= 'br' TypeAndValue /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc, Loc2; Value *Op0; BasicBlock *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS)) return true; if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { Inst = BranchInst::Create(BB); return false; } if (Op0->getType() != Type::getInt1Ty(Context)) return Error(Loc, "branch condition must have 'i1' type"); if (ParseToken(lltok::comma, "expected ',' after branch condition") || ParseTypeAndBasicBlock(Op1, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after true destination") || ParseTypeAndBasicBlock(Op2, Loc2, PFS)) return true; Inst = BranchInst::Create(Op1, Op2, Op0); return false; } /// ParseSwitch /// Instruction /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' /// JumpTable /// ::= (TypeAndValue ',' TypeAndValue)* bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { LocTy CondLoc, BBLoc; Value *Cond; BasicBlock *DefaultBB; if (ParseTypeAndValue(Cond, CondLoc, PFS) || ParseToken(lltok::comma, "expected ',' after switch condition") || ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || ParseToken(lltok::lsquare, "expected '[' with switch table")) return true; if (!Cond->getType()->isIntegerTy()) return Error(CondLoc, "switch condition must have integer type"); // Parse the jump table pairs. SmallPtrSet<Value*, 32> SeenCases; SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; while (Lex.getKind() != lltok::rsquare) { Value *Constant; BasicBlock *DestBB; if (ParseTypeAndValue(Constant, CondLoc, PFS) || ParseToken(lltok::comma, "expected ',' after case value") || ParseTypeAndBasicBlock(DestBB, PFS)) return true; if (!SeenCases.insert(Constant)) return Error(CondLoc, "duplicate case value in switch"); if (!isa<ConstantInt>(Constant)) return Error(CondLoc, "case value is not a constant integer"); Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); } Lex.Lex(); // Eat the ']'. SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); for (unsigned i = 0, e = Table.size(); i != e; ++i) SI->addCase(Table[i].first, Table[i].second); Inst = SI; return false; } /// ParseIndirectBr /// Instruction /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { LocTy AddrLoc; Value *Address; if (ParseTypeAndValue(Address, AddrLoc, PFS) || ParseToken(lltok::comma, "expected ',' after indirectbr address") || ParseToken(lltok::lsquare, "expected '[' with indirectbr")) return true; if (!Address->getType()->isPointerTy()) return Error(AddrLoc, "indirectbr address must have pointer type"); // Parse the destination list. SmallVector<BasicBlock*, 16> DestList; if (Lex.getKind() != lltok::rsquare) { BasicBlock *DestBB; if (ParseTypeAndBasicBlock(DestBB, PFS)) return true; DestList.push_back(DestBB); while (EatIfPresent(lltok::comma)) { if (ParseTypeAndBasicBlock(DestBB, PFS)) return true; DestList.push_back(DestBB); } } if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) return true; IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); for (unsigned i = 0, e = DestList.size(); i != e; ++i) IBI->addDestination(DestList[i]); Inst = IBI; return false; } /// ParseInvoke /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { LocTy CallLoc = Lex.getLoc(); Attributes RetAttrs, FnAttrs; CallingConv::ID CC; Type *RetType = 0; LocTy RetTypeLoc; ValID CalleeID; SmallVector<ParamInfo, 16> ArgList; BasicBlock *NormalBB, *UnwindBB; if (ParseOptionalCallingConv(CC) || ParseOptionalAttrs(RetAttrs, 1) || ParseType(RetType, RetTypeLoc, true /*void allowed*/) || ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || ParseOptionalAttrs(FnAttrs, 2) || ParseToken(lltok::kw_to, "expected 'to' in invoke") || ParseTypeAndBasicBlock(NormalBB, PFS) || ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || ParseTypeAndBasicBlock(UnwindBB, PFS)) return true; // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. PointerType *PFTy = 0; FunctionType *Ty = 0; if (!(PFTy = dyn_cast<PointerType>(RetType)) || !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector<Type*> ParamTypes; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ParamTypes.push_back(ArgList[i].V->getType()); if (!FunctionType::isValidReturnType(RetType)) return Error(RetTypeLoc, "Invalid result type for LLVM function"); Ty = FunctionType::get(RetType, ParamTypes, false); PFTy = PointerType::getUnqual(Ty); } // Look up the callee. Value *Callee; if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; // Set up the Attributes for the function. SmallVector<AttributeWithIndex, 8> Attrs; if (RetAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); SmallVector<Value*, 8> Args; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { Type *ExpectedTy = 0; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return Error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return Error(ArgList[i].Loc, "argument is not of expected type '" + getTypeString(ExpectedTy) + "'"); Args.push_back(ArgList[i].V); if (ArgList[i].Attrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); } if (I != E) return Error(CallLoc, "not enough parameters specified for call"); if (FnAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); // Finish off the Attributes and check them AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); II->setCallingConv(CC); II->setAttributes(PAL); Inst = II; return false; } /// ParseResume /// ::= 'resume' TypeAndValue bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { Value *Exn; LocTy ExnLoc; if (ParseTypeAndValue(Exn, ExnLoc, PFS)) return true; ResumeInst *RI = ResumeInst::Create(Exn); Inst = RI; return false; } //===----------------------------------------------------------------------===// // Binary Operators. //===----------------------------------------------------------------------===// /// ParseArithmetic /// ::= ArithmeticOps TypeAndValue ',' Value /// /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, /// then any integer operand is allowed, if it is 2, any fp operand is allowed. bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc, unsigned OperandType) { LocTy Loc; Value *LHS, *RHS; if (ParseTypeAndValue(LHS, Loc, PFS) || ParseToken(lltok::comma, "expected ',' in arithmetic operation") || ParseValue(LHS->getType(), RHS, PFS)) return true; bool Valid; switch (OperandType) { default: llvm_unreachable("Unknown operand type!"); case 0: // int or FP. Valid = LHS->getType()->isIntOrIntVectorTy() || LHS->getType()->isFPOrFPVectorTy(); break; case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; } if (!Valid) return Error(Loc, "invalid operand type for instruction"); Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); return false; } /// ParseLogical /// ::= ArithmeticOps TypeAndValue ',' Value { bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { LocTy Loc; Value *LHS, *RHS; if (ParseTypeAndValue(LHS, Loc, PFS) || ParseToken(lltok::comma, "expected ',' in logical operation") || ParseValue(LHS->getType(), RHS, PFS)) return true; if (!LHS->getType()->isIntOrIntVectorTy()) return Error(Loc,"instruction requires integer or integer vector operands"); Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); return false; } /// ParseCompare /// ::= 'icmp' IPredicates TypeAndValue ',' Value /// ::= 'fcmp' FPredicates TypeAndValue ',' Value bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { // Parse the integer/fp comparison predicate. LocTy Loc; unsigned Pred; Value *LHS, *RHS; if (ParseCmpPredicate(Pred, Opc) || ParseTypeAndValue(LHS, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after compare value") || ParseValue(LHS->getType(), RHS, PFS)) return true; if (Opc == Instruction::FCmp) { if (!LHS->getType()->isFPOrFPVectorTy()) return Error(Loc, "fcmp requires floating point operands"); Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); } else { assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); if (!LHS->getType()->isIntOrIntVectorTy() && !LHS->getType()->getScalarType()->isPointerTy()) return Error(Loc, "icmp requires integer operands"); Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); } return false; } //===----------------------------------------------------------------------===// // Other Instructions. //===----------------------------------------------------------------------===// /// ParseCast /// ::= CastOpc TypeAndValue 'to' Type bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { LocTy Loc; Value *Op; Type *DestTy = 0; if (ParseTypeAndValue(Op, Loc, PFS) || ParseToken(lltok::kw_to, "expected 'to' after cast value") || ParseType(DestTy)) return true; if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); return Error(Loc, "invalid cast opcode for cast from '" + getTypeString(Op->getType()) + "' to '" + getTypeString(DestTy) + "'"); } Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); return false; } /// ParseSelect /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after select condition") || ParseTypeAndValue(Op1, PFS) || ParseToken(lltok::comma, "expected ',' after select value") || ParseTypeAndValue(Op2, PFS)) return true; if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) return Error(Loc, Reason); Inst = SelectInst::Create(Op0, Op1, Op2); return false; } /// ParseVA_Arg /// ::= 'va_arg' TypeAndValue ',' Type bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { Value *Op; Type *EltTy = 0; LocTy TypeLoc; if (ParseTypeAndValue(Op, PFS) || ParseToken(lltok::comma, "expected ',' after vaarg operand") || ParseType(EltTy, TypeLoc)) return true; if (!EltTy->isFirstClassType()) return Error(TypeLoc, "va_arg requires operand with first class type"); Inst = new VAArgInst(Op, EltTy); return false; } /// ParseExtractElement /// ::= 'extractelement' TypeAndValue ',' TypeAndValue bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after extract value") || ParseTypeAndValue(Op1, PFS)) return true; if (!ExtractElementInst::isValidOperands(Op0, Op1)) return Error(Loc, "invalid extractelement operands"); Inst = ExtractElementInst::Create(Op0, Op1); return false; } /// ParseInsertElement /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseTypeAndValue(Op1, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseTypeAndValue(Op2, PFS)) return true; if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) return Error(Loc, "invalid insertelement operands"); Inst = InsertElementInst::Create(Op0, Op1, Op2); return false; } /// ParseShuffleVector /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after shuffle mask") || ParseTypeAndValue(Op1, PFS) || ParseToken(lltok::comma, "expected ',' after shuffle value") || ParseTypeAndValue(Op2, PFS)) return true; if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) return Error(Loc, "invalid shufflevector operands"); Inst = new ShuffleVectorInst(Op0, Op1, Op2); return false; } /// ParsePHI /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { Type *Ty = 0; LocTy TypeLoc; Value *Op0, *Op1; if (ParseType(Ty, TypeLoc) || ParseToken(lltok::lsquare, "expected '[' in phi value list") || ParseValue(Ty, Op0, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseValue(Type::getLabelTy(Context), Op1, PFS) || ParseToken(lltok::rsquare, "expected ']' in phi value list")) return true; bool AteExtraComma = false; SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; while (1) { PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); if (!EatIfPresent(lltok::comma)) break; if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; break; } if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || ParseValue(Ty, Op0, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseValue(Type::getLabelTy(Context), Op1, PFS) || ParseToken(lltok::rsquare, "expected ']' in phi value list")) return true; } if (!Ty->isFirstClassType()) return Error(TypeLoc, "phi node must have first class type"); PHINode *PN = PHINode::Create(Ty, PHIVals.size()); for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) PN->addIncoming(PHIVals[i].first, PHIVals[i].second); Inst = PN; return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseLandingPad /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ /// Clause /// ::= 'catch' TypeAndValue /// ::= 'filter' /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { Type *Ty = 0; LocTy TyLoc; Value *PersFn; LocTy PersFnLoc; if (ParseType(Ty, TyLoc) || ParseToken(lltok::kw_personality, "expected 'personality'") || ParseTypeAndValue(PersFn, PersFnLoc, PFS)) return true; LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ LandingPadInst::ClauseType CT; if (EatIfPresent(lltok::kw_catch)) CT = LandingPadInst::Catch; else if (EatIfPresent(lltok::kw_filter)) CT = LandingPadInst::Filter; else return TokError("expected 'catch' or 'filter' clause type"); Value *V; LocTy VLoc; if (ParseTypeAndValue(V, VLoc, PFS)) { delete LP; return true; } // A 'catch' type expects a non-array constant. A filter clause expects an // array constant. if (CT == LandingPadInst::Catch) { if (isa<ArrayType>(V->getType())) Error(VLoc, "'catch' clause has an invalid type"); } else { if (!isa<ArrayType>(V->getType())) Error(VLoc, "'filter' clause has an invalid type"); } LP->addClause(V); } Inst = LP; return false; } /// ParseCall /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value /// ParameterList OptionalAttrs bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, bool isTail) { Attributes RetAttrs, FnAttrs; CallingConv::ID CC; Type *RetType = 0; LocTy RetTypeLoc; ValID CalleeID; SmallVector<ParamInfo, 16> ArgList; LocTy CallLoc = Lex.getLoc(); if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || ParseOptionalCallingConv(CC) || ParseOptionalAttrs(RetAttrs, 1) || ParseType(RetType, RetTypeLoc, true /*void allowed*/) || ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || ParseOptionalAttrs(FnAttrs, 2)) return true; // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. PointerType *PFTy = 0; FunctionType *Ty = 0; if (!(PFTy = dyn_cast<PointerType>(RetType)) || !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector<Type*> ParamTypes; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ParamTypes.push_back(ArgList[i].V->getType()); if (!FunctionType::isValidReturnType(RetType)) return Error(RetTypeLoc, "Invalid result type for LLVM function"); Ty = FunctionType::get(RetType, ParamTypes, false); PFTy = PointerType::getUnqual(Ty); } // Look up the callee. Value *Callee; if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; // Set up the Attributes for the function. SmallVector<AttributeWithIndex, 8> Attrs; if (RetAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); SmallVector<Value*, 8> Args; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { Type *ExpectedTy = 0; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return Error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return Error(ArgList[i].Loc, "argument is not of expected type '" + getTypeString(ExpectedTy) + "'"); Args.push_back(ArgList[i].V); if (ArgList[i].Attrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); } if (I != E) return Error(CallLoc, "not enough parameters specified for call"); if (FnAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); // Finish off the Attributes and check them AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); CallInst *CI = CallInst::Create(Callee, Args); CI->setTailCall(isTail); CI->setCallingConv(CC); CI->setAttributes(PAL); Inst = CI; return false; } //===----------------------------------------------------------------------===// // Memory Instructions. //===----------------------------------------------------------------------===// /// ParseAlloc /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { Value *Size = 0; LocTy SizeLoc; unsigned Alignment = 0; Type *Ty = 0; if (ParseType(Ty)) return true; bool AteExtraComma = false; if (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::kw_align) { if (ParseOptionalAlignment(Alignment)) return true; } else if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; } else { if (ParseTypeAndValue(Size, SizeLoc, PFS) || ParseOptionalCommaAlign(Alignment, AteExtraComma)) return true; } } if (Size && !Size->getType()->isIntegerTy()) return Error(SizeLoc, "element count must have integer type"); Inst = new AllocaInst(Ty, Size, Alignment); return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseLoad /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? /// ::= 'load' 'atomic' 'volatile'? TypeAndValue /// 'singlethread'? AtomicOrdering (',' 'align' i32)? int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy Loc; unsigned Alignment = 0; bool AteExtraComma = false; bool isAtomic = false; AtomicOrdering Ordering = NotAtomic; SynchronizationScope Scope = CrossThread; if (Lex.getKind() == lltok::kw_atomic) { isAtomic = true; Lex.Lex(); } bool isVolatile = false; if (Lex.getKind() == lltok::kw_volatile) { isVolatile = true; Lex.Lex(); } if (ParseTypeAndValue(Val, Loc, PFS) || ParseScopeAndOrdering(isAtomic, Scope, Ordering) || ParseOptionalCommaAlign(Alignment, AteExtraComma)) return true; if (!Val->getType()->isPointerTy() || !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) return Error(Loc, "load operand must be a pointer to a first class type"); if (isAtomic && !Alignment) return Error(Loc, "atomic load must have explicit non-zero alignment"); if (Ordering == Release || Ordering == AcquireRelease) return Error(Loc, "atomic load cannot use Release ordering"); Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseStore /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue /// 'singlethread'? AtomicOrdering (',' 'align' i32)? int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { Value *Val, *Ptr; LocTy Loc, PtrLoc; unsigned Alignment = 0; bool AteExtraComma = false; bool isAtomic = false; AtomicOrdering Ordering = NotAtomic; SynchronizationScope Scope = CrossThread; if (Lex.getKind() == lltok::kw_atomic) { isAtomic = true; Lex.Lex(); } bool isVolatile = false; if (Lex.getKind() == lltok::kw_volatile) { isVolatile = true; Lex.Lex(); } if (ParseTypeAndValue(Val, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after store operand") || ParseTypeAndValue(Ptr, PtrLoc, PFS) || ParseScopeAndOrdering(isAtomic, Scope, Ordering) || ParseOptionalCommaAlign(Alignment, AteExtraComma)) return true; if (!Ptr->getType()->isPointerTy()) return Error(PtrLoc, "store operand must be a pointer"); if (!Val->getType()->isFirstClassType()) return Error(Loc, "store operand must be a first class value"); if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) return Error(Loc, "stored value and pointer type do not match"); if (isAtomic && !Alignment) return Error(Loc, "atomic store must have explicit non-zero alignment"); if (Ordering == Acquire || Ordering == AcquireRelease) return Error(Loc, "atomic store cannot use Acquire ordering"); Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseCmpXchg /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue /// 'singlethread'? AtomicOrdering int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; bool AteExtraComma = false; AtomicOrdering Ordering = NotAtomic; SynchronizationScope Scope = CrossThread; bool isVolatile = false; if (EatIfPresent(lltok::kw_volatile)) isVolatile = true; if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || ParseToken(lltok::comma, "expected ',' after cmpxchg address") || ParseTypeAndValue(Cmp, CmpLoc, PFS) || ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || ParseTypeAndValue(New, NewLoc, PFS) || ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) return true; if (Ordering == Unordered) return TokError("cmpxchg cannot be unordered"); if (!Ptr->getType()->isPointerTy()) return Error(PtrLoc, "cmpxchg operand must be a pointer"); if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) return Error(CmpLoc, "compare value and pointer type do not match"); if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) return Error(NewLoc, "new value and pointer type do not match"); if (!New->getType()->isIntegerTy()) return Error(NewLoc, "cmpxchg operand must be an integer"); unsigned Size = New->getType()->getPrimitiveSizeInBits(); if (Size < 8 || (Size & (Size - 1))) return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" " integer"); AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); CXI->setVolatile(isVolatile); Inst = CXI; return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseAtomicRMW /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue /// 'singlethread'? AtomicOrdering int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr, *Val; LocTy PtrLoc, ValLoc; bool AteExtraComma = false; AtomicOrdering Ordering = NotAtomic; SynchronizationScope Scope = CrossThread; bool isVolatile = false; AtomicRMWInst::BinOp Operation; if (EatIfPresent(lltok::kw_volatile)) isVolatile = true; switch (Lex.getKind()) { default: return TokError("expected binary operation in atomicrmw"); case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; case lltok::kw_add: Operation = AtomicRMWInst::Add; break; case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; case lltok::kw_and: Operation = AtomicRMWInst::And; break; case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; case lltok::kw_or: Operation = AtomicRMWInst::Or; break; case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; case lltok::kw_max: Operation = AtomicRMWInst::Max; break; case lltok::kw_min: Operation = AtomicRMWInst::Min; break; case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; } Lex.Lex(); // Eat the operation. if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || ParseToken(lltok::comma, "expected ',' after atomicrmw address") || ParseTypeAndValue(Val, ValLoc, PFS) || ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) return true; if (Ordering == Unordered) return TokError("atomicrmw cannot be unordered"); if (!Ptr->getType()->isPointerTy()) return Error(PtrLoc, "atomicrmw operand must be a pointer"); if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) return Error(ValLoc, "atomicrmw value and pointer type do not match"); if (!Val->getType()->isIntegerTy()) return Error(ValLoc, "atomicrmw operand must be an integer"); unsigned Size = Val->getType()->getPrimitiveSizeInBits(); if (Size < 8 || (Size & (Size - 1))) return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" " integer"); AtomicRMWInst *RMWI = new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); RMWI->setVolatile(isVolatile); Inst = RMWI; return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseFence /// ::= 'fence' 'singlethread'? AtomicOrdering int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { AtomicOrdering Ordering = NotAtomic; SynchronizationScope Scope = CrossThread; if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) return true; if (Ordering == Unordered) return TokError("fence cannot be unordered"); if (Ordering == Monotonic) return TokError("fence cannot be monotonic"); Inst = new FenceInst(Context, Ordering, Scope); return InstNormal; } /// ParseGetElementPtr /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr = 0; Value *Val = 0; LocTy Loc, EltLoc; bool InBounds = EatIfPresent(lltok::kw_inbounds); if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; if (!Ptr->getType()->getScalarType()->isPointerTy()) return Error(Loc, "base of getelementptr must be a pointer"); SmallVector<Value*, 16> Indices; bool AteExtraComma = false; while (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; break; } if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; if (!Val->getType()->getScalarType()->isIntegerTy()) return Error(EltLoc, "getelementptr index must be an integer"); if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) return Error(EltLoc, "getelementptr index type missmatch"); if (Val->getType()->isVectorTy()) { unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); if (ValNumEl != PtrNumEl) return Error(EltLoc, "getelementptr vector index has a wrong number of elements"); } Indices.push_back(Val); } if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) return Error(EltLoc, "vector getelementptrs must have a single index"); if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) return Error(Loc, "invalid getelementptr indices"); Inst = GetElementPtrInst::Create(Ptr, Indices); if (InBounds) cast<GetElementPtrInst>(Inst)->setIsInBounds(true); return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseExtractValue /// ::= 'extractvalue' TypeAndValue (',' uint32)+ int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy Loc; SmallVector<unsigned, 4> Indices; bool AteExtraComma; if (ParseTypeAndValue(Val, Loc, PFS) || ParseIndexList(Indices, AteExtraComma)) return true; if (!Val->getType()->isAggregateType()) return Error(Loc, "extractvalue operand must be aggregate type"); if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) return Error(Loc, "invalid indices for extractvalue"); Inst = ExtractValueInst::Create(Val, Indices); return AteExtraComma ? InstExtraComma : InstNormal; } /// ParseInsertValue /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { Value *Val0, *Val1; LocTy Loc0, Loc1; SmallVector<unsigned, 4> Indices; bool AteExtraComma; if (ParseTypeAndValue(Val0, Loc0, PFS) || ParseToken(lltok::comma, "expected comma after insertvalue operand") || ParseTypeAndValue(Val1, Loc1, PFS) || ParseIndexList(Indices, AteExtraComma)) return true; if (!Val0->getType()->isAggregateType()) return Error(Loc0, "insertvalue operand must be aggregate type"); if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) return Error(Loc0, "invalid indices for insertvalue"); Inst = InsertValueInst::Create(Val0, Val1, Indices); return AteExtraComma ? InstExtraComma : InstNormal; } //===----------------------------------------------------------------------===// // Embedded metadata. //===----------------------------------------------------------------------===// /// ParseMDNodeVector /// ::= Element (',' Element)* /// Element /// ::= 'null' | TypeAndValue bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, PerFunctionState *PFS) { // Check for an empty list. if (Lex.getKind() == lltok::rbrace) return false; do { // Null is a special case since it is typeless. if (EatIfPresent(lltok::kw_null)) { Elts.push_back(0); continue; } Value *V = 0; if (ParseTypeAndValue(V, PFS)) return true; Elts.push_back(V); } while (EatIfPresent(lltok::comma)); return false; }