Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp |
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched-instrs" #include "llvm/Operator.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallSet.h" using namespace llvm; ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt, bool IsPostRAFlag, LiveIntervals *lis) : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis), IsPostRA(IsPostRAFlag), UnitLatencies(false), CanHandleTerminators(false), LoopRegs(MLI, MDT), FirstDbgValue(0) { assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); DbgValues.clear(); assert(!(IsPostRA && MRI.getNumVirtRegs()) && "Virtual registers must be removed prior to PostRA scheduling"); } /// getUnderlyingObjectFromInt - This is the function that does the work of /// looking through basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast<Operator>(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant or a multiplied value, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifibale object. if (U->getOpcode() != Instruction::Add || (!isa<ConstantInt>(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) return V; V = U->getOperand(0); } else { return V; } assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); } while (1); } /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObject(const Value *V) { // First just call Value::getUnderlyingObject to let it do what it does. do { V = GetUnderlyingObject(V); // If it found an inttoptr, use special code to continue climing. if (Operator::getOpcode(V) != Instruction::IntToPtr) break; const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); // If that succeeded in finding a pointer, continue the search. if (!O->getType()->isPointerTy()) break; V = O; } while (1); return V; } /// getUnderlyingObjectForInstr - If this machine instr has memory reference /// information and it can be tracked to a normal reference to a known /// object, return the Value for that object. Otherwise return null. static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, const MachineFrameInfo *MFI, bool &MayAlias) { MayAlias = true; if (!MI->hasOneMemOperand() || !(*MI->memoperands_begin())->getValue() || (*MI->memoperands_begin())->isVolatile()) return 0; const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return 0; V = getUnderlyingObject(V); if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (PSV->isAliased(MFI)) return 0; MayAlias = PSV->mayAlias(MFI); return V; } if (isIdentifiedObject(V)) return V; return 0; } void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) { LoopRegs.Deps.clear(); if (MachineLoop *ML = MLI.getLoopFor(BB)) if (BB == ML->getLoopLatch()) LoopRegs.VisitLoop(ML); } void ScheduleDAGInstrs::finishBlock() { // Nothing to do. } /// Initialize the map with the number of registers. void Reg2SUnitsMap::setRegLimit(unsigned Limit) { PhysRegSet.setUniverse(Limit); SUnits.resize(Limit); } /// Clear the map without deallocating storage. void Reg2SUnitsMap::clear() { for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) { SUnits[*I].clear(); } PhysRegSet.clear(); } /// Initialize the DAG and common scheduler state for the current scheduling /// region. This does not actually create the DAG, only clears it. The /// scheduling driver may call BuildSchedGraph multiple times per scheduling /// region. void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { BB = bb; RegionBegin = begin; RegionEnd = end; EndIndex = endcount; MISUnitMap.clear(); // Check to see if the scheduler cares about latencies. UnitLatencies = forceUnitLatencies(); ScheduleDAG::clearDAG(); } /// Close the current scheduling region. Don't clear any state in case the /// driver wants to refer to the previous scheduling region. void ScheduleDAGInstrs::exitRegion() { // Nothing to do. } /// addSchedBarrierDeps - Add dependencies from instructions in the current /// list of instructions being scheduled to scheduling barrier by adding /// the exit SU to the register defs and use list. This is because we want to /// make sure instructions which define registers that are either used by /// the terminator or are live-out are properly scheduled. This is /// especially important when the definition latency of the return value(s) /// are too high to be hidden by the branch or when the liveout registers /// used by instructions in the fallthrough block. void ScheduleDAGInstrs::addSchedBarrierDeps() { MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; ExitSU.setInstr(ExitMI); bool AllDepKnown = ExitMI && (ExitMI->isCall() || ExitMI->isBarrier()); if (ExitMI && AllDepKnown) { // If it's a call or a barrier, add dependencies on the defs and uses of // instruction. for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = ExitMI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) Uses[Reg].push_back(&ExitSU); else { assert(!IsPostRA && "Virtual register encountered after regalloc."); addVRegUseDeps(&ExitSU, i); } } } else { // For others, e.g. fallthrough, conditional branch, assume the exit // uses all the registers that are livein to the successor blocks. assert(Uses.empty() && "Uses in set before adding deps?"); for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; if (!Uses.contains(Reg)) Uses[Reg].push_back(&ExitSU); } } } /// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, const MachineOperand &MO) { assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); unsigned DataLatency = SU->Latency; for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) { if (!Uses.contains(*Alias)) continue; std::vector<SUnit*> &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU == SU) continue; unsigned LDataLatency = DataLatency; // Optionally add in a special extra latency for nodes that // feed addresses. // TODO: Perhaps we should get rid of // SpecialAddressLatency and just move this into // adjustSchedDependency for the targets that care about it. if (SpecialAddressLatency != 0 && !UnitLatencies && UseSU != &ExitSU) { MachineInstr *UseMI = UseSU->getInstr(); const MCInstrDesc &UseMCID = UseMI->getDesc(); int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias); assert(RegUseIndex >= 0 && "UseMI doesn't use register!"); if (RegUseIndex >= 0 && (UseMI->mayLoad() || UseMI->mayStore()) && (unsigned)RegUseIndex < UseMCID.getNumOperands() && UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) LDataLatency += SpecialAddressLatency; } // Adjust the dependence latency using operand def/use // information (if any), and then allow the target to // perform its own adjustments. const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias); if (!UnitLatencies) { computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); } UseSU->addPred(dep); } } } /// addPhysRegDeps - Add register dependencies (data, anti, and output) from /// this SUnit to following instructions in the same scheduling region that /// depend the physical register referenced at OperIdx. void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); const MachineOperand &MO = MI->getOperand(OperIdx); // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) { if (!Defs.contains(*Alias)) continue; std::vector<SUnit *> &DefList = Defs[*Alias]; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) { if (Kind == SDep::Anti) DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias)); else { unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx, DefSU->getInstr()); DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias)); } } } } if (!MO.isDef()) { // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's uses. // Push this SUnit on the use list. Uses[MO.getReg()].push_back(SU); } else { addPhysRegDataDeps(SU, MO); // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's defs. std::vector<SUnit *> &DefList = Defs[MO.getReg()]; // If a def is going to wrap back around to the top of the loop, // backschedule it. if (!UnitLatencies && DefList.empty()) { LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg()); if (I != LoopRegs.Deps.end()) { const MachineOperand *UseMO = I->second.first; unsigned Count = I->second.second; const MachineInstr *UseMI = UseMO->getParent(); unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); const MCInstrDesc &UseMCID = UseMI->getDesc(); const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); // TODO: If we knew the total depth of the region here, we could // handle the case where the whole loop is inside the region but // is large enough that the isScheduleHigh trick isn't needed. if (UseMOIdx < UseMCID.getNumOperands()) { // Currently, we only support scheduling regions consisting of // single basic blocks. Check to see if the instruction is in // the same region by checking to see if it has the same parent. if (UseMI->getParent() != MI->getParent()) { unsigned Latency = SU->Latency; if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) Latency += SpecialAddressLatency; // This is a wild guess as to the portion of the latency which // will be overlapped by work done outside the current // scheduling region. Latency -= std::min(Latency, Count); // Add the artificial edge. ExitSU.addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (SpecialAddressLatency > 0 && UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { // The entire loop body is within the current scheduling region // and the latency of this operation is assumed to be greater // than the latency of the loop. // TODO: Recursively mark data-edge predecessors as // isScheduleHigh too. SU->isScheduleHigh = true; } } LoopRegs.Deps.erase(I); } } // clear this register's use list if (Uses.contains(MO.getReg())) Uses[MO.getReg()].clear(); if (!MO.isDead()) DefList.clear(); // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. if (SU->isCall) { while (!DefList.empty() && DefList.back()->isCall) DefList.pop_back(); } // Defs are pushed in the order they are visited and never reordered. DefList.push_back(SU); } } /// addVRegDefDeps - Add register output and data dependencies from this SUnit /// to instructions that occur later in the same scheduling region if they read /// from or write to the virtual register defined at OperIdx. /// /// TODO: Hoist loop induction variable increments. This has to be /// reevaluated. Generally, IV scheduling should be done before coalescing. void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // SSA defs do not have output/anti dependencies. // The current operand is a def, so we have at least one. if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end()) return; // Add output dependence to the next nearest def of this vreg. // // Unless this definition is dead, the output dependence should be // transitively redundant with antidependencies from this definition's // uses. We're conservative for now until we have a way to guarantee the uses // are not eliminated sometime during scheduling. The output dependence edge // is also useful if output latency exceeds def-use latency. VReg2SUnitMap::iterator DefI = findVRegDef(Reg); if (DefI == VRegDefs.end()) VRegDefs.insert(VReg2SUnit(Reg, SU)); else { SUnit *DefSU = DefI->SU; if (DefSU != SU && DefSU != &ExitSU) { unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx, DefSU->getInstr()); DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg)); } DefI->SU = SU; } } /// addVRegUseDeps - Add a register data dependency if the instruction that /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a /// register antidependency from this SUnit to instructions that occur later in /// the same scheduling region if they write the virtual register. /// /// TODO: Handle ExitSU "uses" properly. void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // Lookup this operand's reaching definition. assert(LIS && "vreg dependencies requires LiveIntervals"); SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(); LiveInterval *LI = &LIS->getInterval(Reg); VNInfo *VNI = LI->getVNInfoBefore(UseIdx); // VNI will be valid because MachineOperand::readsReg() is checked by caller. MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); // Phis and other noninstructions (after coalescing) have a NULL Def. if (Def) { SUnit *DefSU = getSUnit(Def); if (DefSU) { // The reaching Def lives within this scheduling region. // Create a data dependence. // // TODO: Handle "special" address latencies cleanly. const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg); if (!UnitLatencies) { // Adjust the dependence latency using operand def/use information, then // allow the target to perform its own adjustments. computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep)); const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); } SU->addPred(dep); } } // Add antidependence to the following def of the vreg it uses. VReg2SUnitMap::iterator DefI = findVRegDef(Reg); if (DefI != VRegDefs.end() && DefI->SU != SU) DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg)); } /// Create an SUnit for each real instruction, numbered in top-down toplological /// order. The instruction order A < B, implies that no edge exists from B to A. /// /// Map each real instruction to its SUnit. /// /// After initSUnits, the SUnits vector cannot be resized and the scheduler may /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs /// instead of pointers. /// /// MachineScheduler relies on initSUnits numbering the nodes by their order in /// the original instruction list. void ScheduleDAGInstrs::initSUnits() { // We'll be allocating one SUnit for each real instruction in the region, // which is contained within a basic block. SUnits.reserve(BB->size()); for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { MachineInstr *MI = I; if (MI->isDebugValue()) continue; SUnit *SU = newSUnit(MI); MISUnitMap[MI] = SU; SU->isCall = MI->isCall(); SU->isCommutable = MI->isCommutable(); // Assign the Latency field of SU using target-provided information. if (UnitLatencies) SU->Latency = 1; else computeLatency(SU); } } void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) { // Create an SUnit for each real instruction. initSUnits(); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where a generic side-effecting instruction is as we procede. SUnit *BarrierChain = 0, *AliasChain = 0; // Memory references to specific known memory locations are tracked // so that they can be given more precise dependencies. We track // separately the known memory locations that may alias and those // that are known not to alias std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; // Remove any stale debug info; sometimes BuildSchedGraph is called again // without emitting the info from the previous call. DbgValues.clear(); FirstDbgValue = NULL; assert(Defs.empty() && Uses.empty() && "Only BuildGraph should update Defs/Uses"); Defs.setRegLimit(TRI->getNumRegs()); Uses.setRegLimit(TRI->getNumRegs()); assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); // FIXME: Allow SparseSet to reserve space for the creation of virtual // registers during scheduling. Don't artificially inflate the Universe // because we want to assert that vregs are not created during DAG building. VRegDefs.setUniverse(MRI.getNumVirtRegs()); // Model data dependencies between instructions being scheduled and the // ExitSU. addSchedBarrierDeps(); // Walk the list of instructions, from bottom moving up. MachineInstr *PrevMI = NULL; for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; MII != MIE; --MII) { MachineInstr *MI = prior(MII); if (MI && PrevMI) { DbgValues.push_back(std::make_pair(PrevMI, MI)); PrevMI = NULL; } if (MI->isDebugValue()) { PrevMI = MI; continue; } assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() && "Cannot schedule terminators or labels!"); SUnit *SU = MISUnitMap[MI]; assert(SU && "No SUnit mapped to this MI"); // Add register-based dependencies (data, anti, and output). for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) addPhysRegDeps(SU, j); else { assert(!IsPostRA && "Virtual register encountered!"); if (MO.isDef()) addVRegDefDeps(SU, j); else if (MO.readsReg()) // ignore undef operands addVRegUseDeps(SU, j); } } // Add chain dependencies. // Chain dependencies used to enforce memory order should have // latency of 0 (except for true dependency of Store followed by // aliased Load... we estimate that with a single cycle of latency // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. #define STORE_LOAD_LATENCY 1 unsigned TrueMemOrderLatency = 0; if (MI->isCall() || MI->hasUnmodeledSideEffects() || (MI->hasVolatileMemoryRef() && (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) { // Be conservative with these and add dependencies on all memory // references, even those that are known to not alias. for (std::map<const Value *, SUnit *>::iterator I = NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map<const Value *, std::vector<SUnit *> >::iterator I = NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } NonAliasMemDefs.clear(); NonAliasMemUses.clear(); // Add SU to the barrier chain. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); BarrierChain = SU; // fall-through new_alias_chain: // Chain all possibly aliasing memory references though SU. if (AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); AliasChain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map<const Value *, std::vector<SUnit *> >::iterator I = AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } PendingLoads.clear(); AliasMemDefs.clear(); AliasMemUses.clear(); } else if (MI->mayStore()) { bool MayAlias = true; TrueMemOrderLatency = STORE_LOAD_LATENCY; if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A store to a specific PseudoSourceValue. Add precise dependencies. // Record the def in MemDefs, first adding a dep if there is // an existing def. std::map<const Value *, SUnit *>::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map<const Value *, SUnit *>::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); I->second = SU; } else { if (MayAlias) AliasMemDefs[V] = SU; else NonAliasMemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map<const Value *, std::vector<SUnit *> >::iterator J = ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); std::map<const Value *, std::vector<SUnit *> >::iterator JE = ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); if (J != JE) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, /*Reg=*/0, /*isNormalMemory=*/true)); J->second.clear(); } if (MayAlias) { // Add dependencies from all the PendingLoads, i.e. loads // with no underlying object. for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); // Add dependence on alias chain, if needed. if (AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } // Add dependence on barrier chain, if needed. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } else { // Treat all other stores conservatively. goto new_alias_chain; } if (!ExitSU.isPred(SU)) // Push store's up a bit to avoid them getting in between cmp // and branches. ExitSU.addPred(SDep(SU, SDep::Order, 0, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (MI->mayLoad()) { bool MayAlias = true; TrueMemOrderLatency = 0; if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! } else { if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A load from a specific PseudoSourceValue. Add precise dependencies. std::map<const Value *, SUnit *>::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map<const Value *, SUnit *>::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); if (MayAlias) AliasMemUses[V].push_back(SU); else NonAliasMemUses[V].push_back(SU); } else { // A load with no underlying object. Depend on all // potentially aliasing stores. for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); PendingLoads.push_back(SU); MayAlias = true; } // Add dependencies on alias and barrier chains, if needed. if (MayAlias && AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } } } if (PrevMI) FirstDbgValue = PrevMI; Defs.clear(); Uses.clear(); VRegDefs.clear(); PendingLoads.clear(); } void ScheduleDAGInstrs::computeLatency(SUnit *SU) { // Compute the latency for the node. if (!InstrItins || InstrItins->isEmpty()) { SU->Latency = 1; // Simplistic target-independent heuristic: assume that loads take // extra time. if (SU->getInstr()->mayLoad()) SU->Latency += 2; } else { SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr()); } } void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use, SDep& dep) const { if (!InstrItins || InstrItins->isEmpty()) return; // For a data dependency with a known register... if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) return; const unsigned Reg = dep.getReg(); // ... find the definition of the register in the defining // instruction MachineInstr *DefMI = Def->getInstr(); int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); if (DefIdx != -1) { const MachineOperand &MO = DefMI->getOperand(DefIdx); if (MO.isReg() && MO.isImplicit() && DefIdx >= (int)DefMI->getDesc().getNumOperands()) { // This is an implicit def, getOperandLatency() won't return the correct // latency. e.g. // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def> // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ... // What we want is to compute latency between def of %D6/%D7 and use of // %Q3 instead. unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI); if (DefMI->getOperand(Op2).isReg()) DefIdx = Op2; } MachineInstr *UseMI = Use->getInstr(); // For all uses of the register, calculate the maxmimum latency int Latency = -1; if (UseMI) { for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = UseMI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (MOReg != Reg) continue; int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx, UseMI, i); Latency = std::max(Latency, UseCycle); } } else { // UseMI is null, then it must be a scheduling barrier. if (!InstrItins || InstrItins->isEmpty()) return; unsigned DefClass = DefMI->getDesc().getSchedClass(); Latency = InstrItins->getOperandCycle(DefClass, DefIdx); } // If we found a latency, then replace the existing dependence latency. if (Latency >= 0) dep.setLatency(Latency); } } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { SU->getInstr()->dump(); } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); if (SU == &EntrySU) oss << "<entry>"; else if (SU == &ExitSU) oss << "<exit>"; else SU->getInstr()->print(oss); return oss.str(); } /// Return the basic block label. It is not necessarilly unique because a block /// contains multiple scheduling regions. But it is fine for visualization. std::string ScheduleDAGInstrs::getDAGName() const { return "dag." + BB->getFullName(); }